Browse Source

序列标注的SemiCRFRelay中文分词.

tags/v0.4.10
yh_cc 6 years ago
parent
commit
d71f0eef13
12 changed files with 566 additions and 70 deletions
  1. +10
    -5
      fastNLP/core/trainer.py
  2. +1
    -1
      fastNLP/core/utils.py
  3. +2
    -2
      fastNLP/core/vocabulary.py
  4. +2
    -2
      fastNLP/io/embed_loader.py
  5. +99
    -60
      reproduction/seqence_labelling/cws/data/CWSDataLoader.py
  6. +44
    -0
      reproduction/seqence_labelling/cws/model/metric.py
  7. +74
    -0
      reproduction/seqence_labelling/cws/model/model.py
  8. +198
    -0
      reproduction/seqence_labelling/cws/model/module.py
  9. +0
    -0
      reproduction/seqence_labelling/cws/test/__init__.py
  10. +17
    -0
      reproduction/seqence_labelling/cws/test/test_CWSDataLoader.py
  11. +68
    -0
      reproduction/seqence_labelling/cws/train_shift_relay.py
  12. +51
    -0
      reproduction/utils.py

+ 10
- 5
fastNLP/core/trainer.py View File

@@ -494,14 +494,15 @@ class Trainer(object):
self.callback_manager = CallbackManager(env={"trainer": self},
callbacks=callbacks)
def train(self, load_best_model=True, on_exception='ignore'):
def train(self, load_best_model=True, on_exception='auto'):
"""
使用该函数使Trainer开始训练。

:param bool load_best_model: 该参数只有在初始化提供了dev_data的情况下有效,如果True, trainer将在返回之前重新加载dev表现
最好的模型参数。
:param str on_exception: 在训练过程遭遇exception,并被 :py:class:Callback 的on_exception()处理后,是否继续抛出异常。
支持'ignore'与'raise': 'ignore'将捕获异常,写在Trainer.train()后面的代码将继续运行; 'raise'将异常抛出。
支持'ignore','raise', 'auto': 'ignore'将捕获异常,写在Trainer.train()后面的代码将继续运行; 'raise'将异常抛出;
'auto'将ignore以下两种Exception: CallbackException与KeyboardInterrupt, raise其它exception.
:return dict: 返回一个字典类型的数据,
内含以下内容::

@@ -530,12 +531,16 @@ class Trainer(object):
self.callback_manager.on_train_begin()
self._train()
self.callback_manager.on_train_end()
except (CallbackException, KeyboardInterrupt, Exception) as e:

except Exception as e:
self.callback_manager.on_exception(e)
if on_exception=='raise':
if on_exception == 'auto':
if not isinstance(e, (CallbackException, KeyboardInterrupt)):
raise e
elif on_exception == 'raise':
raise e
if self.dev_data is not None and hasattr(self, 'best_dev_perf'):
if self.dev_data is not None and self.best_dev_perf is not None:
print(
"\nIn Epoch:{}/Step:{}, got best dev performance:".format(self.best_dev_epoch, self.best_dev_step) +
self.tester._format_eval_results(self.best_dev_perf), )


+ 1
- 1
fastNLP/core/utils.py View File

@@ -4,7 +4,7 @@ utils模块实现了 fastNLP 内部和外部所需的很多工具。其中用户
__all__ = [
"cache_results",
"seq_len_to_mask",
"Example",
"Option",
]

import _pickle


+ 2
- 2
fastNLP/core/vocabulary.py View File

@@ -6,10 +6,10 @@ __all__ = [
from functools import wraps
from collections import Counter
from .dataset import DataSet
from .utils import Example
from .utils import Option


class VocabularyOption(Example):
class VocabularyOption(Option):
def __init__(self,
max_size=None,
min_freq=None,


+ 2
- 2
fastNLP/io/embed_loader.py View File

@@ -10,10 +10,10 @@ import numpy as np

from ..core.vocabulary import Vocabulary
from .base_loader import BaseLoader
from ..core.utils import Example
from ..core.utils import Option


class EmbeddingOption(Example):
class EmbeddingOption(Option):
def __init__(self,
embed_filepath=None,
dtype=np.float32,


reproduction/seqence_labelling/Chinese_Word_Segmentation/data/CWSDataLoader.py → reproduction/seqence_labelling/cws/data/CWSDataLoader.py View File

