diff --git a/tutorials/fastnlp_tutorial_0.ipynb b/tutorials/fastnlp_tutorial_0.ipynb index 28fcfddf..26675ecf 100644 --- a/tutorials/fastnlp_tutorial_0.ipynb +++ b/tutorials/fastnlp_tutorial_0.ipynb @@ -136,7 +136,7 @@ "在`fastNLP 0.8`中,使用`pytorch.nn.Module`搭建需要训练的模型,在搭建模型过程中,除了\n", "\n", " 添加`pytorch`要求的`forward`方法外,还需要添加 **`train_step`** 和 **`evaluate_step`** 这两个方法\n", - "***\n", + "\n", "```python\n", "class Model(torch.nn.Module):\n", " def __init__(self):\n", @@ -177,9 +177,7 @@ "\n", " 从模块角度,该字典的键值和`metric`中的`update`函数的签名一致,这样的机制在传参时被称为“**参数匹配**”\n", "\n", - "***\n", - "\n", - "![fastNLP 0.8 中,Trainer 和 Evaluator 的关系图](./figures/T0-fig-trainer-and-evaluator.png)" + "" ] }, { @@ -206,7 +204,7 @@ " 而在`Trainer`和`Evaluator`中的参数`model_wo_auto_param_call`被设置为`True`时\n", "\n", " `fastNLP 0.8`会将`batch`直接传给模型的`train_step`、`evaluate_step`或`forward`函数\n", - "***\n", + "\n", "```python\n", "class Dataset(torch.utils.data.Dataset):\n", " def __init__(self, x, y):\n", @@ -253,7 +251,7 @@ "id": "5314482b", "metadata": { "pycharm": { - "is_executing": false + "is_executing": true } }, "outputs": [], @@ -641,11 +639,11 @@ { "data": { "text/html": [ - "
{'acc#acc': 0.43}\n", + "{'acc#acc': 0.29}\n", "\n" ], "text/plain": [ - "\u001b[1m{\u001b[0m\u001b[32m'acc#acc'\u001b[0m: \u001b[1;36m0.43\u001b[0m\u001b[1m}\u001b[0m\n" + "\u001b[1m{\u001b[0m\u001b[32m'acc#acc'\u001b[0m: \u001b[1;36m0.29\u001b[0m\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, @@ -654,7 +652,7 @@ { "data": { "text/plain": [ - "{'acc#acc': 0.43}" + "{'acc#acc': 0.29}" ] }, "execution_count": 9, diff --git a/tutorials/fastnlp_tutorial_1.ipynb b/tutorials/fastnlp_tutorial_1.ipynb new file mode 100644 index 00000000..11bd2219 --- /dev/null +++ b/tutorials/fastnlp_tutorial_1.ipynb @@ -0,0 +1,1156 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "cdc25fcd", + "metadata": {}, + "source": [ + "# T1. dataset 和 vocabulary 的基本使用\n", + "\n", + " 1 dataset 的使用与结构\n", + " \n", + " 1.1 dataset 的结构与创建\n", + "\n", + " 1.2 dataset 的数据预处理\n", + "\n", + " 1.3 延伸:instance 和 field\n", + "\n", + " 2 vocabulary 的结构与使用\n", + "\n", + " 2.1 vocabulary 的创建与修改\n", + "\n", + " 2.2 vocabulary 与 OOV 问题\n", + "\n", + " 3 dataset 和 vocabulary 的组合使用\n", + " \n", + " 3.1 从 dataframe 中加载 dataset\n", + "\n", + " 3.2 从 dataset 中获取 vocabulary" + ] + }, + { + "cell_type": "markdown", + "id": "0eb18a22", + "metadata": {}, + "source": [ + "## 1. dataset 的基本使用\n", + "\n", + "### 1.1 dataset 的结构与创建\n", + "\n", + "在`fastNLP 0.8`中,使用`DataSet`模块表示数据集,**`dataset`类似于关系型数据库中的数据表**(下文统一为小写`dataset`)\n", + "\n", + " **主要包含`field`字段和`instance`实例两个元素**,对应`table`中的`field`字段和`record`记录\n", + "\n", + "在`fastNLP 0.8`中,`DataSet`模块被定义在`fastNLP.core.dataset`路径下,导入该模块后,最简单的\n", + "\n", + " 初始化方法,即将字典形式的表格 **`{'field1': column1, 'field2': column2, ...}`** 传入构造函数" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "a1d69ad2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "+-----+------------------------+------------------------+-----+\n", + "| idx | sentence | words | num |\n", + "+-----+------------------------+------------------------+-----+\n", + "| 0 | This is an apple . | ['This', 'is', 'an'... | 5 |\n", + "| 1 | I like apples . | ['I', 'like', 'appl... | 4 |\n", + "| 2 | Apples are good for... | ['Apples', 'are', '... | 7 |\n", + "+-----+------------------------+------------------------+-----+\n" + ] + } + ], + "source": [ + "from fastNLP.core.dataset import DataSet\n", + "\n", + "data = {'idx': [0, 1, 2], \n", + " 'sentence':[\"This is an apple .\", \"I like apples .\", \"Apples are good for our health .