| @@ -69,13 +69,20 @@ class DataSetGetter: | |||
| def may_to_tensor(data): | |||
| dtype, dim = _get_ele_type_and_dim(data) | |||
| print(dtype, type(dtype)) | |||
| # print(dtype, type(dtype), str(dtype)) | |||
| if not self.as_numpy: | |||
| try: | |||
| data, flag = _to_tensor(data, dtype) | |||
| except TypeError as e: | |||
| logger.error(f"Field {n} cannot be converted to torch.tensor.") | |||
| raise e | |||
| # if torch.is_tensor(data): | |||
| # str_dtype = str(dtype) | |||
| # if 'float' in str_dtype: | |||
| # data = data.float() | |||
| # elif 'int' in str_dtype: | |||
| # data = data.long() | |||
| # print(data.dtype) | |||
| return data | |||
| def pad(batch_dict): | |||
| @@ -293,14 +300,16 @@ def _to_tensor(batch, field_dtype): | |||
| if field_dtype is not None and isinstance(field_dtype, type)\ | |||
| and issubclass(field_dtype, Number) \ | |||
| and not isinstance(batch, torch.Tensor): | |||
| if issubclass(field_dtype, np.floating): | |||
| new_batch = torch.as_tensor(batch).float() # 默认使用float32 | |||
| elif issubclass(field_dtype, np.integer): | |||
| new_batch = torch.as_tensor(batch).long() # 复用内存地址,避免复制 | |||
| else: | |||
| new_batch = torch.as_tensor(batch) | |||
| return new_batch, True | |||
| new_batch = torch.as_tensor(batch) | |||
| flag = True | |||
| else: | |||
| return batch, False | |||
| new_batch = batch | |||
| flag = False | |||
| if torch.is_tensor(new_batch): | |||
| if 'float' in new_batch.dtype.__repr__(): | |||
| new_batch = new_batch.float() | |||
| elif 'int' in new_batch.dtype.__repr__(): | |||
| new_batch = new_batch.long() | |||
| return new_batch, flag | |||
| except Exception as e: | |||
| raise e | |||
| @@ -118,6 +118,12 @@ class Collector: | |||
| def outputs(self): | |||
| return self.output2fn.keys() | |||
| def copy_from(self, col): | |||
| assert isinstance(col, Collector) | |||
| self.fns = col.fns.copy() | |||
| self.input2fn = col.input2fn.copy() | |||
| self.output2fn = col.output2fn.copy() | |||
| self._clear_fn2io() | |||
| class CollectFn: | |||
| def __init__(self): | |||
| @@ -284,7 +284,7 @@ | |||
| """ | |||
| __all__ = [ | |||
| "DataSet" | |||
| "DataSet", | |||
| ] | |||
| import _pickle as pickle | |||
| @@ -305,6 +305,12 @@ from .utils import pretty_table_printer | |||
| from .collect_fn import Collector | |||
| class ApplyResultException(Exception): | |||
| def __init__(self, msg, index=None): | |||
| super().__init__(msg) | |||
| self.msg = msg | |||
| self.index = index # 标示在哪个数据遭遇到问题了 | |||
| class DataSet(object): | |||
| """ | |||
| fastNLP的数据容器,详细的使用方法见文档 :mod:`fastNLP.core.dataset` | |||
| @@ -569,6 +575,7 @@ class DataSet(object): | |||
| :param str field_name: 需要删除的field的名称. | |||
| """ | |||
| self.field_arrays.pop(field_name) | |||
| self.collector.drop_field(field_name) | |||
| return self | |||
| def copy_field(self, field_name, new_field_name): | |||
| @@ -641,6 +648,7 @@ class DataSet(object): | |||
| if field_name in self.field_arrays: | |||
| self.field_arrays[new_field_name] = self.field_arrays.pop(field_name) | |||
| self.field_arrays[new_field_name].name = new_field_name | |||
| self.collector.rename_field(field_name, new_field_name) | |||
| else: | |||
| raise KeyError("DataSet has no field named {}.".format(field_name)) | |||
| return self | |||
| @@ -778,23 +786,35 @@ class DataSet(object): | |||
| assert len(self) != 0, "Null DataSet cannot use apply_field()." | |||
| if field_name not in self: | |||
| raise KeyError("DataSet has no field named `{}`.".format(field_name)) | |||
| results = [] | |||