@@ -6,6 +6,9 @@ from typing import Union, Dict, List, Iterator
from fastNLP import DataSet
from fastNLP import Instance
from fastNLP import Vocabulary
from fastNLP import Const
from reproduction.utils import check_dataloader_paths
from functools import partial

class SigHanLoader(DataSetLoader):
"""
@@ -20,27 +23,43 @@ class SigHanLoader(DataSetLoader):
chars: list(str), 每个元素是一个index(汉字对应的index)
target: list(int), 根据不同的encoding_type会有不同的变化

:param target_type: target的类型,当前支持以下的两种: "bmes", "pointer"
:param target_type: target的类型,当前支持以下的两种: "bmes", "shift_relay"
"""

def __init__(self, target_type:str):
super().__init__()

if target_type.lower() not in ('bmes', 'pointer'):
raise ValueError("target_type only supports 'bmes', 'pointer'.")
if target_type.lower() not in ('bmes', 'shift_relay'):
raise ValueError("target_type only supports 'bmes', 'shift_relay'.")

self.target_type = target_type
if target_type=='bmes':
self._word_len_to_target = self._word_len_to_bems
elif target_type=='shift_relay':
self._word_len_to_target = self._word_lens_to_relay


@staticmethod
def _word_lens_to_relay(word_lens: Iterator[int]):
"""
[1, 2, 3, ..] 转换为[0, 1, 0, 2, 1, 0,](start指示seg有多长);
:param word_lens:
:return: {'target': , 'end_seg_mask':, 'start_seg_mask':}
"""
tags = []
end_seg_mask = []
start_seg_mask = []
for word_len in word_lens:
tags.extend([idx for idx in range(word_len - 1, -1, -1)])
end_seg_mask.extend([0] * (word_len - 1) + [1])
start_seg_mask.extend([1] + [0] * (word_len - 1))
return {'target': tags, 'end_seg_mask': end_seg_mask, 'start_seg_mask': start_seg_mask}

@staticmethod
def _word_len_to_bems(word_lens:Iterator[int])->List[str]:
def _word_len_to_bems(word_lens:Iterator[int])->Dict[str, List[str]]:
"""

:param word_lens: 每个word的长度
:return: 返回对应的BMES的str
:return:
"""
tags = []
for word_len in word_lens:
@@ -51,7 +70,7 @@ class SigHanLoader(DataSetLoader):
for _ in range(word_len-2):
tags.append('M')
tags.append('E')
return tags
return {'target':tags}

@staticmethod
def _gen_bigram(chars:List[str])->List[str]:
@@ -71,11 +90,15 @@ class SigHanLoader(DataSetLoader):
dataset = DataSet()
with open(path, 'r', encoding='utf-8') as f:
for line in f:
line = line.strip()
if not line: # 去掉空行
continue
parts = line.split()
word_lens = map(len, parts)
chars = list(line)
chars = list(''.join(parts))
tags = self._word_len_to_target(word_lens)
dataset.append(Instance(raw_chars=chars, target=tags))
assert len(chars)==len(tags['target'])
dataset.append(Instance(raw_chars=chars, **tags, seq_len=len(chars)))
if len(dataset)==0:
raise RuntimeError(f"{path} has no valid data.")
if bigram:
@@ -84,7 +107,7 @@ class SigHanLoader(DataSetLoader):

def process(self, paths: Union[str, Dict[str, str]], char_vocab_opt:VocabularyOption=None,
char_embed_opt:EmbeddingOption=None, bigram_vocab_opt:VocabularyOption=None,
bigram_embed_opt:EmbeddingOption=None):
bigram_embed_opt:EmbeddingOption=None, L:int=4):
"""
支持的数据格式为一行一个sample,并且用空格隔开不同的词语。例如