\"],\n", + " 'words': [['This', 'is', 'an', 'apple', '.'], \n", + " ['I', 'like', 'apples', '.'], \n", + " ['Apples', 'are', 'good', 'for', 'our', 'health', '.']],\n", + " 'num': [5, 4, 7]}\n", + "\n", + "dataset = DataSet(data)\n", + "print(dataset)" + ] + }, + { + "cell_type": "markdown", + "id": "9260fdc6", + "metadata": {}, + "source": [ + " 在`dataset`的实例中,字段`field`的名称和实例`instance`中的字符串也可以中文" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "3d72ef00", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "+------+--------------------+------------------------+------+\n", + "| 序号 | 句子 | 字符 | 长度 |\n", + "+------+--------------------+------------------------+------+\n", + "| 0 | 生活就像海洋, | ['生', '活', '就', ... | 7 |\n", + "| 1 | 只有意志坚强的人, | ['只', '有', '意', ... | 9 |\n", + "| 2 | 才能到达彼岸。 | ['才', '能', '到', ... | 7 |\n", + "+------+--------------------+------------------------+------+\n" + ] + } + ], + "source": [ + "temp = {'序号': [0, 1, 2], \n", + " '句子':[\"生活就像海洋,\", \"只有意志坚强的人,\", \"才能到达彼岸。\"],\n", + " '字符': [['生', '活', '就', '像', '海', '洋', ','], \n", + " ['只', '有', '意', '志', '坚', '强', '的', '人', ','], \n", + " ['才', '能', '到', '达', '彼', '岸', '。']],\n", + " '长度': [7, 9, 7]}\n", + "\n", + "chinese = DataSet(temp)\n", + "print(chinese)" + ] + }, + { + "cell_type": "markdown", + "id": "202e5490", + "metadata": {}, + "source": [ + "在`dataset`中,使用`drop`方法可以删除满足条件的实例,这里使用了python中的`lambda`表达式\n", + "\n", + " 注一:在`drop`方法中,通过设置`inplace`参数将删除对应实例后的`dataset`作为一个新的实例生成" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "09b478f8", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1969418794120 1971237588872\n", + "+-----+------------------------+------------------------+-----+\n", + "| idx | sentence | words | num |\n", + "+-----+------------------------+------------------------+-----+\n", + "| 0 | This is an apple . | ['This', 'is', 'an'... | 5 |\n", + "| 2 | Apples are good for... | ['Apples', 'are', '... | 7 |\n", + "+-----+------------------------+------------------------+-----+\n", + "+-----+------------------------+------------------------+-----+\n", + "| idx | sentence | words | num |\n", + "+-----+------------------------+------------------------+-----+\n", + "| 0 | This is an apple . | ['This', 'is', 'an'... | 5 |\n", + "| 1 | I like apples . | ['I', 'like', 'appl... | 4 |\n", + "| 2 | Apples are good for... | ['Apples', 'are', '... | 7 |\n", + "+-----+------------------------+------------------------+-----+\n" + ] + } + ], + "source": [ + "dropped = dataset\n", + "dropped = dropped.drop(lambda ins:ins['num'] < 5, inplace=False)\n", + "print(id(dropped), id(dataset))\n", + "print(dropped)\n", + "print(dataset)" + ] + }, + { + "cell_type": "markdown", + "id": "aa277674", + "metadata": {}, + "source": [ + " 注二:在`fastNLP 0.8`中,**对`dataset`使用等号**,**其效果是传引用**,**而不是赋值**(???)\n", + "\n", + " 如下所示,**`dropped`和`dataset`具有相同`id`**,**对`dropped`执行删除操作`dataset`同时会被修改**" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "77c8583a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1971237588872 1971237588872\n", + "+-----+------------------------+------------------------+-----+\n", + "| idx | sentence | words | num |\n", + "+-----+------------------------+------------------------+-----+\n", + "| 0 | This is an apple . | ['This', 'is', 'an'... | 5 |\n", + "| 2 | Apples are good for... | ['Apples', 'are', '... | 7 |\n", + "+-----+------------------------+------------------------+-----+\n", + "+-----+------------------------+------------------------+-----+\n", + "| idx | sentence | words | num |\n", + "+-----+------------------------+------------------------+-----+\n", + "| 