diff --git a/fastNLP/core/trainer.py b/fastNLP/core/trainer.py index da8e54f9..d4bedb6f 100644 --- a/fastNLP/core/trainer.py +++ b/fastNLP/core/trainer.py @@ -1,39 +1,38 @@ -import itertools import os import time import warnings -from collections import defaultdict from datetime import datetime from datetime import timedelta import torch -from torch import nn from tensorboardX import SummaryWriter +from torch import nn from fastNLP.core.batch import Batch +from fastNLP.core.dataset import DataSet +from fastNLP.core.losses import _prepare_losser +from fastNLP.core.metrics import _prepare_metrics from fastNLP.core.optimizer import Optimizer from fastNLP.core.sampler import RandomSampler from fastNLP.core.sampler import SequentialSampler from fastNLP.core.tester import Tester +from fastNLP.core.utils import CheckError from fastNLP.core.utils import _build_args from fastNLP.core.utils import _check_arg_dict_list from fastNLP.core.utils import _move_dict_value_to_device from fastNLP.core.utils import get_func_signature -from fastNLP.core.dataset import DataSet -from fastNLP.core.losses import LossBase -from fastNLP.core.metrics import MetricBase -from fastNLP.core.losses import _prepare_losser -from fastNLP.core.metrics import _prepare_metrics -from fastNLP.core.utils import CheckError class Trainer(object): """Main Training Loop """ - def __init__(self, train_data, model, losser=None, metrics=None, n_epochs=3, batch_size=32, print_every=-1, validate_every=-1, + + def __init__(self, train_data, model, losser=None, metrics=None, n_epochs=3, batch_size=32, print_every=-1, + validate_every=-1, dev_data=None, use_cuda=False, save_path="./save", optimizer=Optimizer("Adam", lr=0.01, weight_decay=0), need_check_code=True, + metric_key=None, **kwargs): super(Trainer, self).__init__() @@ -50,6 +49,13 @@ class Trainer(object): # prepare evaluate metrics = _prepare_metrics(metrics) + + # parse metric_key + # increase_better is True. It means the exp result gets better if the indicator increases. + # It is true by default. + self.increase_better = False if metric_key[0] == "-" else True + self.metric_key = metric_key[1:] if metric_key[0] == "+" or metric_key[0] == "-" else metric_key + # prepare loss losser = _prepare_losser(losser) @@ -67,12 +73,10 @@ class Trainer(object): self.save_path = save_path self.print_every = int(print_every) self.validate_every = int(validate_every) - self._best_accuracy = 0 + self.best_metric_indicator = None self._model_device = model.parameters().__next__().device - # TODO self._best_accuracy不能表现出当前的metric多种的情况 - if isinstance(optimizer, torch.optim.Optimizer): self.optimizer = optimizer else: @@ -102,7 +106,7 @@ class Trainer(object): if torch.cuda.is_available() and self.use_cuda: self.model = self.model.cuda() - self.mode(self.model, is_test=False) + self._mode(self.model, is_test=False) start = time.time() self.start_time = str(datetime.now().strftime('%Y-%m-%d-%H-%M-%S')) @@ -112,7 +116,9 @@ class Trainer(object): def __getattr__(self, item): def pass_func(*args, **kwargs): pass + return pass_func + self._summary_writer = psudoSW() else: path = os.path.join(self.save_path, 'tensorboard_logs_{}'.format(self.start_time)) @@ -121,19 +127,20 @@ class Trainer(object): epoch = 1 while epoch <= self.n_epochs: - data_iterator = Batch(self.train_data, batch_size=self.batch_size, sampler=RandomSampler(), as_numpy=False) + data_iterator = Batch(self.train_data, batch_size=self.batch_size, sampler=RandomSampler(), + as_numpy=False) - self._train_epoch(data_iterator, self.model, epoch, self.dev_data, start) + self._train_epoch(data_iterator, self.model, epoch, start) # validate_every override validation at end of epochs if self.dev_data and self.validate_every <= 0: - self.do_validation() + self._do_validation() epoch += 1 finally: self._summary_writer.close() del self._summary_writer - def _train_epoch(self, data_iterator, model, epoch, dev_data, start, **kwargs): + def _train_epoch(self, data_iterator, model, epoch, start): """Training process in one epoch. kwargs should contain: @@ -144,10 +151,10 @@ class Trainer(object): for batch_x, batch_y in data_iterator: # TODO 这里可能会遇到问题,万一用户在model内部修改了prediction的device就会有问题 _move_dict_value_to_device(self._model_device, batch_x, batch_y) - prediction = self.data_forward(model, batch_x) - loss = self.get_loss(prediction, batch_y) - self.grad_backward(loss) - self.update() + prediction = self._data_forward(model, batch_x) + loss = self._compute_loss(prediction, batch_y) + self._grad_backward(loss) + self._update() self._summary_writer.add_scalar("loss", loss.item(), global_step=self.step) for name, param in self.model.named_parameters(): if param.requires_grad: @@ -162,18 +169,19 @@ class Trainer(object): print(print_output) if self.validate_every > 0 and self.step % self.validate_every == 0: - self.do_validation() + self._do_validation() self.step += 1 - def do_validation(self): + def _do_validation(self): res = self.tester.test() for name, num in res.items(): self._summary_writer.add_scalar("valid_{}".format(name), num, global_step=self.step) - if self.save_path is not None and self.best_eval_result(res): - self.save_model(self.model, 'best_model_' + self.start_time) + if self.save_path is not None and self._better_eval_result(res): + self.save_model(self.model, + "best_" + "_".join([self.model.__class__.__name__, self.metric_key, self.start_time])) - def mode(self, model, is_test=False): + def _mode(self, model, is_test=False): """Train mode or Test mode. This is for PyTorch currently. :param model: a PyTorch model @@ -185,20 +193,20 @@ class Trainer(object): else: model.train() - def update(self): + def _update(self): """Perform weight update on a model. """ self.optimizer.step() - def data_forward(self, network, x): + def _data_forward(self, network, x): x = _build_args(network.forward, **x) y = network(**x) if not isinstance(y, dict): raise TypeError(f"The return value of {get_func_signature(network.forward)} should be dict, got {type(y)}.") return y - def grad_backward(self, loss): + def _grad_backward(self, loss): """Compute gradient with link rules. :param loss: a scalar where back-prop starts @@ -208,7 +216,7 @@ class Trainer(object): self.model.zero_grad() loss.backward() - def get_loss(self, predict, truth): + def _compute_loss(self, predict, truth): """Compute loss given prediction and ground truth. :param predict: prediction dict, produced by model.forward @@ -224,27 +232,52 @@ class Trainer(object): else: torch.save(model, model_name) - def best_eval_result(self, metrics): + def _better_eval_result(self, metrics): """Check if the current epoch yields better validation results. - :return: bool, True means current results on dev set is the best. + :return bool value: True means current results on dev set is the best. """ if isinstance(metrics, tuple): loss, metrics = metrics if isinstance(metrics, dict): if len(metrics) == 1: - accuracy = list(metrics.values())[0] + # only single metric, just use it + metric_dict = list(metrics.values())[0] + metrics_name = list(metrics.keys())[0] else: - accuracy = metrics[self.eval_sort_key] - else: - accuracy = metrics - - if accuracy > self._best_accuracy: - self._best_accuracy = accuracy - return True - else: - return False + metrics_name = self.metrics[0].__class__.__name__ + if metrics_name not in metrics: + raise RuntimeError(f"{metrics_name} is chosen to do validation, but got {metrics}") + metric_dict = metrics[metrics_name] + + if len(metric_dict) == 1: + indicator_val, indicator = list(metric_dict.values())[0], list(metric_dict.keys())[0] + elif len(metric_dict) > 1 and self.metric_key is None: + raise RuntimeError( + f"Got multiple metric keys: {metric_dict}, but metric_key is not set. Which one to use?") + else: + # metric_key is set + if self.metric_key not in metric_dict: + raise RuntimeError(f"matric key {self.metric_key} not found in {metric_dict}") + indicator_val = metric_dict[self.metric_key] + + is_better = True + if self.best_metric_indicator is None: + # first-time validation + self.best_metric_indicator = indicator_val + else: + if self.increase_better is True: + if indicator_val > self.best_metric_indicator: + self.best_metric_indicator = indicator_val + else: + is_better = False + else: + if indicator_val < self.best_metric_indicator: + self.best_metric_indicator = indicator_val + else: + is_better = False + return is_better DEFAULT_CHECK_BATCH_SIZE = 2 @@ -254,6 +287,7 @@ IGNORE_CHECK_LEVEL = 0 WARNING_CHECK_LEVEL = 1 STRICT_CHECK_LEVEL = 2 + def _check_code(dataset, model, losser, metrics, batch_size=DEFAULT_CHECK_BATCH_SIZE, dev_data=None, check_level=WARNING_CHECK_LEVEL): @@ -264,7 +298,7 @@ def _check_code(dataset, model, losser, metrics, batch_size=DEFAULT_CHECK_BATCH_ for batch_count, (batch_x, batch_y) in enumerate(batch): _move_dict_value_to_device(model_devcie, batch_x, batch_y) # forward check - if batch_count==0: + if batch_count == 0: _check_forward_error(model_func=model.forward, check_level=check_level, batch_x=batch_x) @@ -285,17 +319,17 @@ def _check_code(dataset, model, losser, metrics, batch_size=DEFAULT_CHECK_BATCH_ if batch_count == 0: if not isinstance(loss, torch.Tensor): raise TypeError(f"The return value of {get_func_signature(losser.