|
@@ -10,9 +10,13 @@ from fastNLP.core.trainer import Trainer |
|
|
from fastNLP.core.instance import Instance |
|
|
from fastNLP.core.instance import Instance |
|
|
from fastNLP.api.pipeline import Pipeline |
|
|
from fastNLP.api.pipeline import Pipeline |
|
|
from fastNLP.models.biaffine_parser import BiaffineParser, ParserMetric, ParserLoss |
|
|
from fastNLP.models.biaffine_parser import BiaffineParser, ParserMetric, ParserLoss |
|
|
|
|
|
from fastNLP.core.vocabulary import Vocabulary |
|
|
|
|
|
from fastNLP.core.dataset import DataSet |
|
|
from fastNLP.core.tester import Tester |
|
|
from fastNLP.core.tester import Tester |
|
|
from fastNLP.io.config_io import ConfigLoader, ConfigSection |
|
|
from fastNLP.io.config_io import ConfigLoader, ConfigSection |
|
|
from fastNLP.io.model_io import ModelLoader |
|
|
from fastNLP.io.model_io import ModelLoader |
|
|
|
|
|
from fastNLP.io.embed_loader import EmbedLoader |
|
|
|
|
|
from fastNLP.io.model_io import ModelSaver |
|
|
from fastNLP.io.dataset_loader import ConllxDataLoader |
|
|
from fastNLP.io.dataset_loader import ConllxDataLoader |
|
|
from fastNLP.api.processor import * |
|
|
from fastNLP.api.processor import * |
|
|
from fastNLP.io.embed_loader import EmbedLoader |
|
|
from fastNLP.io.embed_loader import EmbedLoader |
|
@@ -156,6 +160,8 @@ print('test len {}'.format(len(test_data))) |
|
|
def train(path): |
|
|
def train(path): |
|
|
# test saving pipeline |
|
|
# test saving pipeline |
|
|
save_pipe(path) |
|
|
save_pipe(path) |
|
|
|
|
|
embed = EmbedLoader.fast_load_embedding(model_args['word_emb_dim'], emb_file_name, word_v) |
|
|
|
|
|
embed = torch.tensor(embed, dtype=torch.float32) |
|
|
|
|
|
|
|
|
# embed = EmbedLoader.fast_load_embedding(emb_dim=model_args['word_emb_dim'], emb_file=emb_file_name, vocab=word_v) |
|
|
# embed = EmbedLoader.fast_load_embedding(emb_dim=model_args['word_emb_dim'], emb_file=emb_file_name, vocab=word_v) |
|
|
# embed = torch.tensor(embed, dtype=torch.float32) |
|
|
# embed = torch.tensor(embed, dtype=torch.float32) |
|
|