0 | This is an apple . | ['This', 'is', 'an'... | 5 |\n", + "| 2 | Apples are good for... | ['Apples', 'are', '... | 7 |\n", + "+-----+------------------------+------------------------+-----+\n" + ] + } + ], + "source": [ + "dropped = dataset\n", + "dropped.drop(lambda ins:ins['num'] < 5)\n", + "print(id(dropped), id(dataset))\n", + "print(dropped)\n", + "print(dataset)" + ] + }, + { + "cell_type": "markdown", + "id": "a76199dc", + "metadata": {}, + "source": [ + "在`dataset`中,使用`delet_instance`方法可以删除对应序号的`instance`实例,序号从0开始" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "d8824b40", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "+-----+--------------------+------------------------+-----+\n", + "| idx | sentence | words | num |\n", + "+-----+--------------------+------------------------+-----+\n", + "| 0 | This is an apple . | ['This', 'is', 'an'... | 5 |\n", + "| 1 | I like apples . | ['I', 'like', 'appl... | 4 |\n", + "+-----+--------------------+------------------------+-----+\n" + ] + } + ], + "source": [ + "dataset = DataSet(data)\n", + "dataset.delete_instance(2)\n", + "print(dataset)" + ] + }, + { + "cell_type": "markdown", + "id": "f4fa9f33", + "metadata": {}, + "source": [ + "在`dataset`中,使用`delet_field`方法可以删除对应名称的`field`字段" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "f68ddb40", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "+-----+--------------------+------------------------------+\n", + "| idx | sentence | words |\n", + "+-----+--------------------+------------------------------+\n", + "| 0 | This is an apple . | ['This', 'is', 'an', 'app... |\n", + "| 1 | I like apples . | ['I', 'like', 'apples', '... |\n", + "+-----+--------------------+------------------------------+\n" + ] + } + ], + "source": [ + "dataset.delete_field('num')\n", + "print(dataset)" + ] + }, + { + "cell_type": "markdown", + "id": "b1e9d42c", + "metadata": {}, + "source": [ + "### 1.2 dataset 的数据预处理\n", + "\n", + "在`dataset`模块中,`apply`、`apply_field`、`apply_more`和`apply_field_more`函数可以进行简单的数据预处理\n", + "\n", + " **`apply`和`apply_more`针对整条实例**,**`apply_field`和`apply_field_more`仅针对实例的部分字段**\n", + "\n", + " **`apply`和`apply_field`仅针对单个字段**,**`apply_more`和`apply_field_more`则可以针对多个字段**\n", + "\n", + " **`apply`和`apply_field`返回的是个列表**,**`apply_more`和`apply_field_more`返回的是个字典**\n", + "\n", + "***\n", + "\n", + "`apply`的参数包括一个函数`func`和一个新字段名`new_field_name`,函数`func`的处理对象是`dataset`模块中\n", + "\n", + " 的每个`instance`实例,函数`func`的处理结果存放在`new_field_name`对应的新建字段内" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "72a0b5f9", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n" + ], + "text/plain": [] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "+-----+------------------------------+------------------------------+\n", + "| idx | sentence | words |\n", + "+-----+------------------------------+------------------------------+\n", + "| 0 | This is an apple . | ['This', 'is', 'an', 'app... |\n", + "| 1 | I like apples . | ['I', 'like', 'apples', '... |\n", + "| 2 | Apples are good for our h... | ['Apples', 'are', 'good',... |\n", + "+-----+------------------------------+------------------------------+\n" + ] + } + ], + "source": [ + "data = {'idx': [0, 1, 2], \n", + " 'sentence':[\"This is an apple .\", \"I like apples .\", \"Apples are good for our health .