@@ -113,7 +136,7 @@ class SigHanLoader(DataSetLoader):
data = SigHanLoader('bmes').process('path/to/cws/') #将尝试在该目录下读取 train.txt, test.txt以及dev.txt
# 包含以下的内容data.vocabs['chars']: Vocabulary对象
# data.vocabs['target']:Vocabulary对象
# data.embeddings['chars']: Embedding对象. 只有提供了预训练的词向量的路径才有该项
# data.embeddings['chars']: 仅在提供了预训练embedding路径的情况下,为Embedding对象;
# data.datasets['train']: DataSet对象
# 包含的field有:
# raw_chars: list[str], 每个元素是一个汉字
@@ -132,79 +155,95 @@ class SigHanLoader(DataSetLoader):
:param bigram_vocab_opt: 用于构建bigram的vocabulary参数,默认不使用bigram, 仅在指定该参数的情况下会带有bigrams这个field。
为List[int], 每个instance长度与chars一样, abcde的bigram为ab bc cd de e<eos>
:param bigram_embed_opt: 用于读取预训练bigram的参数,仅在传入bigram_vocab_opt有效
:param L: 当target_type为shift_relay时传入的segment长度
:return:
"""
# 推荐大家使用这个check_data_loader_paths进行paths的验证
paths = check_dataloader_paths(paths)
datasets = {}
data = DataInfo()
bigram = bigram_vocab_opt is not None
for name, path in paths.items():
dataset = self.load(path, bigram=bigram)
datasets[name] = dataset
input_fields = []
target_fields = []
# 创建vocab
char_vocab = Vocabulary(min_freq=2) if char_vocab_opt is None else Vocabulary(**char_vocab_opt)
char_vocab.from_dataset(datasets['train'], field_name='raw_chars')
char_vocab.index_dataset(*datasets.values(), field_name='raw_chars', new_field_name='chars')
data.vocabs[Const.CHAR_INPUT] = char_vocab
input_fields.extend([Const.CHAR_INPUT, Const.INPUT_LEN, Const.TARGET])
target_fields.append(Const.TARGET)
# 创建target
if self.target_type == 'bmes':
target_vocab = Vocabulary(unknown=None, padding=None)
target_vocab.add_word_lst(['B']*4+['M']*3+['E']*2+['S'])
target_vocab.index_dataset(*datasets.values(), field_name='target')
data.vocabs[Const.TARGET] = target_vocab
if char_embed_opt is not None:
char_embed = EmbedLoader.load_with_vocab(**char_embed_opt, vocab=char_vocab)
data.embeddings['chars'] = char_embed
if bigram:
bigram_vocab = Vocabulary(**bigram_vocab_opt)
bigram_vocab.from_dataset(datasets['train'], field_name='bigrams')
bigram_vocab.index_dataset(*datasets.values(), field_name='bigrams')
data.vocabs['bigrams'] = bigram_vocab
if bigram_embed_opt is not None:
pass



bigram_embed = EmbedLoader.load_with_vocab(**bigram_embed_opt, vocab=bigram_vocab)
data.embeddings['bigrams'] = bigram_embed
input_fields.append('bigrams')
if self.target_type == 'shift_relay':
func = partial(self._clip_target, L=L)
for name, dataset in datasets.items():
res = dataset.apply_field(func, field_name='target')
relay_target = [res_i[0] for res_i in res]
relay_mask = [res_i[1] for res_i in res]
dataset.add_field('relay_target', relay_target, is_input=True, is_target=False, ignore_type=False)
dataset.add_field('relay_mask', relay_mask, is_input=True, is_target=False, ignore_type=False)
if self.target_type == 'shift_relay':
input_fields.extend(['end_seg_mask'])
target_fields.append('start_seg_mask')
# 将dataset加入DataInfo
for name, dataset in datasets.items():
dataset.set_input(*input_fields)
dataset.set_target(*target_fields)
data.datasets[name] = dataset

return data

import os
@staticmethod
def _clip_target(target:List[int], L:int):
"""

def check_dataloader_paths(paths:Union[str, Dict[str, str]])->Dict[str, str]:
"""
检查传入dataloader的文件的合法性。如果为合法路径,将返回至少包含'train'这个key的dict。类似于下面的结果
{
'train': '/some/path/to/', # 一定包含,建词表应该在这上面建立,剩下的其它文件应该只需要处理并index。
'test': 'xxx' # 可能有,也可能没有
...
}
如果paths为不合法的,将直接进行raise相应的错误

:param paths: 路径
:return:
"""
if isinstance(paths, str):
if os.path.isfile(paths):
return {'train': paths}
elif os.path.isdir(paths):
train_fp = os.path.join(paths, 'train.txt')
if not os.path.isfile(train_fp):
raise FileNotFoundError(f"train.txt is not found in folder {paths}.")
files = {'train': train_fp}
for filename in ['test.txt', 'dev.txt']:
fp = os.path.join(paths, filename)
if os.path.isfile(fp):
files[filename.split('.')[0]] = fp
return files
else:
raise FileNotFoundError(f"{paths} is not a valid file path.")