| idx = -1 | |||
| try: | |||
| for idx, ins in enumerate(self._inner_iter()): | |||
| results.append(func(ins[field_name])) | |||
| except Exception as e: | |||
| if idx != -1: | |||
| logger.error("Exception happens at the `{}`th(from 1) instance.".format(idx + 1)) | |||
| raise e | |||
| if not (new_field_name is None) and len(list(filter(lambda x: x is not None, results))) == 0: # all None | |||
| raise ValueError("{} always return None.".format(_get_func_signature(func=func))) | |||
| return self.apply(func, new_field_name, _apply_field=field_name, **kwargs) | |||
| if new_field_name is not None: | |||
| self._add_apply_field(results, new_field_name, kwargs) | |||
| def apply_field_more(self, func, field_name, modify_fields=True, **kwargs): | |||
| """ | |||
| 将 ``DataSet`` 中的每个 ``Instance`` 中的名为 `field_name` 的field 传给 func,并获取它的返回值。 | |||
| func 可以返回一个或多个 field 上的结果。 | |||
| .. note:: | |||
| ``apply_field_more`` 与 ``apply_field`` 的区别参考 :meth:`~fastNLP.DataSet.apply_more` 中关于 ``apply_more`` 与 | |||
| ``apply`` 区别的介绍。 | |||
| :param callable func: 参数是 ``DataSet`` 中的 ``Instance`` ,返回值是一个字典,key 是field 的名字,value 是对应的结果 | |||
| :param str field_name: 传入func的是哪个field。 | |||
| :param bool modify_fields: 是否用结果修改 `DataSet` 中的 `Field`, 默认为 True | |||
| :param optional kwargs: 支持输入is_input,is_target,ignore_type | |||
| return results | |||
| 1. is_input: bool, 如果为True则将被修改的field设置为input | |||
| 2. is_target: bool, 如果为True则将被修改的field设置为target | |||
| 3. ignore_type: bool, 如果为True则将被修改的field的ignore_type设置为true, 忽略其类型 | |||
| :return Dict[int:Field]: 返回一个字典 | |||
| """ | |||
| assert len(self) != 0, "Null DataSet cannot use apply_field()." | |||
| if field_name not in self: | |||
| raise KeyError("DataSet has no field named `{}`.".format(field_name)) | |||
| return self.apply_more(func, modify_fields, _apply_field=field_name, **kwargs) | |||
| def _add_apply_field(self, results, new_field_name, kwargs): | |||
| """ | |||
| 将results作为加入到新的field中,field名称为new_field_name | |||
| @@ -827,12 +847,73 @@ class DataSet(object): | |||
| is_target=extra_param.get("is_target", None), | |||
| ignore_type=extra_param.get("ignore_type", False)) | |||
| def apply_more(self, func, modify_fields=True, **kwargs): | |||
| """ | |||
| 将 ``DataSet`` 中每个 ``Instance`` 传入到func中,并获取它的返回值。func可以返回一个或多个 field 上的结果。 | |||
| .. note:: | |||
| ``apply_more`` 与 ``apply`` 的区别: | |||
| 1. ``apply_more`` 可以返回多个 field 的结果, ``apply`` 只可以返回一个field 的结果; | |||
| 2. ``apply_more`` 的返回值是一个字典,每个 key-value 对中的 key 表示 field 的名字,value 表示计算结果; | |||
| 3. ``apply_more`` 默认修改 ``DataSet`` 中的 field ,``apply`` 默认不修改。 | |||
| :param callable func: 参数是 ``DataSet`` 中的 ``Instance`` ,返回值是一个字典,key 是field 的名字,value 是对应的结果 | |||
| :param bool modify_fields: 是否用结果修改 ``DataSet`` 中的 ``Field`` , 默认为 True | |||
| :param optional kwargs: 支持输入is_input,is_target,ignore_type | |||
| 1. is_input: bool, 如果为True则将被修改的的field设置为input | |||
| 2. is_target: bool, 如果为True则将被修改的的field设置为target | |||
| 3. ignore_type: bool, 如果为True则将被修改的的field的ignore_type设置为true, 忽略其类型 | |||
| :return Dict[int:Field]: 返回一个字典 | |||
| """ | |||
| # 返回 dict , 检查是否一直相同 | |||
| assert callable(func), "The func you provide is not callable." | |||
| assert len(self) != 0, "Null DataSet cannot use apply()." | |||
| idx = -1 | |||
| try: | |||
| results = {} | |||
| for idx, ins in enumerate(self._inner_iter()): | |||
| if "_apply_field" in kwargs: | |||
| res = func(ins[kwargs["_apply_field"]]) | |||
| else: | |||
| res = func(ins) | |||
| if not isinstance(res, dict): | |||