\"], }\n", + "dataset = DataSet(data)\n", + "dataset.apply(lambda ins: ins['sentence'].split(), new_field_name='words')\n", + "print(dataset)" + ] + }, + { + "cell_type": "markdown", + "id": "c10275ee", + "metadata": {}, + "source": [ + " **`apply`使用的函数可以是一个基于`lambda`表达式的匿名函数**,**也可以是一个自定义的函数**" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "b1a8631f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n" + ], + "text/plain": [] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n" + ], + "text/plain": [] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "+-----+------------------------------+------------------------------+\n", + "| idx | sentence | words |\n", + "+-----+------------------------------+------------------------------+\n", + "| 0 | This is an apple . | ['This', 'is', 'an', 'app... |\n", + "| 1 | I like apples . | ['I', 'like', 'apples', '... |\n", + "| 2 | Apples are good for our h... | ['Apples', 'are', 'good',... |\n", + "+-----+------------------------------+------------------------------+\n" + ] + } + ], + "source": [ + "dataset = DataSet(data)\n", + "\n", + "def get_words(instance):\n", + " sentence = instance['sentence']\n", + " words = sentence.split()\n", + " return words\n", + "\n", + "dataset.apply(get_words, new_field_name='words')\n", + "print(dataset)" + ] + }, + { + "cell_type": "markdown", + "id": "64abf745", + "metadata": {}, + "source": [ + "`apply_field`的参数,除了函数`func`外还有`field_name`和`new_field_name`,该函数`func`的处理对象仅\n", + "\n", + " 是`dataset`模块中的每个`field_name`对应的字段内容,处理结果存放在`new_field_name`对应的新建字段内" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "057c1d2c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n" + ], + "text/plain": [] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n" + ], + "text/plain": [] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "+-----+------------------------------+------------------------------+\n", + "| idx | sentence | words |\n", + "+-----+------------------------------+------------------------------+\n", + "| 0 | This is an apple . | ['This', 'is', 'an', 'app... |\n", + "| 1 | I like apples . | ['I', 'like', 'apples', '... |\n", + "| 2 | Apples are good for our h... | ['Apples', 'are', 'good',... |\n", + "+-----+------------------------------+------------------------------+\n" + ] + } + ], + "source": [ + "dataset = DataSet(data)\n", + "dataset.apply_field(lambda sent:sent.split(), field_name='sentence', new_field_name='words')\n", + "print(dataset)" + ] + }, + { + "cell_type": "markdown", + "id": "5a9cc8b2", + "metadata": {}, + "source": [ + "`apply_more`的参数只有函数`func`,函数`func`的处理对象是`dataset`模块中的每个`instance`实例\n", + "\n", + " 要求函数`func`返回一个字典,根据字典的`key-value`确定存储在`dataset`中的字段名称与内容" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "51e2f02c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n" + ], + "text/plain": [] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n" + ], + "text/plain": [] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "+-----+------------------------+------------------------+-----+\n", + "| idx | sentence | words | num |\n", + "+-----+------------------------+------------------------+-----+\n", + "| 0 | This is an apple . | ['This', 'is', 'an'... | 5 |\n", + "| 1 | I like apples . | ['I', 'like', 'appl... | 4 |\n", + "| 2 | Apples are good for... | ['Apples', 'are', '... | 7 |\n", + "+-----+------------------------+------------------------+-----+\n" + ] + } + ], + "source": [ + "dataset = DataSet(data)\n", + "dataset.apply_more(lambda ins:{'words': ins['sentence'].split(), 'num': len(ins['sentence'].split())})\n", + "print(dataset)" + ] + }, + { + "cell_type": "markdown", + "id": "02d2b7ef", + "metadata": {}, + "source": [ + "`apply_more`的参数只有函数`func`,函数`func`的处理对象是`dataset`模块中的每个`instance`实例\n", + "\n", + " 