elif isinstance(paths, dict):
if paths:
if 'train' not in paths:
raise KeyError("You have to include `train` in your dict.")
for key, value in paths.items():
if isinstance(key, str) and isinstance(value, str):
if not os.path.isfile(value):
raise TypeError(f"{value} is not a valid file.")
else:
raise TypeError("All keys and values in paths should be str.")
return paths
只有在target_type为shift_relay的使用
:param target: List[int]
:param L:
:return:
"""
relay_target_i = []
tmp = []
for j in range(len(target) - 1):
tmp.append(target[j])
if target[j] > target[j + 1]:
pass
else:
relay_target_i.extend([L - 1 if t >= L else t for t in tmp[::-1]])
tmp = []
# 处理未结束的部分
if len(tmp) == 0:
relay_target_i.append(0)
else:
raise ValueError("Empty paths is not allowed.")
else:
raise TypeError(f"paths only supports str and dict. not {type(paths)}.")

tmp.append(target[-1])
relay_target_i.extend([L - 1 if t >= L else t for t in tmp[::-1]])
relay_mask_i = []
j = 0
while j < len(target):
seg_len = target[j] + 1
if target[j] < L:
relay_mask_i.extend([0] * (seg_len))
else:
relay_mask_i.extend([1] * (seg_len - L) + [0] * L)
j = seg_len + j
return relay_target_i, relay_mask_i


+ 44
- 0
reproduction/seqence_labelling/cws/model/metric.py View File

@@ -0,0 +1,44 @@

from fastNLP.core.metrics import MetricBase


class RelayMetric(MetricBase):
def __init__(self, pred=None, pred_mask=None, target=None, start_seg_mask=None):
super().__init__()
self._init_param_map(pred=pred, pred_mask=pred_mask, target=target, start_seg_mask=start_seg_mask)
self.tp = 0
self.rec = 0
self.pre = 0

def evaluate(self, pred, pred_mask, target, start_seg_mask):
"""
给定每个batch,累计一下结果。

:param pred: 预测的结果,为当前位置的开始的segment的(长度-1)
:param pred_mask: 当前位置预测有segment开始
:param target: 当前位置开始的segment的(长度-1)
:param start_seg_mask: 当前有segment结束
:return:
"""
self.tp += ((pred.long().eq(target.long())).__and__(pred_mask.byte().__and__(start_seg_mask.byte()))).sum().item()
self.rec += start_seg_mask.sum().item()
self.pre += pred_mask.sum().item()

def get_metric(self, reset=True):
"""
在所有数据都计算结束之后,得到performance
:param reset:
:return:
"""
pre = self.tp/(self.pre + 1e-12)
rec = self.tp/(self.rec + 1e-12)
f = 2*pre*rec/(1e-12 + pre + rec)

if reset:
self.tp = 0
self.rec = 0
self.pre = 0
self.bigger_than_L = 0

return {'f': round(f, 6), 'pre': round(pre, 6), 'rec': round(rec, 6)}

+ 74
- 0
reproduction/seqence_labelling/cws/model/model.py View File

@@ -0,0 +1,74 @@
from torch import nn
import torch
from fastNLP.modules import Embedding
import numpy as np
from reproduction.seqence_labelling.cws.model.module import FeatureFunMax, SemiCRFShiftRelay
from fastNLP.modules import LSTM

class ShiftRelayCWSModel(nn.Module):
"""
该模型可以用于进行分词操作
包含两个方法,
forward(chars, bigrams, seq_len) -> {'loss': batch_size,}
predict(chars, bigrams) -> {'pred': batch_size x max_len, 'pred_mask': batch_size x max_len}
pred是对当前segment的长度预测,pred_mask是仅在有预测的位置为1

:param char_embed: 预训练的Embedding或者embedding的shape
:param bigram_embed: 预训练的Embedding或者embedding的shape
:param hidden_size: LSTM的隐藏层大小
:param num_layers: LSTM的层数
:param L: SemiCRFShiftRelay的segment大小
:param num_bigram_per_char: 每个character对应的bigram的数量
:param drop_p: Dropout的大小
"""
def __init__(self, char_embed:Embedding, bigram_embed:Embedding, hidden_size:int=400, num_layers:int=1,
L:int=6, num_bigram_per_char:int=1, drop_p:float=0.2):
super().__init__()
self.char_embedding = Embedding(char_embed, dropout=drop_p)
self._pretrained_embed = False
if isinstance(char_embed, np.ndarray):
self._pretrained_embed = True
self.bigram_embedding = Embedding(bigram_embed, dropout=drop_p)
self.lstm = LSTM(100 * (num_bigram_per_char + 1), hidden_size // 2, num_layers=num_layers, bidirectional=True,
batch_first=True)
self.feature_fn = FeatureFunMax(hidden_size, L)
self.semi_crf_relay = SemiCRFShiftRelay(L)
self.feat_drop = nn.Dropout(drop_p)
self.reset_param()
# self.feature_fn.reset_parameters()

def reset_param(self):
for name, param in self.named_parameters():
if 'embedding' in name and self._pretrained_embed:
continue
if 'bias_hh' in name:
nn.init.constant_(param, 0)
elif 'bias_ih' in name:
nn.init.constant_(param, 1)
elif len(param.size()) < 2:
nn.init.uniform_(param, -0.1, 0.1)
else:
nn.init.xavier_uniform_(param)

def get_feats(self, chars, bigrams, seq_len):
batch_size, max_len = chars.size()
chars = self.char_embedding(chars)
bigrams = self.bigram_embedding(bigrams)
bigrams = bigrams.view(bigrams.size(0), max_len, -1)
chars = torch.cat([chars, bigrams], dim=-1)
feats, _ = self.lstm(chars, seq_len)
feats = self.feat_drop(feats)
logits, relay_logits = self.feature_fn(feats)

return logits, relay_logits

def forward(self, chars, bigrams, relay_target, relay_mask, end_seg_mask, seq_len):
logits, relay_logits = self.get_feats(chars, bigrams, seq_len)
loss = self.semi_crf_relay(logits, relay_logits, relay_target, relay_mask, end_seg_mask, seq_len)
return {'loss':loss}

def predict(self, chars, bigrams, seq_len):
logits, relay_logits = self.get_feats(chars, bigrams, seq_len)
pred, pred_mask = self.semi_crf_relay.predict(logits, relay_logits, seq_len)
return {'pred': pred, 'pred_mask': pred_mask}


+ 198
- 0
reproduction/seqence_labelling/cws/model/module.py View File

@@ -0,0 +1,198 @@
from torch import nn
import torch
from fastNLP.modules import Embedding
import numpy as np

class SemiCRFShiftRelay(nn.Module):
"""
该模块是一个decoder,但

"""
def __init__(self, L):
"""

:param L: 不包含relay的长度
"""
if L<2:
raise RuntimeError()
super().__init__()
self.L = L

def forward(self, logits, relay_logits, relay_target, relay_mask, end_seg_mask, seq_len):
"""
relay node是接下来L个字都不是它的结束。relay的状态是往后滑动1个位置

:param logits: batch_size x max_len x L, 当前位置往左边L个segment的分数,最后一维的0是长度为1的segment(即本身)
:param relay_logits: batch_size x max_len, 当前位置是接下来L-1个位置都不是终点的分数
:param relay_target: batch_size x max_len 每个位置他的segment在哪里开始的。如果超过L,则一直保持为L-1。比如长度为
5的词,L=3, [0, 1, 2, 2, 2]
:param relay_mask: batch_size x max_len, 在需要relay的地方为1, 长度为5的词, L=3时,为[1, 1, 1, 0, 0]
:param end_seg_mask: batch_size x max_len, segment结束的地方为1。
:param seq_len: batch_size, 句子的长度
:return: loss: batch_size,
"""
batch_size, max_len, L = logits.size()

# 当前时刻为relay node的分数是多少
relay_scores = logits.new_zeros(batch_size, max_len)
# 当前时刻结束的分数是多少
scores = logits.new_zeros(batch_size, max_len+1)
# golden的分数
gold_scores = relay_logits[:, 0].masked_fill(relay_mask[:, 0].eq(0), 0) + \
logits[:, 0, 0].masked_fill(end_seg_mask[:, 0].eq(0), 0)
# 初始化
scores[:, 1] = logits[:, 0, 0]
batch_i = torch.arange(batch_size).to(logits.device).long()
relay_scores[:, 0] = relay_logits[:, 0]
last_relay_index = max_len - self.L
for t in range(1, max_len):
real_L = min(t+1, L)
flip_logits_t = logits[:, t, :real_L].flip(dims=[1]) # flip之后低0个位置为real_L-1的segment
# 计算relay_scores的更新
if t<last_relay_index:
# (1) 从正常位置跳转
tmp1 = relay_logits[:, t] + scores[:, t] # batch_size
# (2) 从relay跳转
tmp2 = relay_logits[:, t] + relay_scores[:, t-1] # batch_size
tmp1 = torch.stack([tmp1, tmp2], dim=0)
relay_scores[:, t] = torch.logsumexp(tmp1, dim=0)
# 计算scores的更新
# (1)从之前的位置跳转过来的
tmp1 = scores[:, t-real_L+1:t+1] + flip_logits_t # batch_size x L
if t>self.L-1:
# (2)从relay跳转过来的
tmp2 = relay_scores[:, t-self.L] # batch_size
tmp2 = tmp2 + flip_logits_t[:, 0] # batch_size
tmp1 = torch.cat([tmp1, tmp2.unsqueeze(-1)], dim=-1)
scores[:, t+1] = torch.logsumexp(tmp1, dim=-1) # 更新当前时刻的分数

# 计算golden
seg_i = relay_target[:, t] # batch_size
gold_segment_scores = logits[:, t][(batch_i, seg_i)].masked_fill(end_seg_mask[:, t].eq(0), 0) # batch_size, 后向从0到L长度的segment的分数
relay_score = relay_logits[:, t].masked_fill(relay_mask[:, t].eq(0), 0)
gold_scores = gold_scores + relay_score + gold_segment_scores
all_scores = scores.gather(dim=1, index=seq_len.unsqueeze(1)).squeeze(1) # batch_size
return all_scores - gold_scores

def predict(self, logits, relay_logits, seq_len):
"""
relay node是接下来L个字都不是它的结束。relay的状态是往后滑动L-1个位置

:param logits: batch_size x max_len x L, 当前位置左边L个segment的分数,最后一维的0是长度为1的segment(即本身)
:param relay_logits: batch_size x max_len, 当前位置是接下来L-1个位置都不是终点的分数
:param seq_len: batch_size, 句子的长度
:return: pred: batch_size x max_len以该点开始的segment的(长度-1); pred_mask为1的地方预测有segment开始
"""
batch_size, max_len, L = logits.size()
# 当前时刻为relay node的分数是多少
max_relay_scores = logits.new_zeros(batch_size, max_len)
relay_bt = seq_len.new_zeros(batch_size, max_len) # 当前结果是否来自于relay的结果
# 当前时刻结束的分数是多少
max_scores = logits.new_zeros(batch_size, max_len+1)
bt = seq_len.new_zeros(batch_size, max_len)
# 初始化
max_scores[:, 1] = logits[:, 0, 0]
max_relay_scores[:, 0] = relay_logits[:, 0]
last_relay_index = max_len - self.L
for t in range(1, max_len):
real_L = min(t+1, L)
flip_logits_t = logits[:, t, :real_L].flip(dims=[1]) # flip之后低0个位置为real_L-1的segment
# 计算relay_scores的更新
if t<last_relay_index:
# (1) 从正常位置跳转
tmp1 = relay_logits[:, t] + max_scores[:, t]
# (2) 从relay跳转
tmp2 = relay_logits[:, t] + max_relay_scores[:, t-1] # batch_size
# 每个sample的倒数L位不能是relay了
tmp2 = tmp2.masked_fill(seq_len.le(t+L), float('-inf'))
mask_i = tmp1.lt(tmp2) # 为1的位置为relay跳转
relay_bt[:, t].masked_fill_(mask_i, 1)
max_relay_scores[:, t] = torch.max(tmp1, tmp2)

# 计算scores的更新
# (1)从之前的位置跳转过来的
tmp1 = max_scores[:, t-real_L+1:t+1] + flip_logits_t # batch_size x L
tmp1 = tmp1.flip(dims=[1]) # 0的位置代表长度为1的segment
if self.L-1<t:
# (2)从relay跳转过来的
tmp2 = max_relay_scores[:, t-self.L] # batch_size
tmp2 = tmp2 + flip_logits_t[:, 0]
tmp1 = torch.cat([tmp1, tmp2.unsqueeze(-1)], dim=-1)
# 看哪个更大
max_score, pt = torch.max(tmp1, dim=1)
max_scores[:, t+1] = max_score
# mask_i = pt.ge(self.L)
bt[:, t] = pt # 假设L=3, 那么对于0,1,2,3分别代表的是[t, t], [t-1, t], [t-2, t], [t-self.L(relay), t]
# 需要把结果decode出来
pred = np.zeros((batch_size, max_len), dtype=int)
pred_mask = np.zeros((batch_size, max_len), dtype=int)
seq_len = seq_len.tolist()
bt = bt.tolist()
relay_bt = relay_bt.tolist()
for b in range(batch_size):
seq_len_i = seq_len[b]
bt_i = bt[b][:seq_len_i]
relay_bt_i = relay_bt[b][:seq_len_i]
j = seq_len_i - 1
assert relay_bt_i[j]!=1
while j>-1:
if bt_i[j]==self.L:
seg_start_pos = j
j = j-self.L
while relay_bt_i[j]!=0 and j>-1:
j = j - 1
pred[b, j] = seg_start_pos - j
pred_mask[b, j] = 1
else:
length = bt_i[j]
j = j - bt_i[j]
pred_mask[b, j] = 1
pred[b, j] = length
j = j - 1

