From 27932737374ad93ab16eda2d57b60dca24df3108 Mon Sep 17 00:00:00 2001 From: Yige XU Date: Fri, 7 Dec 2018 22:09:58 +0800 Subject: [PATCH 1/7] update README.md update requirements --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index c9c934eb..46a0f776 100644 --- a/README.md +++ b/README.md @@ -40,6 +40,7 @@ For example: - numpy>=1.14.2 - torch>=0.4.0 - tensorboardX +- tqdm>=4.28.1 ## Resources From baac45a741152cab5b080ddf6180d6992be800c4 Mon Sep 17 00:00:00 2001 From: Yige XU Date: Fri, 7 Dec 2018 22:17:23 +0800 Subject: [PATCH 2/7] update README.md move the first table to the right place --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index 46a0f776..aae3bcdb 100644 --- a/README.md +++ b/README.md @@ -30,6 +30,7 @@ A deep learning NLP model is the composition of three types of modules: decode the representation into the output MLP, CRF + For example: From f15bd5aacdc6b594076dd232079d0a4741d61a27 Mon Sep 17 00:00:00 2001 From: Yige XU Date: Fri, 7 Dec 2018 22:28:20 +0800 Subject: [PATCH 3/7] update README.md update requirements in README.md --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index aae3bcdb..65d713e6 100644 --- a/README.md +++ b/README.md @@ -38,6 +38,7 @@ For example: ## Requirements +- Python>=3.6 - numpy>=1.14.2 - torch>=0.4.0 - tensorboardX From 071c141049bc9063224a4bbfd11ae10d76e30731 Mon Sep 17 00:00:00 2001 From: Coet Date: Tue, 11 Dec 2018 15:38:20 +0800 Subject: [PATCH 4/7] Create PULL_REQUEST_TEMPLATE.md --- .github/PULL_REQUEST_TEMPLATE.md | 17 +++++++++++++++++ 1 file changed, 17 insertions(+) create mode 100644 .github/PULL_REQUEST_TEMPLATE.md diff --git a/.github/PULL_REQUEST_TEMPLATE.md b/.github/PULL_REQUEST_TEMPLATE.md new file mode 100644 index 00000000..7e3db966 --- /dev/null +++ b/.github/PULL_REQUEST_TEMPLATE.md @@ -0,0 +1,17 @@ +Description:简要描述这次PR的内容 + +Main reason: 做出这次修改的原因 + +Checklist 检查下面各项是否完成 + +Please feel free to remove inapplicable items for your PR. + +- [ ] The PR title starts with [$CATEGORY] (such as [Models], [Modules], [Core], [io], [Doc], 分别对应各个子模块) +- [ ] Changes are complete (i.e. I finished coding on this PR) 代码写完了 +- [ ] All changes have test coverage 修改的地方经过测试。对于可复用部分的修改,例如core/和modules/,测试代码必须提供。其他部分建议提供。 +- [ ] Code is well-documented 注释写好,文档会从注释中自动抽取 +- [ ] To the my best knowledge, examples are either not affected by this change, or have been fixed to be compatible with this change 这种情况请找核心开发人员 + +Changes: 逐项描述修改的内容 +- Switch to sparse_coo_matrix for torch v1.0. #282 +- Fix bug that nx graph to dgl graph is not properly converted. #286 From d91a7c7c48472daa79930d7ab266cc1cb166e243 Mon Sep 17 00:00:00 2001 From: lyhuang Date: Thu, 13 Dec 2018 01:52:52 +0800 Subject: [PATCH 5/7] update docs --- docs/requirements.txt | 7 +- docs/source/fastNLP.api.rst | 36 ++ docs/source/fastNLP.core.rst | 24 +- docs/source/fastNLP.io.rst | 42 ++ docs/source/fastNLP.loader.rst | 36 -- docs/source/fastNLP.models.rst | 12 + docs/source/fastNLP.modules.encoder.rst | 6 + docs/source/fastNLP.modules.interactor.rst | 5 - docs/source/fastNLP.modules.rst | 7 +- docs/source/fastNLP.rst | 11 +- docs/source/fastNLP.saver.rst | 24 -- docs/source/index.rst | 38 +- .../tutorials/fastnlp_10tmin_tutorial.rst | 375 ++++++++++++++++++ .../tutorials/fastnlp_1_minute_tutorial.rst | 111 ++++++ docs/source/user/installation.rst | 19 +- docs/source/user/quickstart.rst | 83 +--- readthedocs.yml | 6 + 17 files changed, 639 insertions(+), 203 deletions(-) create mode 100644 docs/source/fastNLP.api.rst create mode 100644 docs/source/fastNLP.io.rst delete mode 100644 docs/source/fastNLP.loader.rst delete mode 100644 docs/source/fastNLP.modules.interactor.rst delete mode 100644 docs/source/fastNLP.saver.rst create mode 100644 docs/source/tutorials/fastnlp_10tmin_tutorial.rst create mode 100644 docs/source/tutorials/fastnlp_1_minute_tutorial.rst create mode 100644 readthedocs.yml diff --git a/docs/requirements.txt b/docs/requirements.txt index 294a44d0..c7d94486 100644 --- a/docs/requirements.txt +++ b/docs/requirements.txt @@ -1,5 +1,8 @@ numpy>=1.14.2 -http://download.pytorch.org/whl/cpu/torch-0.4.1-cp35-cp35m-linux_x86_64.whl +http://download.pytorch.org/whl/cpu/torch-0.4.1-cp36-cp36m-linux_x86_64.whl torchvision>=0.1.8 sphinx-rtd-theme==0.4.1 -tensorboardX>=1.4 \ No newline at end of file +tensorboardX>=1.4 +tqdm>=4.28.1 +ipython>=6.4.0 +ipython-genutils>=0.2.0 \ No newline at end of file diff --git a/docs/source/fastNLP.api.rst b/docs/source/fastNLP.api.rst new file mode 100644 index 00000000..eb9192da --- /dev/null +++ b/docs/source/fastNLP.api.rst @@ -0,0 +1,36 @@ +fastNLP.api +============ + +fastNLP.api.api +---------------- + +.. automodule:: fastNLP.api.api + :members: + +fastNLP.api.converter +---------------------- + +.. automodule:: fastNLP.api.converter + :members: + +fastNLP.api.model\_zoo +----------------------- + +.. automodule:: fastNLP.api.model_zoo + :members: + +fastNLP.api.pipeline +--------------------- + +.. automodule:: fastNLP.api.pipeline + :members: + +fastNLP.api.processor +---------------------- + +.. automodule:: fastNLP.api.processor + :members: + + +.. automodule:: fastNLP.api + :members: diff --git a/docs/source/fastNLP.core.rst b/docs/source/fastNLP.core.rst index 5c941e55..b9f6c89f 100644 --- a/docs/source/fastNLP.core.rst +++ b/docs/source/fastNLP.core.rst @@ -13,10 +13,10 @@ fastNLP.core.dataset .. automodule:: fastNLP.core.dataset :members: -fastNLP.core.field -------------------- +fastNLP.core.fieldarray +------------------------ -.. automodule:: fastNLP.core.field +.. automodule:: fastNLP.core.fieldarray :members: fastNLP.core.instance @@ -25,10 +25,10 @@ fastNLP.core.instance .. automodule:: fastNLP.core.instance :members: -fastNLP.core.loss ------------------- +fastNLP.core.losses +-------------------- -.. automodule:: fastNLP.core.loss +.. automodule:: fastNLP.core.losses :members: fastNLP.core.metrics @@ -49,12 +49,6 @@ fastNLP.core.predictor .. automodule:: fastNLP.core.predictor :members: -fastNLP.core.preprocess ------------------------- - -.. automodule:: fastNLP.core.preprocess - :members: - fastNLP.core.sampler --------------------- @@ -73,6 +67,12 @@ fastNLP.core.trainer .. automodule:: fastNLP.core.trainer :members: +fastNLP.core.utils +------------------- + +.. automodule:: fastNLP.core.utils + :members: + fastNLP.core.vocabulary ------------------------ diff --git a/docs/source/fastNLP.io.rst b/docs/source/fastNLP.io.rst new file mode 100644 index 00000000..d91e0d1c --- /dev/null +++ b/docs/source/fastNLP.io.rst @@ -0,0 +1,42 @@ +fastNLP.io +=========== + +fastNLP.io.base\_loader +------------------------ + +.. automodule:: fastNLP.io.base_loader + :members: + +fastNLP.io.config\_io +---------------------- + +.. automodule:: fastNLP.io.config_io + :members: + +fastNLP.io.dataset\_loader +--------------------------- + +.. automodule:: fastNLP.io.dataset_loader + :members: + +fastNLP.io.embed\_loader +------------------------- + +.. automodule:: fastNLP.io.embed_loader + :members: + +fastNLP.io.logger +------------------ + +.. automodule:: fastNLP.io.logger + :members: + +fastNLP.io.model\_io +--------------------- + +.. automodule:: fastNLP.io.model_io + :members: + + +.. automodule:: fastNLP.io + :members: diff --git a/docs/source/fastNLP.loader.rst b/docs/source/fastNLP.loader.rst deleted file mode 100644 index 658e07ff..00000000 --- a/docs/source/fastNLP.loader.rst +++ /dev/null @@ -1,36 +0,0 @@ -fastNLP.loader -=============== - -fastNLP.loader.base\_loader ----------------------------- - -.. automodule:: fastNLP.loader.base_loader - :members: - -fastNLP.loader.config\_loader ------------------------------- - -.. automodule:: fastNLP.loader.config_loader - :members: - -fastNLP.loader.dataset\_loader -------------------------------- - -.. automodule:: fastNLP.loader.dataset_loader - :members: - -fastNLP.loader.embed\_loader ------------------------------ - -.. automodule:: fastNLP.loader.embed_loader - :members: - -fastNLP.loader.model\_loader ------------------------------ - -.. automodule:: fastNLP.loader.model_loader - :members: - - -.. automodule:: fastNLP.loader - :members: diff --git a/docs/source/fastNLP.models.rst b/docs/source/fastNLP.models.rst index f17b1d49..7452fdf6 100644 --- a/docs/source/fastNLP.models.rst +++ b/docs/source/fastNLP.models.rst @@ -7,6 +7,12 @@ fastNLP.models.base\_model .. automodule:: fastNLP.models.base_model :members: +fastNLP.models.biaffine\_parser +-------------------------------- + +.. automodule:: fastNLP.models.biaffine_parser + :members: + fastNLP.models.char\_language\_model ------------------------------------- @@ -25,6 +31,12 @@ fastNLP.models.sequence\_modeling .. automodule:: fastNLP.models.sequence_modeling :members: +fastNLP.models.snli +-------------------- + +.. automodule:: fastNLP.models.snli + :members: + .. automodule:: fastNLP.models :members: diff --git a/docs/source/fastNLP.modules.encoder.rst b/docs/source/fastNLP.modules.encoder.rst index 41b4ce13..ea8fc699 100644 --- a/docs/source/fastNLP.modules.encoder.rst +++ b/docs/source/fastNLP.modules.encoder.rst @@ -43,6 +43,12 @@ fastNLP.modules.encoder.masked\_rnn .. automodule:: fastNLP.modules.encoder.masked_rnn :members: +fastNLP.modules.encoder.transformer +------------------------------------ + +.. automodule:: fastNLP.modules.encoder.transformer + :members: + fastNLP.modules.encoder.variational\_rnn ----------------------------------------- diff --git a/docs/source/fastNLP.modules.interactor.rst b/docs/source/fastNLP.modules.interactor.rst deleted file mode 100644 index 5eb3bdef..00000000 --- a/docs/source/fastNLP.modules.interactor.rst +++ /dev/null @@ -1,5 +0,0 @@ -fastNLP.modules.interactor -=========================== - -.. automodule:: fastNLP.modules.interactor - :members: diff --git a/docs/source/fastNLP.modules.rst b/docs/source/fastNLP.modules.rst index eda85aa7..965fb27d 100644 --- a/docs/source/fastNLP.modules.rst +++ b/docs/source/fastNLP.modules.rst @@ -6,7 +6,12 @@ fastNLP.modules fastNLP.modules.aggregator fastNLP.modules.decoder fastNLP.modules.encoder - fastNLP.modules.interactor + +fastNLP.modules.dropout +------------------------ + +.. automodule:: fastNLP.modules.dropout + :members: fastNLP.modules.other\_modules ------------------------------- diff --git a/docs/source/fastNLP.rst b/docs/source/fastNLP.rst index bb5037ce..61882359 100644 --- a/docs/source/fastNLP.rst +++ b/docs/source/fastNLP.rst @@ -3,18 +3,11 @@ fastNLP .. toctree:: + fastNLP.api fastNLP.core - fastNLP.loader + fastNLP.io fastNLP.models fastNLP.modules - fastNLP.saver - -fastNLP.fastnlp ----------------- - -.. automodule:: fastNLP.fastnlp - :members: - .. automodule:: fastNLP :members: diff --git a/docs/source/fastNLP.saver.rst b/docs/source/fastNLP.saver.rst deleted file mode 100644 index 1a02572d..00000000 --- a/docs/source/fastNLP.saver.rst +++ /dev/null @@ -1,24 +0,0 @@ -fastNLP.saver -============== - -fastNLP.saver.config\_saver ----------------------------- - -.. automodule:: fastNLP.saver.config_saver - :members: - -fastNLP.saver.logger ---------------------- - -.. automodule:: fastNLP.saver.logger - :members: - -fastNLP.saver.model\_saver ---------------------------- - -.. automodule:: fastNLP.saver.model_saver - :members: - - -.. automodule:: fastNLP.saver - :members: diff --git a/docs/source/index.rst b/docs/source/index.rst index b58f712a..9f410f41 100644 --- a/docs/source/index.rst +++ b/docs/source/index.rst @@ -1,33 +1,35 @@ fastNLP documentation ===================== -fastNLP,目前仍在孵化中。 +A Modularized and Extensible Toolkit for Natural Language Processing. Currently still in incubation. Introduction ------------ -fastNLP是一个基于PyTorch的模块化自然语言处理系统,用于快速开发NLP工具。 -它将基于深度学习的NLP模型划分为不同的模块。 -这些模块分为4类:encoder(编码),interaction(交互), aggregration(聚合) and decoder(解码), -而每个类别包含不同的实现模块。 +FastNLP is a modular Natural Language Processing system based on +PyTorch, built for fast development of NLP models. -大多数当前的NLP模型可以构建在这些模块上,这极大地简化了开发NLP模型的过程。 -fastNLP的架构如图所示: +A deep learning NLP model is the composition of three types of modules: -.. image:: figures/procedures.PNG ++-----------------------+-----------------------+-----------------------+ +| module type | functionality | example | ++=======================+=======================+=======================+ +| encoder | encode the input into | embedding, RNN, CNN, | +| | some abstract | transformer | +| | representation | | ++-----------------------+-----------------------+-----------------------+ +| aggregator | aggregate and reduce | self-attention, | +| | information | max-pooling | ++-----------------------+-----------------------+-----------------------+ +| decoder | decode the | MLP, CRF | +| | representation into | | +| | the output | | ++-----------------------+-----------------------+-----------------------+ -在constructing model部分,以序列标注和文本分类为例进行说明: -.. image:: figures/text_classification.png -.. image:: figures/sequence_labeling.PNG - :width: 400 - -* encoder module:将输入编码为一些抽象表示,输入的是单词序列,输出向量序列。 -* interaction module:使表示中的信息相互交互,输入的是向量序列,输出的也是向量序列。 -* aggregation module:聚合和减少信息,输入向量序列,输出一个向量。 -* decoder module:将表示解码为输出,输出一个label(文本分类)或者输出label序列(序列标注) +For example: -其中interaction module和aggregation module在模型中不一定存在,例如上面的序列标注模型。 +.. image:: figures/text_classification.png diff --git a/docs/source/tutorials/fastnlp_10tmin_tutorial.rst b/docs/source/tutorials/fastnlp_10tmin_tutorial.rst new file mode 100644 index 00000000..30293796 --- /dev/null +++ b/docs/source/tutorials/fastnlp_10tmin_tutorial.rst @@ -0,0 +1,375 @@ + +fastNLP上手教程 +=============== + +fastNLP提供方便的数据预处理,训练和测试模型的功能 + +DataSet & Instance +------------------ + +fastNLP用DataSet和Instance保存和处理数据。每个DataSet表示一个数据集,每个Instance表示一个数据样本。一个DataSet存有多个Instance,每个Instance可以自定义存哪些内容。 + +有一些read\_\*方法,可以轻松从文件读取数据,存成DataSet。 + +.. code:: ipython3 + + from fastNLP import DataSet + from fastNLP import Instance + + # 从csv读取数据到DataSet + win_path = "C:\\Users\zyfeng\Desktop\FudanNLP\\fastNLP\\test\\data_for_tests\\tutorial_sample_dataset.csv" + dataset = DataSet.read_csv(win_path, headers=('raw_sentence', 'label'), sep='\t') + print(dataset[0]) + + +.. parsed-literal:: + + {'raw_sentence': A series of escapades demonstrating the adage that what is good for the goose is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story ., + 'label': 1} + + +.. code:: ipython3 + + # DataSet.append(Instance)加入新数据 + + dataset.append(Instance(raw_sentence='fake data', label='0')) + dataset[-1] + + + + +.. parsed-literal:: + + {'raw_sentence': fake data, + 'label': 0} + + + +.. code:: ipython3 + + # DataSet.apply(func, new_field_name)对数据预处理 + + # 将所有数字转为小写 + dataset.apply(lambda x: x['raw_sentence'].lower(), new_field_name='raw_sentence') + # label转int + dataset.apply(lambda x: int(x['label']), new_field_name='label_seq', is_target=True) + # 使用空格分割句子 + dataset.drop(lambda x: len(x['raw_sentence'].split()) == 0) + def split_sent(ins): + return ins['raw_sentence'].split() + dataset.apply(split_sent, new_field_name='words', is_input=True) + +.. code:: ipython3 + + # DataSet.drop(func)筛除数据 + # 删除低于某个长度的词语 + dataset.drop(lambda x: len(x['words']) <= 3) + +.. code:: ipython3 + + # 分出测试集、训练集 + + test_data, train_data = dataset.split(0.3) + print("Train size: ", len(test_data)) + print("Test size: ", len(train_data)) + + +.. parsed-literal:: + + Train size: 54 + Test size: + +Vocabulary +---------- + +fastNLP中的Vocabulary轻松构建词表,将词转成数字 + +.. code:: ipython3 + + from fastNLP import Vocabulary + + # 构建词表, Vocabulary.add(word) + vocab = Vocabulary(min_freq=2) + train_data.apply(lambda x: [vocab.add(word) for word in x['words']]) + vocab.build_vocab() + + # index句子, Vocabulary.to_index(word) + train_data.apply(lambda x: [vocab.to_index(word) for word in x['words']], new_field_name='word_seq', is_input=True) + test_data.apply(lambda x: [vocab.to_index(word) for word in x['words']], new_field_name='word_seq', is_input=True) + + + print(test_data[0]) + + +.. parsed-literal:: + + {'raw_sentence': the plot is romantic comedy boilerplate from start to finish ., + 'label': 2, + 'label_seq': 2, + 'words': ['the', 'plot', 'is', 'romantic', 'comedy', 'boilerplate', 'from', 'start', 'to', 'finish', '.'], + 'word_seq': [2, 13, 9, 24, 25, 26, 15, 27, 11, 28, 3]} + + +.. code:: ipython3 + + # 假设你们需要做强化学习或者gan之类的项目,也许你们可以使用这里的dataset + from fastNLP.core.batch import Batch + from fastNLP.core.sampler import RandomSampler + + batch_iterator = Batch(dataset=train_data, batch_size=2, sampler=RandomSampler()) + for batch_x, batch_y in batch_iterator: + print("batch_x has: ", batch_x) + print("batch_y has: ", batch_y) + break + + +.. parsed-literal:: + + batch_x has: {'words': array([list(['this', 'kind', 'of', 'hands-on', 'storytelling', 'is', 'ultimately', 'what', 'makes', 'shanghai', 'ghetto', 'move', 'beyond', 'a', 'good', ',', 'dry', ',', 'reliable', 'textbook', 'and', 'what', 'allows', 'it', 'to', 'rank', 'with', 'its', 'worthy', 'predecessors', '.']), + list(['the', 'entire', 'movie', 'is', 'filled', 'with', 'deja', 'vu', 'moments', '.'])], + dtype=object), 