要求函数`func`返回一个字典,根据字典的`key-value`确定存储在`dataset`中的字段名称与内容" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "db4295d5", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n" + ], + "text/plain": [] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n" + ], + "text/plain": [] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "+-----+------------------------+------------------------+-----+\n", + "| idx | sentence | words | num |\n", + "+-----+------------------------+------------------------+-----+\n", + "| 0 | This is an apple . | ['This', 'is', 'an'... | 5 |\n", + "| 1 | I like apples . | ['I', 'like', 'appl... | 4 |\n", + "| 2 | Apples are good for... | ['Apples', 'are', '... | 7 |\n", + "+-----+------------------------+------------------------+-----+\n" + ] + } + ], + "source": [ + "dataset = DataSet(data)\n", + "dataset.apply_field_more(lambda sent:{'words': sent.split(), 'num': len(sent.split())}, \n", + " field_name='sentence')\n", + "print(dataset)" + ] + }, + { + "cell_type": "markdown", + "id": "9c09e592", + "metadata": {}, + "source": [ + "### 1.3 延伸:instance 和 field\n", + "\n", + "在`fastNLP 0.8`中,使用`Instance`模块表示数据集`dataset`中的每条数据,被称为实例\n", + "\n", + " 构造方式类似于构造一个字典,通过键值相同的`Instance`列表,也可以初始化一个`dataset`,代码如下" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "012f537c", + "metadata": {}, + "outputs": [], + "source": [ + "from fastNLP.core.dataset import DataSet\n", + "from fastNLP.core.dataset import Instance\n", + "\n", + "dataset = DataSet([\n", + " Instance(sentence=\"This is an apple .\",\n", + " words=['This', 'is', 'an', 'apple', '.'],\n", + " num=5),\n", + " Instance(sentence=\"I like apples .\",\n", + " words=['I', 'like', 'apples', '.'],\n", + " num=4),\n", + " Instance(sentence=\"Apples are good for our health .\",\n", + " words=['Apples', 'are', 'good', 'for', 'our', 'health', '.'],\n", + " num=7),\n", + " ])" + ] + }, + { + "cell_type": "markdown", + "id": "2fafb1ef", + "metadata": {}, + "source": [ + " 通过`items`、`keys`和`values`方法,可以分别获得`dataset`的`item`列表、`key`列表、`value`列表" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "a4c1c10d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "dict_items([('sentence', 'This is an apple .'), ('words', ['This', 'is', 'an', 'apple', '.']), ('num', 5)])\n", + "dict_keys(['sentence', 'words', 'num'])\n", + "dict_values(['This is an apple .', ['This', 'is', 'an', 'apple', '.'], 5])\n" + ] + } + ], + "source": [ + "ins = Instance(sentence=\"This is an apple .\", words=['This', 'is', 'an', 'apple', '.'], num=5)\n", + "\n", + "print(ins.items())\n", + "print(ins.keys())\n", + "print(ins.values())" + ] + }, + { + "cell_type": "markdown", + "id": "b5459a2d", + "metadata": {}, + "source": [ + " 通过`add_field`方法,可以在`Instance`实例中,通过参数`field_name`添加字段,通过参数`field`赋值" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "55376402", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "+--------------------+------------------------+-----+-----+\n", + "| sentence | words | num | idx |\n", + "+--------------------+------------------------+-----+-----+\n", + "| This is an apple . | ['This', 'is', 'an'... | 5 | 0 |\n", + "+--------------------+------------------------+-----+-----+\n" + ] + } + ], + "source": [ + "ins.add_field(field_name='idx', field=0)\n", + "print(ins)" + ] + }, + { + "cell_type": "markdown", + "id": "49caaa9c", + "metadata": {}, + "source": [ + "在`fastNLP 0.8`中,使用`FieldArray`模块表示数据集`dataset`中的每条字段名(注:没有`field`类)\n", + "\n", + " 通过`get_all_fields`方法可以获取`dataset`的字段列表\n", + "\n", + " 通过`get_field_names`方法可以获取`dataset`的字段名称列表,代码如下" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "fe15f4c1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'sentence':,\n", + " 