return torch.LongTensor(pred).to(logits.device), torch.LongTensor(pred_mask).to(logits.device)



class FeatureFunMax(nn.Module):
def __init__(self, hidden_size:int, L:int):
"""
用于计算semi-CRF特征的函数。给定batch_size x max_len x hidden_size形状的输入,输出为batch_size x max_len x L的
分数,以及batch_size x max_len的relay的分数。两者的区别参考论文 TODO 补充

:param hidden_size: 输入特征的维度大小
:param L: 不包含relay node的segment的长度大小。
"""
super().__init__()

self.end_fc = nn.Linear(hidden_size, 1, bias=False)
self.whole_w = nn.Parameter(torch.randn(L, hidden_size))
self.relay_fc = nn.Linear(hidden_size, 1)
self.length_bias = nn.Parameter(torch.randn(L))
self.L = L
def forward(self, logits):
"""

:param logits: batch_size x max_len x hidden_size
:return: batch_size x max_len x L # 最后一维为左边segment的分数,0处为长度为1的segment
batch_size x max_len, # 当前位置是接下来L-1个位置都不是终点的分数

"""
batch_size, max_len, hidden_size = logits.size()
# start_scores = self.start_fc(logits) # batch_size x max_len x 1 # 每个位置作为start的分数
tmp = logits.new_zeros(batch_size, max_len+self.L-1, hidden_size)
tmp[:, -max_len:] = logits
# batch_size x max_len x hidden_size x (self.L) -> batch_size x max_len x (self.L) x hidden_size
start_logits = tmp.unfold(dimension=1, size=self.L, step=1).transpose(2, 3).flip(dims=[2])
end_scores = self.end_fc(logits) # batch_size x max_len x 1
# 计算relay的特征
relay_tmp = logits.new_zeros(batch_size, max_len, hidden_size)
relay_tmp[:, :-self.L] = logits[:, self.L:]
# batch_size x max_len x hidden_size
relay_logits_max = torch.max(relay_tmp, logits) # end - start
logits_max = torch.max(logits.unsqueeze(2), start_logits) # batch_size x max_len x L x hidden_size
whole_scores = (logits_max*self.whole_w).sum(dim=-1) # batch_size x max_len x self.L
# whole_scores = self.whole_fc().squeeze(-1) # bz x max_len x self.L
# batch_size x max_len
relay_scores = self.relay_fc(relay_logits_max).squeeze(-1)
return whole_scores+end_scores+self.length_bias.view(1, 1, -1), relay_scores

+ 0
- 0
reproduction/seqence_labelling/cws/test/__init__.py View File


+ 17
- 0
reproduction/seqence_labelling/cws/test/test_CWSDataLoader.py View File

@@ -0,0 +1,17 @@


import unittest
from reproduction.seqence_labelling.cws.data.CWSDataLoader import SigHanLoader
from fastNLP.core.vocabulary import VocabularyOption


class TestCWSDataLoader(unittest.TestCase):
def test_case1(self):
cws_loader = SigHanLoader(target_type='bmes')
data = cws_loader.process('pku_demo.txt')
print(data.datasets)

def test_calse2(self):
cws_loader = SigHanLoader(target_type='bmes')
data = cws_loader.process('pku_demo.txt', bigram_vocab_opt=VocabularyOption())
print(data.datasets)

+ 68
- 0
reproduction/seqence_labelling/cws/train_shift_relay.py View File

@@ -0,0 +1,68 @@

import os

from fastNLP import cache_results
from reproduction.seqence_labelling.cws.data.CWSDataLoader import SigHanLoader
from reproduction.seqence_labelling.cws.model.model import ShiftRelayCWSModel
from fastNLP.io.embed_loader import EmbeddingOption
from fastNLP.core.vocabulary import VocabularyOption
from fastNLP import Trainer
from torch.optim import Adam
from fastNLP import BucketSampler
from fastNLP import GradientClipCallback
from reproduction.seqence_labelling.cws.model.metric import RelayMetric