| raise ApplyResultException("The result of func is not a dict", idx) | |||
| if idx == 0: | |||
| for key, value in res.items(): | |||
| results[key] = [value] | |||
| else: | |||
| for key, value in res.items(): | |||
| if key not in results: | |||
| raise ApplyResultException("apply results have different fields", idx) | |||
| results[key].append(value) | |||
| if len(res) != len(results): | |||
| raise ApplyResultException("apply results have different fields", idx) | |||
| except Exception as e: | |||
| if idx != -1: | |||
| if isinstance(e, ApplyResultException): | |||
| logger.error(e.msg) | |||
| logger.error("Exception happens at the `{}`th instance.".format(idx)) | |||
| raise e | |||
| if modify_fields is True: | |||
| for field, result in results.items(): | |||
| self._add_apply_field(result, field, kwargs) | |||
| return results | |||
| def apply(self, func, new_field_name=None, **kwargs): | |||
| """ | |||
| 将DataSet中每个instance传入到func中,并获取它的返回值. | |||
| :param callable func: 参数是DataSet中的Instance | |||
| :param None,str new_field_name: 将func返回的内容放入到new_field_name这个field中,如果名称与已有的field相同,则覆 | |||
| :param callable func: 参数是 ``DataSet`` 中的 ``Instance`` | |||
| :param None,str new_field_name: 将func返回的内容放入到 `new_field_name` 这个field中,如果名称与已有的field相同,则覆 | |||
| 盖之前的field。如果为None则不创建新的field。 | |||
| :param optional kwargs: 支持输入is_input,is_target,ignore_type | |||
| @@ -844,21 +925,21 @@ class DataSet(object): | |||
| :return List[Any]: 里面的元素为func的返回值,所以list长度为DataSet的长度 | |||
| """ | |||
| assert callable(func), "The func you provide is not callable." | |||
| assert len(self) != 0, "Null DataSet cannot use apply()." | |||
| idx = -1 | |||
| try: | |||
| results = [] | |||
| for idx, ins in enumerate(self._inner_iter()): | |||
| results.append(func(ins)) | |||
| if "_apply_field" in kwargs: | |||
| results.append(func(ins[kwargs["_apply_field"]])) | |||
| else: | |||
| results.append(func(ins)) | |||
| except BaseException as e: | |||
| if idx != -1: | |||
| logger.error("Exception happens at the `{}`th instance.".format(idx)) | |||
| raise e | |||
| # results = [func(ins) for ins in self._inner_iter()] | |||
| if not (new_field_name is None) and len(list(filter(lambda x: x is not None, results))) == 0: # all None | |||
| raise ValueError("{} always return None.".format(_get_func_signature(func=func))) | |||
| if new_field_name is not None: | |||
| self._add_apply_field(results, new_field_name, kwargs) | |||
| @@ -933,6 +1014,8 @@ class DataSet(object): | |||
| train_set.field_arrays[field_name].to(self.field_arrays[field_name]) | |||
| dev_set.field_arrays[field_name].to(self.field_arrays[field_name]) | |||
| train_set.collector.copy_from(self.collector) | |||
| dev_set.collector.copy_from(self.collector) | |||
| return train_set, dev_set | |||
| def save(self, path): | |||
| @@ -538,6 +538,18 @@ class BertModel(nn.Module): | |||
| raise RuntimeError(f'Cannot load parameters through `state_dict` variable.') | |||
| model_type = 'BERT' | |||
| old_keys = [] | |||
| new_keys = [] | |||
| for key in state_dict.keys(): | |||
| new_key = None | |||
| if 'bert' not in key: | |||
| new_key = 'bert.' + key | |||
| if new_key: | |||
| old_keys.append(key) | |||
| new_keys.append(new_key) | |||
| for old_key, new_key in zip(old_keys, new_keys): | |||
| state_dict[new_key] = state_dict.pop(old_key) | |||
| old_keys = [] | |||
| new_keys = [] | |||
| for key in state_dict.keys(): | |||
| @@ -51,7 +51,7 @@ def preprocess(text): | |||
| def to_sentence_list(text, split_long_sentence=False): | |||