'words': ,\n", + " 'num': }" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dataset.get_all_fields()" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "5433815c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['num', 'sentence', 'words']" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dataset.get_field_names()" + ] + }, + { + "cell_type": "markdown", + "id": "4964eeed", + "metadata": {}, + "source": [ + "其他`dataset`的基本使用:通过`in`或者`has_field`方法可以判断`dataset`的是否包含某种字段\n", + "\n", + " 通过`rename_field`方法可以更改`dataset`中的字段名称;通过`concat`方法可以实现两个`dataset`中的拼接\n", + "\n", + " 通过`len`可以统计`dataset`中的实例数目;`dataset`的全部变量与函数可以通过`dir(dataset)`查询" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "25ce5488", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3 False\n", + "6 True\n", + "+------------------------------+------------------------------+--------+\n", + "| sentence | words | length |\n", + "+------------------------------+------------------------------+--------+\n", + "| This is an apple . | ['This', 'is', 'an', 'app... | 5 |\n", + "| I like apples . | ['I', 'like', 'apples', '... | 4 |\n", + "| Apples are good for our h... | ['Apples', 'are', 'good',... | 7 |\n", + "| This is an apple . | ['This', 'is', 'an', 'app... | 5 |\n", + "| I like apples . | ['I', 'like', 'apples', '... | 4 |\n", + "| Apples are good for our h... | ['Apples', 'are', 'good',... | 7 |\n", + "+------------------------------+------------------------------+--------+\n" + ] + } + ], + "source": [ + "print(len(dataset), dataset.has_field('length')) \n", + "if 'num' in dataset:\n", + " dataset.rename_field('num', 'length')\n", + "elif 'length' in dataset:\n", + " dataset.rename_field('length', 'num')\n", + "dataset.concat(dataset)\n", + "print(len(dataset), dataset.has_field('length')) \n", + "print(dataset) " + ] + }, + { + "cell_type": "markdown", + "id": "e30a6cd7", + "metadata": {}, + "source": [ + "## 2. vocabulary 的结构与使用\n", + "\n", + "### 2.1 vocabulary 的创建与修改\n", + "\n", + "在`fastNLP 0.8`中,使用`Vocabulary`模块表示词汇表,**`vocabulary`的核心是从单词到序号的映射**\n", + "\n", + " 可以直接通过构造函数实例化,通过查找`word2idx`属性,可以找到`vocabulary`映射对应的字典实现\n", + "\n", + " **默认补零`padding`用` `表示**,**对应序号为0**;**未知单词`unknown`用` `表示**,**对应序号1**\n", + "\n", + " 通过打印`vocabulary`可以看到词汇表中的单词列表,其中,`padding`和`unknown`不会显示" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "3515e096", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Vocabulary([]...)\n", + "{' ': 0, ' ': 1}\n", + " 0\n", + " 1\n" + ] + } + ], + "source": [ + "from fastNLP.core.vocabulary import Vocabulary\n", + "\n", + "vocab = Vocabulary()\n", + "print(vocab)\n", + "print(vocab.word2idx)\n", + "print(vocab.padding, vocab.padding_idx)\n", + "print(vocab.unknown, vocab.unknown_idx)" + ] + }, + { + "cell_type": "markdown", + "id": "640be126", + "metadata": {}, + "source": [ + "在`vocabulary`中,通过`add_word`方法或`add_word_lst`方法,可以单独或批量添加单词\n", + "\n", + " 通过`len`或`word_count`属性,可以显示`vocabulary`的单词量和每个单词添加的次数" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "88c7472a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "5 Counter({'生活': 1, '就像': 1, '海洋': 1})\n", + "6 Counter({'生活': 1, '就像': 1, '海洋': 1, '只有': 1})\n" + ] + } + ], + "source": [ + "vocab.add_word_lst(['生活', '就像', '海洋'])\n", + "print(len(vocab), vocab.word_count)\n", + "vocab.add_word('只有')\n", + "print(len(vocab), vocab.word_count)" + ] + }, + { + "cell_type": "markdown", + "id": "f9ec8b28", + "metadata": {}, + "source": [ + " **通过`to_word`方法可以找到单词对应的序号**,**通过`to_index`方法可以找到序号对应的单词**\n", + "\n", + " 