# 借助一下fastNLP的自动缓存机制,但是只能缓存4G以下的结果
@cache_results(None)
def prepare_data():
data = SigHanLoader(target_type='shift_relay').process(file_dir, char_embed_opt=char_embed_opt,
bigram_vocab_opt=bigram_vocab_opt,
bigram_embed_opt=bigram_embed_opt,
L=L)
return data

#########hyper
L = 4
hidden_size = 200
num_layers = 1
drop_p = 0.2
lr = 0.02

#########hyper
device = 0

# !!!!这里前往不要放完全路径,因为这样会暴露你们在服务器上的用户名,比较危险。所以一定要使用相对路径,最好把数据放到
# 你们的reproduction路径下,然后设置.gitignore
file_dir = '/path/to/pku'
char_embed_path = '/path/to/1grams_t3_m50_corpus.txt'
bigram_embed_path = 'path/to/2grams_t3_m50_corpus.txt'
bigram_vocab_opt = VocabularyOption(min_freq=3)
char_embed_opt = EmbeddingOption(embed_filepath=char_embed_path)
bigram_embed_opt = EmbeddingOption(embed_filepath=bigram_embed_path)

data_name = os.path.basename(file_dir)
cache_fp = 'caches/{}.pkl'.format(data_name)

data = prepare_data(_cache_fp=cache_fp, _refresh=False)

model = ShiftRelayCWSModel(char_embed=data.embeddings['chars'], bigram_embed=data.embeddings['bigrams'],
hidden_size=hidden_size, num_layers=num_layers,
L=L, num_bigram_per_char=1, drop_p=drop_p)

sampler = BucketSampler(batch_size=32)
optimizer = Adam(model.parameters(), lr=lr)
clipper = GradientClipCallback(clip_value=5, clip_type='value')
callbacks = [clipper]
# if pretrain:
# fixer = FixEmbedding([model.char_embedding, model.bigram_embedding], fix_until=fix_until)
# callbacks.append(fixer)
trainer = Trainer(data.datasets['train'], model, optimizer=optimizer, loss=None,
batch_size=32, sampler=sampler, update_every=5,
n_epochs=3, print_every=5,
dev_data=data.datasets['dev'], metrics=RelayMetric(), metric_key='f',
validate_every=-1, save_path=None,
prefetch=True, use_tqdm=True, device=device,
callbacks=callbacks,
check_code_level=0)
trainer.train()

+ 51
- 0
reproduction/utils.py View File

@@ -0,0 +1,51 @@
import os

from typing import Union, Dict


def check_dataloader_paths(paths:Union[str, Dict[str, str]])->Dict[str, str]:
"""
检查传入dataloader的文件的合法性。如果为合法路径,将返回至少包含'train'这个key的dict。类似于下面的结果
{
'train': '/some/path/to/', # 一定包含,建词表应该在这上面建立,剩下的其它文件应该只需要处理并index。
'test': 'xxx' # 可能有,也可能没有
...
}
如果paths为不合法的,将直接进行raise相应的错误

:param paths: 路径
:return:
"""
if isinstance(paths, str):
if os.path.isfile(paths):
return {'train': paths}
elif os.path.isdir(paths):
train_fp = os.path.join(paths, 'train.txt')
if not os.path.isfile(train_fp):
raise FileNotFoundError(f"train.txt is not found in folder {paths}.")
files = {'train': train_fp}
for filename in ['test.txt', 'dev.txt']:
fp = os.path.join(paths, filename)
if os.path.isfile(fp):
files[filename.split('.')[0]] = fp
return files
else:
raise FileNotFoundError(f"{paths} is not a valid file path.")

elif isinstance(paths, dict):
if paths:
if 'train' not in paths:
raise KeyError("You have to include `train` in your dict.")
for key, value in paths.items():
if isinstance(key, str) and isinstance(value, str):
if not os.path.isfile(value):
raise TypeError(f"{value} is not a valid file.")
else:
raise TypeError("All keys and values in paths should be str.")
return paths
else:
raise ValueError("Empty paths is not allowed.")
else:
raise TypeError(f"paths only supports str and dict. not {type(paths)}.")



Loading…
Cancel
Save