__call__)} should be `torch.Tensor`, " - f"but got `{type(loss)}`.") - if len(loss.size())!=0: + f"but got `{type(loss)}`.") + if len(loss.size()) != 0: raise ValueError(f"The size of return value of {get_func_signature(losser.__call__)} is {loss.size()}, " f"should be torch.size([])") loss.backward() model.zero_grad() - if batch_count+1>=DEFAULT_CHECK_NUM_BATCH: + if batch_count + 1 >= DEFAULT_CHECK_NUM_BATCH: break if dev_data is not None: - tester = Tester(data=dataset[:batch_size*DEFAULT_CHECK_NUM_BATCH], model=model, metrics=metrics, + tester = Tester(data=dataset[:batch_size * DEFAULT_CHECK_NUM_BATCH], model=model, metrics=metrics, batch_size=batch_size, verbose=-1) tester.test() @@ -305,18 +339,18 @@ def _check_forward_error(model_func, check_level, batch_x): _missing = '' _unused = '' func_signature = get_func_signature(model_func) - if len(check_res['missing'])!=0: + if len(check_res['missing']) != 0: _missing = "Function {} misses {}, only provided with {}, " \ ".\n".format(func_signature, check_res.missing, - list(batch_x.keys())) - if len(check_res['unused'])!=0: + list(batch_x.keys())) + if len(check_res['unused']) != 0: if len(check_res.unused) > 1: _unused = "{} are not used ".format(check_res.unused) else: _unused = "{} is not used ".format(check_res.unused) _unused += "in function {}.\n".format(func_signature) if _missing: - if len(_unused)>0 and STRICT_CHECK_LEVEL: + if len(_unused) > 0 and STRICT_CHECK_LEVEL: _error_str = "(1).{}\n(2).{}".format(_missing, _unused) else: _error_str = _missing @@ -329,38 +363,40 @@ def _check_forward_error(model_func, check_level, batch_x): elif check_level == WARNING_CHECK_LEVEL: warnings.warn(message=_unused) -def _check_loss_evaluate(prev_func, func, check_res, output, batch_y, check_level): + +def _check_loss_evaluate(prev_func, func, check_level, output, batch_y): + check_res = _check_arg_dict_list(func, [output, batch_y]) _missing = '' _unused = '' _duplicated = '' func_signature = get_func_signature(func) prev_func_signature = get_func_signature(prev_func) - if len(check_res.missing)>0: + if len(check_res.missing) > 0: _missing = "function {} misses argument {}, \n\t only provided with {}(from {}) and " \ "{}(from target in Dataset)." \ - .format(func_signature, check_res.missing, - list(output.keys()), prev_func_signature, - list(batch_y.keys())) - if len(check_res.unused)>0: + .format(func_signature, check_res.missing, + list(output.keys()), prev_func_signature, + list(batch_y.keys())) + if len(check_res.unused) > 0: if len(check_res.unused) > 1: _unused = "{} are not used ".format(check_res.unused) else: _unused = "{} is not used ".format(check_res.unused) _unused += "in function {}.\n".format(func_signature) - if len(check_res.duplicated)>0: + if len(check_res.duplicated) > 0: if len(check_res.duplicated) > 1: _duplicated = "duplicated keys {} are detected when calling function {}. \n\tDon't set {} as target and output " \ "them in {} at the same time.".format(check_res.duplicated, - func_signature, - check_res.duplicated, - prev_func_signature) - else: - _duplicated = "duplicated key {} is detected when calling function {}. \n\tDon't set {} as target and output " \ - "it in {} at the same time.".format(check_res.duplicated, func_signature, check_res.duplicated, prev_func_signature) - _number_errs = int(len(_missing)!=0) + int(len(_duplicated)!=0) + int(len(_unused)!=0) + else: + _duplicated = "duplicated key {} is detected when calling function {}. \n\tDon't set {} as target and output " \ + "it in {} at the same time.".format(check_res.duplicated, + func_signature, + check_res.duplicated, + prev_func_signature) + _number_errs = int(len(_missing) != 0) + int(len(_duplicated) != 0) + int(len(_unused) != 0) if _number_errs > 0: _error_strs = [] if _number_errs > 1: