diff --git a/fastNLP/core/callback.py b/fastNLP/core/callback.py index ad417340..095ebc3d 100644 --- a/fastNLP/core/callback.py +++ b/fastNLP/core/callback.py @@ -592,9 +592,10 @@ class FitlogCallback(Callback): fitlog.add_metric(eval_result, name=key, step=self.step, epoch=self.epoch) if better_result: fitlog.add_best_metric(eval_result, name=key) - except Exception: + except Exception as e: self.pbar.write("Exception happens when evaluate on DataSet named `{}`.".format(key)) - + raise e + def on_train_end(self): fitlog.finish() @@ -660,9 +661,9 @@ class EvaluateCallback(Callback): eval_result = tester.test() self.logger.info("EvaluateCallback evaluation on {}:".format(key)) self.logger.info(tester._format_eval_results(eval_result)) - except Exception: + except Exception as e: self.logger.error("Exception happens when evaluate on DataSet named `{}`.".format(key)) - + raise e class LRScheduler(Callback): """ diff --git a/fastNLP/core/losses.py b/fastNLP/core/losses.py index 2166734d..19fb5724 100644 --- a/fastNLP/core/losses.py +++ b/fastNLP/core/losses.py @@ -228,17 +228,18 @@ class CrossEntropyLoss(LossBase): self.class_in_dim = class_in_dim def get_loss(self, pred, target, seq_len=None): + if seq_len is not None and target.dim()>1: + mask = seq_len_to_mask(seq_len, max_len=target.size(1)).eq(0) + target = target.masked_fill(mask, self.padding_idx) + if pred.dim() > 2: if self.class_in_dim == -1: if pred.size(1) != target.size(1): # 有可能顺序替换了 pred = pred.transpose(1, 2) else: - pred = pred.tranpose(-1, pred) + pred = pred.transpose(-1, self.class_in_dim) pred = pred.reshape(-1, pred.size(-1)) target = target.reshape(-1) - if seq_len is not None and target.dim()>1: - mask = seq_len_to_mask(seq_len, max_len=target.size(1)).reshape(-1).eq(0) - target = target.masked_fill(mask, self.padding_idx) return F.cross_entropy(input=pred, target=target, ignore_index=self.padding_idx, reduction=self.reduction) diff --git a/fastNLP/core/tester.py b/fastNLP/core/tester.py index e92eb422..8e2ac8a7 100644 --- a/fastNLP/core/tester.py +++ b/fastNLP/core/tester.py @@ -189,10 +189,10 @@ class Tester(object): _check_loss_evaluate(prev_func_signature=prev_func_signature, func_signature=e.func_signature, check_res=e.check_res, pred_dict=pred_dict, target_dict=batch_y, dataset=self.data, check_level=0) - + finally: + self._mode(network, is_test=False) if self.verbose >= 1: logger.info("[tester] \n{}".format(self._format_eval_results(eval_results))) - self._mode(network, is_test=False) return eval_results def _mode(self, model, is_test=False): diff --git a/test/core/test_loss.py b/test/core/test_loss.py index 9ba8159f..976285a9 100644 --- a/test/core/test_loss.py +++ b/test/core/test_loss.py @@ -13,6 +13,18 @@ class TestLoss(unittest.TestCase): b = torch.empty(3, dtype=torch.long).random_(5) ans = ce({"my_predict": a}, {"my_truth": b}) self.assertEqual(ans, torch.nn.functional.cross_entropy(a, b)) + + ce = loss.CrossEntropyLoss(pred="my_predict", target="my_truth", class_in_dim=1) + a = torch.randn(3, 4, 3) + b = torch.randint(3, (3, 3)) + ans = ce({"my_predict": a}, {"my_truth": b}) + self.assertAlmostEqual(ans.item(), torch.nn.functional.cross_entropy(a, b).item(), places=4) + + ce = loss.CrossEntropyLoss(pred="my_predict", target="my_truth", class_in_dim=2) + a = torch.randn(3, 4, 3) + b = torch.randint(3, (3, 4)) + ans = ce({"my_predict": a}, {"my_truth": b}) + self.assertAlmostEqual(ans.item(), torch.nn.functional.cross_entropy(a.transpose(1, 2), b).item(), places=4) def test_BCELoss(self): bce = loss.BCELoss(pred="my_predict", target="my_truth")