| text = preprocess(text) | |||
| delimiter = set() | |||
| delimiter.update("。!?:;…、,(),;!?、,\"'") | |||
| delimiter.update("。!?:;…、,(),;!?、.\"'") | |||
| delimiter.add("……") | |||
| sent_list = [] | |||
| sent = [] | |||
| @@ -226,36 +226,36 @@ class TestCallback(unittest.TestCase): | |||
| callbacks=EarlyStopCallback(1), check_code_level=2) | |||
| trainer.train() | |||
| @unittest.skipIf('TRAVIS' in os.environ, "Skip in travis") | |||
| def test_control_C(): | |||
| # 用于测试 ControlC , 再两次训练时用 Control+C 进行退出,如果最后不显示 "Test failed!" 则通过测试 | |||
| from fastNLP import ControlC, Callback | |||
| import time | |||
| line1 = "\n\n\n\n\n*************************" | |||
| line2 = "*************************\n\n\n\n\n" | |||
| class Wait(Callback): | |||
| def on_epoch_end(self): | |||
| time.sleep(5) | |||
| data_set, model = prepare_env() | |||
| print(line1 + "Test starts!" + line2) | |||
| trainer = Trainer(data_set, model, optimizer=SGD(lr=0.1), loss=BCELoss(pred="predict", target="y"), | |||
| batch_size=32, n_epochs=20, dev_data=data_set, | |||
| metrics=AccuracyMetric(pred="predict", target="y"), use_tqdm=True, | |||
| callbacks=[Wait(), ControlC(False)], check_code_level=2) | |||
| trainer.train() | |||
| print(line1 + "Program goes on ..." + line2) | |||
| trainer = Trainer(data_set, model, optimizer=SGD(lr=0.1), loss=BCELoss(pred="predict", target="y"), | |||
| batch_size=32, n_epochs=20, dev_data=data_set, | |||
| metrics=AccuracyMetric(pred="predict", target="y"), use_tqdm=True, | |||
| callbacks=[Wait(), ControlC(True)], check_code_level=2) | |||
| trainer.train() | |||
| print(line1 + "Test failed!" + line2) | |||
| @@ -3,6 +3,7 @@ import sys | |||
| import unittest | |||
| from fastNLP import DataSet | |||
| from fastNLP.core.dataset import ApplyResultException | |||
| from fastNLP import FieldArray | |||
| from fastNLP import Instance | |||
| from fastNLP.io import CSVLoader | |||
| @@ -143,6 +144,42 @@ class TestDataSetMethods(unittest.TestCase): | |||
| with self.assertRaises(TypeError): | |||
| ds.apply(modify_inplace) | |||
| def test_apply_more(self): | |||
| T = DataSet({"a": [1, 2, 3], "b": [2, 4, 5]}) | |||
| func_1 = lambda x: {"c": x["a"] * 2, "d": x["a"] ** 2} | |||
| func_2 = lambda x: {"c": x * 3, "d": x ** 3} | |||
| def func_err_1(x): | |||
| if x["a"] == 1: | |||
| return {"e": x["a"] * 2, "f": x["a"] ** 2} | |||
| else: | |||
| return {"e": x["a"] * 2} | |||
| def func_err_2(x): | |||
| if x == 1: | |||
| return {"e": x * 2, "f": x ** 2} | |||
| else: | |||
| return {"e": x * 2} | |||
| T.apply_more(func_1) | |||
| self.assertEqual(list(T["c"]), [2, 4, 6]) | |||
| self.assertEqual(list(T["d"]), [1, 4, 9]) | |||
| res = T.apply_field_more(func_2, "a", modify_fields=False) | |||
| self.assertEqual(list(T["c"]), [2, 4, 6]) | |||
| self.assertEqual(list(T["d"]), [1, 4, 9]) | |||
| self.assertEqual(list(res["c"]), [3, 6, 9]) | |||
| self.assertEqual(list(res["d"]), [1, 8, 27]) | |||
| with self.assertRaises(ApplyResultException) as e: | |||
| T.apply_more(func_err_1) | |||
| print(e) | |||
| with self.assertRaises(ApplyResultException) as e: | |||
| T.apply_field_more(func_err_2, "a") | |||
| print(e) | |||
| def test_drop(self): | |||
| ds = DataSet({"x": [[1, 2, 3, 4]] * 40, "y": [[5, 6], [7, 8, 9, 0]] * 20}) | |||
| ds.drop(lambda ins: len(ins["y"]) < 3, inplace=True) | |||
| @@ -36,16 +36,37 @@ class TestCNClassificationPipe(unittest.TestCase): | |||
| class TestRunClassificationPipe(unittest.TestCase): | |||
| def test_process_from_file(self): | |||
| data_set_dict = { | |||