由于序号0和序号1已经被占用,所以**新加入的词的序号从2开始计数**,如`'生活'`对应2\n", + "\n", + " 通过`has_word`方法可以判断单词是否在词汇表中,没有的单词被判做` `" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "3447acde", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 0\n", + " 1\n", + "生活 2\n", + "只有 5\n", + "彼岸 1 False\n" + ] + } + ], + "source": [ + "print(vocab.to_word(0), vocab.to_index(' '))\n", + "print(vocab.to_word(1), vocab.to_index(' '))\n", + "print(vocab.to_word(2), vocab.to_index('生活'))\n", + "print(vocab.to_word(5), vocab.to_index('只有'))\n", + "print('彼岸', vocab.to_index('彼岸'), vocab.has_word('彼岸'))" + ] + }, + { + "cell_type": "markdown", + "id": "b4e36850", + "metadata": {}, + "source": [ + "**`vocabulary`允许反复添加相同单词**,**可以通过`word_count`方法看到相应单词被添加的次数**\n", + "\n", + " 但其中没有` `和` `,`vocabulary`的全部变量与函数可以通过`dir(vocabulary)`查询" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "490b101c", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13 Counter({'生活': 2, '就像': 2, '海洋': 2, '只有': 2, '意志': 1, '坚强的': 1, '人': 1, '才': 1, '能': 1, '到达': 1, '彼岸': 1})\n", + "彼岸 12 True\n" + ] + } + ], + "source": [ + "vocab.add_word_lst(['生活', '就像', '海洋', '只有', '意志', '坚强的', '人', '才', '能', '到达', '彼岸'])\n", + "print(len(vocab), vocab.word_count)\n", + "print('彼岸', vocab.to_index('彼岸'), vocab.has_word('彼岸'))" + ] + }, + { + "cell_type": "markdown", + "id": "23e32a63", + "metadata": {}, + "source": [ + "### 2.2 vocabulary 与 OOV 问题\n", + "\n", + "在`vocabulary`模块初始化的时候,可以通过指定`unknown`和`padding`为`None`,限制其存在\n", + "\n", + " 此时添加单词直接从0开始标号,如果遇到未知单词会直接报错,即 out of vocabulary" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "a99ff909", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'positive': 0, 'negative': 1}\n", + "ValueError: word `neutral` not in vocabulary\n" + ] + } + ], + "source": [ + "vocab = Vocabulary(unknown=None, padding=None)\n", + "\n", + "vocab.add_word_lst(['positive', 'negative'])\n", + "print(vocab.word2idx)\n", + "\n", + "try:\n", + " print(vocab.to_index('neutral'))\n", + "except ValueError:\n", + " print(\"ValueError: word `neutral` not in vocabulary\")" + ] + }, + { + "cell_type": "markdown", + "id": "618da6bd", + "metadata": {}, + "source": [ + " 相应的,如果只指定其中的`unknown`,则编号会后移一个,同时遇到未知单词全部当做` `" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "432f74c1", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{' ': 0, 'positive': 1, 'negative': 2}\n", + "0 \n" + ] + } + ], + "source": [ + "vocab = Vocabulary(unknown=' ', padding=None)\n", + "\n", + "vocab.add_word_lst(['positive', 'negative'])\n", + "print(vocab.word2idx)\n", + "\n", + "print(vocab.to_index('neutral'), vocab.to_word(vocab.to_index('neutral')))" + ] + }, + { + "cell_type": "markdown", + "id": "b6263f73", + "metadata": {}, + "source": [ + "## 3 dataset 和 vocabulary 的组合使用\n", + " \n", + "### 3.1 从 dataframe 中加载 dataset\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "89059713", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3dbd985d", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4f634586", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "5ba13989", + "metadata": {}, + "source": [ + "### 3.2 从 dataset 中获取 vocabulary" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a2de615b", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5f5eed18", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/tutorials/figures/T0-fig-trainer-and-evaluator.png b/tutorials/figures/T0-fig-trainer-and-evaluator.png index a98ab83b..6e95650d 100644 Binary files a/tutorials/figures/T0-fig-trainer-and-evaluator.png and b/tutorials/figures/T0-fig-trainer-and-evaluator.png differ