| 'yelp.p': ('test/data_for_tests/io/yelp_review_polarity', YelpPolarityPipe, (6, 6, 6), (1176, 2), False), | |||
| 'yelp.f': ('test/data_for_tests/io/yelp_review_full', YelpFullPipe, (6, 6, 6), (1166, 5), False), | |||
| 'sst-2': ('test/data_for_tests/io/SST-2', SST2Pipe, (5, 5, 5), (139, 2), True), | |||
| 'sst': ('test/data_for_tests/io/SST', SSTPipe, (6, 354, 6), (232, 5), False), | |||
| 'imdb': ('test/data_for_tests/io/imdb', IMDBPipe, (6, 6, 6), (1670, 2), False), | |||
| 'ag': ('test/data_for_tests/io/ag', AGsNewsPipe, (5, 4), (257, 4), False), | |||
| 'dbpedia': ('test/data_for_tests/io/dbpedia', DBPediaPipe, (5, 14), (496, 14), False), | |||
| 'ChnSentiCorp': ('test/data_for_tests/io/ChnSentiCorp', ChnSentiCorpPipe, (6, 6, 6), (529, 1296, 1483, 2), False), | |||
| 'Chn-THUCNews': ('test/data_for_tests/io/THUCNews', THUCNewsPipe, (9, 9, 9), (1864, 9), False), | |||
| 'Chn-WeiboSenti100k': ('test/data_for_tests/io/WeiboSenti100k', WeiboSenti100kPipe, (7, 6, 6), (452, 2), False), | |||
| 'yelp.p': ('test/data_for_tests/io/yelp_review_polarity', YelpPolarityPipe, | |||
| {'train': 6, 'dev': 6, 'test': 6}, {'words': 1176, 'target': 2}, | |||
| False), | |||
| 'yelp.f': ('test/data_for_tests/io/yelp_review_full', YelpFullPipe, | |||
| {'train': 6, 'dev': 6, 'test': 6}, {'words': 1166, 'target': 5}, | |||
| False), | |||
| 'sst-2': ('test/data_for_tests/io/SST-2', SST2Pipe, | |||
| {'train': 5, 'dev': 5, 'test': 5}, {'words': 139, 'target': 2}, | |||
| True), | |||
| 'sst': ('test/data_for_tests/io/SST', SSTPipe, | |||
| {'train': 354, 'dev': 6, 'test': 6}, {'words': 232, 'target': 5}, | |||
| False), | |||
| 'imdb': ('test/data_for_tests/io/imdb', IMDBPipe, | |||
| {'train': 6, 'dev': 6, 'test': 6}, {'words': 1670, 'target': 2}, | |||
| False), | |||
| 'ag': ('test/data_for_tests/io/ag', AGsNewsPipe, | |||
| {'train': 4, 'test': 5}, {'words': 257, 'target': 4}, | |||
| False), | |||
| 'dbpedia': ('test/data_for_tests/io/dbpedia', DBPediaPipe, | |||
| {'train': 14, 'test': 5}, {'words': 496, 'target': 14}, | |||
| False), | |||
| 'ChnSentiCorp': ('test/data_for_tests/io/ChnSentiCorp', ChnSentiCorpPipe, | |||
| {'train': 6, 'dev': 6, 'test': 6}, | |||
| {'chars': 529, 'bigrams': 1296, 'trigrams': 1483, 'target': 2}, | |||
| False), | |||
| 'Chn-THUCNews': ('test/data_for_tests/io/THUCNews', THUCNewsPipe, | |||
| {'train': 9, 'dev': 9, 'test': 9}, {'chars': 1864, 'target': 9}, | |||
| False), | |||
| 'Chn-WeiboSenti100k': ('test/data_for_tests/io/WeiboSenti100k', WeiboSenti100kPipe, | |||
| {'train': 6, 'dev': 6, 'test': 7}, {'chars': 452, 'target': 2}, | |||
| False), | |||
| } | |||
| for k, v in data_set_dict.items(): | |||
| path, pipe, data_set, vocab, warns = v | |||
| @@ -61,12 +82,12 @@ class TestRunClassificationPipe(unittest.TestCase): | |||
| self.assertTrue(isinstance(data_bundle, DataBundle)) | |||
| self.assertEqual(len(data_set), data_bundle.num_dataset) | |||
| for x, y in zip(data_set, data_bundle.iter_datasets()): | |||
| name, dataset = y | |||
| self.assertEqual(x, len(dataset)) | |||
| for name, dataset in data_bundle.iter_datasets(): | |||
| self.assertTrue(name in data_set.keys()) | |||
| self.assertEqual(data_set[name], len(dataset)) | |||
| self.assertEqual(len(vocab), data_bundle.num_vocab) | |||
| for x, y in zip(vocab, data_bundle.iter_vocabs()): | |||
| name, vocabs = y | |||
| self.assertEqual(x, len(vocabs)) | |||
| for name, vocabs in data_bundle.iter_vocabs(): | |||
| self.assertTrue(name in vocab.keys()) | |||
| self.assertEqual(vocab[name], len(vocabs)) | |||