'word_seq': tensor([[ 19, 184, 6, 1, 481, 9, 206, 50, 91, 1210, 1609, 1330, + 495, 5, 63, 4, 1269, 4, 1, 1184, 7, 50, 1050, 10, + 8, 1611, 16, 21, 1039, 1, 2], + [ 3, 711, 22, 9, 1282, 16, 2482, 2483, 200, 2, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0]])} + batch_y has: {'label_seq': tensor([3, 2])} + + +Model +----- + +.. code:: ipython3 + + # 定义一个简单的Pytorch模型 + + from fastNLP.models import CNNText + model = CNNText(embed_num=len(vocab), embed_dim=50, num_classes=5, padding=2, dropout=0.1) + model + + + + +.. parsed-literal:: + + CNNText( + (embed): Embedding( + (embed): Embedding(77, 50, padding_idx=0) + (dropout): Dropout(p=0.0) + ) + (conv_pool): ConvMaxpool( + (convs): ModuleList( + (0): Conv1d(50, 3, kernel_size=(3,), stride=(1,), padding=(2,)) + (1): Conv1d(50, 4, kernel_size=(4,), stride=(1,), padding=(2,)) + (2): Conv1d(50, 5, kernel_size=(5,), stride=(1,), padding=(2,)) + ) + ) + (dropout): Dropout(p=0.1) + (fc): Linear( + (linear): Linear(in_features=12, out_features=5, bias=True) + ) + ) + + + +Trainer & Tester +---------------- + +使用fastNLP的Trainer训练模型 + +.. code:: ipython3 + + from fastNLP import Trainer + from copy import deepcopy + from fastNLP import CrossEntropyLoss + from fastNLP import AccuracyMetric + +.. code:: ipython3 + + # 进行overfitting测试 + copy_model = deepcopy(model) + overfit_trainer = Trainer(model=copy_model, + train_data=test_data, + dev_data=test_data, + loss=CrossEntropyLoss(pred="output", target="label_seq"), + metrics=AccuracyMetric(), + n_epochs=10, + save_path=None) + overfit_trainer.train() + + +.. parsed-literal:: + + training epochs started 2018-12-07 14:07:20 + + + + +.. parsed-literal:: + + HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=20), HTML(value='')), layout=Layout(display='… + + + +.. parsed-literal:: + + Epoch 1/10. Step:2/20. AccuracyMetric: acc=0.037037 + Epoch 2/10. Step:4/20. AccuracyMetric: acc=0.296296 + Epoch 3/10. Step:6/20. AccuracyMetric: acc=0.333333 + Epoch 4/10. Step:8/20. AccuracyMetric: acc=0.555556 + Epoch 5/10. Step:10/20. AccuracyMetric: acc=0.611111 + Epoch 6/10. Step:12/20. AccuracyMetric: acc=0.481481 + Epoch 7/10. Step:14/20. AccuracyMetric: acc=0.62963 + Epoch 8/10. Step:16/20. AccuracyMetric: acc=0.685185 + Epoch 9/10. Step:18/20. AccuracyMetric: acc=0.722222 + Epoch 10/10. Step:20/20. AccuracyMetric: acc=0.777778 + + +.. code:: ipython3 + + # 实例化Trainer,传入模型和数据,进行训练 + trainer = Trainer(model=model, + train_data=train_data, + dev_data=test_data, + loss=CrossEntropyLoss(pred="output", target="label_seq"), + metrics=AccuracyMetric(), + n_epochs=5) + trainer.train() + print('Train finished!') + + +.. parsed-literal:: + + training epochs started 2018-12-07 14:08:10 + + + + +.. parsed-literal:: + + HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=5), HTML(value='')), layout=Layout(display='i… + + + +.. parsed-literal:: + + Epoch 1/5. Step:1/5. AccuracyMetric: acc=0.037037 + Epoch 2/5. Step:2/5. AccuracyMetric: acc=0.037037 + Epoch 3/5. Step:3/5. AccuracyMetric: acc=0.037037 + Epoch 4/5. Step:4/5. AccuracyMetric: acc=0.185185 + Epoch 5/5. Step:5/5. AccuracyMetric: acc=0.240741 + Train finished! + + +.. code:: ipython3 + + from fastNLP import Tester + + tester = Tester(data=test_data, model=model, metrics=AccuracyMetric()) + acc = tester.test() + + +.. parsed-literal:: + + [tester] + AccuracyMetric: acc=0.240741 + + +In summary +---------- + +fastNLP Trainer的伪代码逻辑 +--------------------------- + +1. 准备DataSet,假设DataSet中共有如下的fields +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + ['raw_sentence', 'word_seq1', 'word_seq2', 'raw_label','label'] + 通过 + DataSet.set_input('word_seq1', word_seq2', flag=True)将'word_seq1', 'word_seq2'设置为input + 通过 + DataSet.set_target('label', flag=True)将'label'设置为target + +2. 初始化模型 +~~~~~~~~~~~~~ + +:: + + class Model(nn.Module): + def __init__(self): + xxx + def forward(self, word_seq1, word_seq2): + # (1) 这里使用的形参名必须和DataSet中的input field的名称对应。因为我们是通过形参名, 进行赋值的 + # (2) input field的数量可以多于这里的形参数量。但是不能少于。 + xxxx + # 输出必须是一个dict + +3. Trainer的训练过程 +~~~~~~~~~~~~~~~~~~~~ + +:: + + (1) 从DataSet中按照batch_size取出一个batch,调用Model.forward + (2) 将 Model.forward的结果 与 标记为target的field 传入Losser当中。 + 由于每个人写的Model.forward的output的dict可能key并不一样,比如有人是{'pred':xxx}, {'output': xxx}; + 另外每个人将target可能也会设置为不同的名称, 比如有人是label, 有人设置为target; + 为了解决以上的问题,我们的loss提供映射机制 + 比如CrossEntropyLosser的需要的输入是(prediction, target)。但是forward的output是{'output': xxx}; 'label'是target + 那么初始化losser的时候写为CrossEntropyLosser(prediction='output', target='label')即可 + (3) 对于Metric是同理的 + Metric计算也是从 forward的结果中取值 与 设置target的field中取值。 也是可以通过映射找到对应的值 + +一些问题. +--------- + +1. DataSet中为什么需要设置input和target +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + 只有被设置为input或者target的数据才会在train的过程中被取出来 + (1.1) 我们只会在设置为input的field中寻找传递给Model.forward的参数。 + (1.2) 我们在传递值给losser或者metric的时候会使用来自: + (a)Model.forward的output + (b)被设置为target的field + + +2. 我们是通过forwad中的形参名将DataSet中的field赋值给对应的参数 +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + (1.1) 构建模型过程中, + 例如: + DataSet中x,seq_lens是input,那么forward就应该是 + def forward(self, x, seq_lens): + pass + 我们是通过形参名称进行匹配的field的 + + +1. 加载数据到DataSet +~~~~~~~~~~~~~~~~~~~~ + +2. 使用apply操作对DataSet进行预处理 +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + (2.1) 处理过程中将某些field设置为input,某些field设置为target + +3. 构建模型 +~~~~~~~~~~~ + +:: + + (3.1) 构建模型过程中,需要注意forward函数的形参名需要和DataSet中设置为input的field名称是一致的。 + 例如: + DataSet中x,seq_lens是input,那么forward就应该是 + def forward(self, x, seq_lens): + pass + 我们是通过形参名称进行匹配的field的 + (3.2) 模型的forward的output需要是dict类型的。 + 建议将输出设置为{"pred": xx}. + diff --git a/docs/source/tutorials/fastnlp_1_minute_tutorial.rst b/docs/source/tutorials/fastnlp_1_minute_tutorial.rst new file mode 100644 index 00000000..b4471e00 --- /dev/null +++ b/docs/source/tutorials/fastnlp_1_minute_tutorial.rst @@ -0,0 +1,111 @@ + +FastNLP 1分钟上手教程 +===================== + +step 1 +------ + +读取数据集 + +.. code:: ipython3 + + from fastNLP import DataSet + # linux_path = "../test/data_for_tests/tutorial_sample_dataset.csv" + win_path = "C:\\Users\zyfeng\Desktop\FudanNLP\\fastNLP\\test\\data_for_tests\\tutorial_sample_dataset.csv" + ds = DataSet.read_csv(win_path, headers=('raw_sentence', 'label'), sep='\t') + +step 2 +------ + +数据预处理 1. 类型转换 2. 切分验证集 3. 构建词典 + +.. code:: ipython3 + + # 将所有数字转为小写 + ds.apply(lambda x: x['raw_sentence'].lower(), new_field_name='raw_sentence') + # label转int + ds.apply(lambda x: int(x['label']), new_field_name='label_seq', is_target=True) + + def split_sent(ins): + return ins['raw_sentence'].split() + ds.apply(split_sent, new_field_name='words', is_input=True) + + +.. code:: ipython3 + + # 分割训练集/验证集 + train_data, dev_data = ds.split(0.3) + print("Train size: ", len(train_data)) + print("Test size: ", len(dev_data)) + + +.. parsed-literal:: + + Train size: 54 + Test size: 23 + + +.. code:: ipython3 + + from fastNLP import Vocabulary + vocab = Vocabulary(min_freq=2) + train_data.apply(lambda x: [vocab.add(word) for word in x['words']]) + + # index句子, Vocabulary.to_index(word) + train_data.apply(lambda x: [vocab.to_index(word) for word in x['words']], new_field_name='word_seq', is_input=True) + dev_data.apply(lambda x: [vocab.to_index(word) for word in x['words']], new_field_name='word_seq', is_input=True) + + +step 3 +------ + +定义模型 + +.. code:: ipython3 + + from fastNLP.models import CNNText + model = CNNText(embed_num=len(vocab), embed_dim=50, num_classes=5, padding=2, dropout=0.1) + + +step 4 +------ + +开始训练 + +.. code:: ipython3 + + from fastNLP import Trainer, CrossEntropyLoss, AccuracyMetric + trainer = Trainer(model=model, + train_data=train_data, + dev_data=dev_data, + loss=CrossEntropyLoss(), + metrics=AccuracyMetric() + ) + trainer.train() + print('Train finished!') + + + +.. parsed-literal:: + + training epochs started 2018-12-07 14:03:41 + + + + +.. parsed-literal:: + + HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=6), HTML(value='')), layout=Layout(display='i… + + + +.. parsed-literal:: + + Epoch 1/3. Step:2/6. AccuracyMetric: acc=0.26087 + Epoch 2/3. Step:4/6. AccuracyMetric: acc=0.347826 + Epoch 3/3. Step:6/6. AccuracyMetric: acc=0.608696 + Train finished! + + +本教程结束。更多操作请参考进阶教程。 +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ diff --git a/docs/source/user/installation.rst b/docs/source/user/installation.rst index 0655041b..7dc39b3b 100644 --- a/docs/source/user/installation.rst +++ b/docs/source/user/installation.rst @@ -6,26 +6,11 @@ Installation :local: -Cloning From GitHub -~~~~~~~~~~~~~~~~~~~ - -If you just want to use fastNLP, use: +Run the following commands to install fastNLP package: .. code:: shell - git clone https://github.com/fastnlp/fastNLP - cd fastNLP + pip install fastNLP -PyTorch Installation -~~~~~~~~~~~~~~~~~~~~ - -Visit the [PyTorch official website] for installation instructions based -on your system. In general, you could use: - -.. code:: shell - # using conda - conda install pytorch torchvision -c pytorch - # or using pip - pip3 install torch torchvision diff --git a/docs/source/user/quickstart.rst b/docs/source/user/quickstart.rst index 24c7363c..baa49eef 100644 --- a/docs/source/user/quickstart.rst +++ b/docs/source/user/quickstart.rst @@ -1,84 +1,9 @@ -========== Quickstart ========== -Example -------- - -Basic Usage -~~~~~~~~~~~ - -A typical fastNLP routine is composed of four phases: loading dataset, -pre-processing data, constructing model and training model. - -.. code:: python - - from fastNLP.models.base_model import BaseModel - from fastNLP.modules import encoder - from fastNLP.modules import aggregation - from fastNLP.modules import decoder - - from fastNLP.loader.dataset_loader import ClassDataSetLoader - from fastNLP.loader.preprocess import ClassPreprocess - from fastNLP.core.trainer import ClassificationTrainer - from fastNLP.core.inference import ClassificationInfer - - - class ClassificationModel(BaseModel): - """ - Simple text classification model based on CNN. - """ - - def __init__(self, num_classes, vocab_size): - super(ClassificationModel, self).__init__() - - self.emb = encoder.Embedding(nums=vocab_size, dims=300) - self.enc = encoder.Conv( - in_channels=300, out_channels=100, kernel_size=3) - self.agg = aggregation.MaxPool() - self.dec = decoder.MLP([100, num_classes]) - - def forward(self, x): - x = self.emb(x) # [N,L] -> [N,L,C] - x = self.enc(x) # [N,L,C_in] -> [N,L,C_out] - x = self.agg(x) # [N,L,C] -> [N,C] - x = self.dec(x) # [N,C] -> [N, N_class] - return x - - - data_dir = 'data' # directory to save data and model - train_path = 'test/data_for_tests/text_classify.txt' # training set file - - # load dataset - ds_loader = ClassDataSetLoader("train", train_path) - data = ds_loader.load() - - # pre-process dataset - pre = ClassPreprocess(data_dir) - vocab_size, n_classes = pre.process(data, "data_train.pkl") - - # construct model - model_args = { - 'num_classes': n_classes, - 'vocab_size': vocab_size - } - model = ClassificationModel(num_classes=n_classes, vocab_size=vocab_size) +.. toctree:: + :maxdepth: 1 - # train model - train_args = { - "epochs": 20, - "batch_size": 50, - "pickle_path": data_dir, - "validate": False, - "save_best_dev": False, - "model_saved_path": None, - "use_cuda": True, - "learn_rate": 1e-3, - "momentum": 0.9} - trainer = ClassificationTrainer(train_args) - trainer.train(model) + ../tutorials/fastnlp_1_minute_tutorial + ../tutorials/fastnlp_10tmin_tutorial - # predict using model - seqs = [x[0] for x in data] - infer = ClassificationInfer(data_dir) - labels_pred = infer.predict(model, seqs) \ No newline at end of file diff --git a/readthedocs.yml b/readthedocs.yml new file mode 100644 index 00000000..9b172987 --- /dev/null +++ b/readthedocs.yml @@ -0,0 +1,6 @@ +build: + image: latest + +python: + version: 3.6 + setup_py_install: true \ No newline at end of file From 1cfd0ea55f1b1b8a31a0f2fa8a4e75e37df7f71d Mon Sep 17 00:00:00 2001 From: Coet Date: Fri, 14 Dec 2018 19:10:44 +0800 Subject: [PATCH 6/7] Update PULL_REQUEST_TEMPLATE.md --- .github/PULL_REQUEST_TEMPLATE.md | 21 ++++++++++++++------- 1 file changed, 14 insertions(+), 7 deletions(-) diff --git a/.github/PULL_REQUEST_TEMPLATE.md b/.github/PULL_REQUEST_TEMPLATE.md index 7e3db966..9f550edf 100644 --- a/.github/PULL_REQUEST_TEMPLATE.md +++ b/.github/PULL_REQUEST_TEMPLATE.md @@ -2,16 +2,23 @@ Description:简要描述这次PR的内容 Main reason: 做出这次修改的原因 + Checklist 检查下面各项是否完成 Please feel free to remove inapplicable items for your PR. -- [ ] The PR title starts with [$CATEGORY] (such as [Models], [Modules], [Core], [io], [Doc], 分别对应各个子模块) -- [ ] Changes are complete (i.e. I finished coding on this PR) 代码写完了 -- [ ] All changes have test coverage 修改的地方经过测试。对于可复用部分的修改,例如core/和modules/,测试代码必须提供。其他部分建议提供。 -- [ ] Code is well-documented 注释写好,文档会从注释中自动抽取 -- [ ] To the my best knowledge, examples are either not affected by this change, or have been fixed to be compatible with this change 这种情况请找核心开发人员 +- [ ] The PR title starts with [$CATEGORY] (例如[bugfix]修复bug,[new]添加新功能,[test]修改测试,[rm]删除旧代码) +- [ ] Changes are complete (i.e. I finished coding on this PR) 修改完成才提PR +- [ ] All changes have test coverage 修改的部分顺利通过测试。对于fastnlp/fastnlp/*的修改,测试代码**必须**提供在fastnlp/test/*。 +- [ ] Code is well-documented 注释写好,API文档会从注释中抽取 +- [ ] To the my best knowledge, examples are either not affected by this change, or have been fixed to be compatible with this change 修改导致例子或tutorial有变化,请找核心开发人员 Changes: 逐项描述修改的内容 -- Switch to sparse_coo_matrix for torch v1.0. #282 -- Fix bug that nx graph to dgl graph is not properly converted. #286 +- 添加了新模型;用于句子分类的CNN,来自Yoon Kim的Convolutional Neural Networks for Sentence Classification +- 修改dataset.py中过时的和不合规则的注释 #286 +- 添加对var-LSTM的测试代码 + +Mention: 找人review你的PR + +@修改过这个文件的人 +@核心开发人员 From 5f4ab131ac491af07ed363d695260c0b8215555f Mon Sep 17 00:00:00 2001 From: hazelnutsgz <15201752137@163.com> Date: Tue, 1 Jan 2019 01:06:00 +0800 Subject: [PATCH 7/7] Add a loader for conll2003 dataset --- fastNLP/io/dataset_loader.py | 49 +++ test/data_for_tests/conll_2003_example.txt | 442 +++++++++++++++++++++ test/io/test_dataset_loader.py | 23 ++ 3 files changed, 514 insertions(+) create mode 100644 test/data_for_tests/conll_2003_example.txt create mode 100644 test/io/test_dataset_loader.py diff --git a/fastNLP/io/dataset_loader.py b/fastNLP/io/dataset_loader.py index 641a631e..76b9584d 100644 --- a/fastNLP/io/dataset_loader.py +++ b/fastNLP/io/dataset_loader.py @@ -417,6 +417,55 @@ class PeopleDailyCorpusLoader(DataSetLoader): data_set.set_input("seq_len") return data_set + +class Conll2003Loader(DataSetLoader): + """Self-defined loader of conll2003 dataset + + More information about the given dataset cound be found on + https://sites.google.com/site/ermasoftware/getting-started/ne-tagging-conll2003-data + + """ + + def __init__(self): + super(Conll2003Loader, self).__init__() + + def load(self, dataset_path): + with open(dataset_path, "r", encoding="utf-8") as f: + lines = f.readlines() + + ##Parse the dataset line by line + parsed_data = [] + sentence = [] + tokens = [] + for line in lines: + if '-DOCSTART- -X- -X- O' in line or line == '\n': + if sentence != []: + parsed_data.append((sentence, tokens)) + sentence = [] + tokens = [] + continue + + temp = line.strip().split(" ") + sentence.append(temp[0]) + tokens.append(temp[1:4]) + + return self.convert(parsed_data) + + def convert(self, parsed_data): + dataset = DataSet() + for sample in parsed_data: + label0_list = list(map( + lambda labels: labels[0], sample[1])) + label1_list = list(map( + lambda labels: labels[1], sample[1])) + label2_list = list(map( + lambda labels: labels[2], sample[1])) + dataset.append(Instance(token_list=sample[0], + label0_list=label0_list, + label1_list=label1_list, + label2_list=label2_list)) + + return dataset class SNLIDataSetLoader(DataSetLoader): """A data set loader for SNLI data set. diff --git a/test/data_for_tests/conll_2003_example.txt b/test/data_for_tests/conll_2003_example.txt new file mode 100644 index 00000000..d11a8264 --- /dev/null +++ b/test/data_for_tests/conll_2003_example.txt @@ -0,0 +1,442 @@ +-DOCSTART- -X- -X- O + +SOCCER NN B-NP O +- : O O +JAPAN NNP B-NP B-LOC +GET VB B-VP O +LUCKY NNP B-NP O +WIN NNP I-NP O +, , O O +CHINA NNP B-NP B-PER +IN IN B-PP O +SURPRISE DT B-NP O +DEFEAT NN I-NP O +. . O O + +Nadim NNP B-NP B-PER +Ladki NNP I-NP I-PER + +AL-AIN NNP B-NP B-LOC +, , O O +United NNP B-NP B-LOC +Arab NNP I-NP I-LOC +Emirates NNPS I-NP I-LOC +1996-12-06 CD I-NP O + +Japan NNP B-NP B-LOC +began VBD B-VP O +the DT B-NP O +defence NN I-NP O +of IN B-PP O +their PRP$ B-NP O +Asian JJ I-NP B-MISC +Cup NNP I-NP I-MISC +title NN I-NP O +with IN B-PP O +a DT B-NP O +lucky JJ I-NP O +2-1 CD I-NP O +win VBP B-VP O +against IN B-PP O +Syria NNP B-NP B-LOC +in IN B-PP O +a DT B-NP O +Group NNP I-NP O +C NNP I-NP O +championship NN I-NP O +match NN I-NP O +on IN B-PP O +Friday NNP B-NP O +. . O O + +But CC O O +China NNP B-NP B-LOC +saw VBD B-VP O +their PRP$ B-NP O +luck NN I-NP O +desert VB B-VP O +them PRP B-NP O +in IN B-PP O +the DT B-NP O +second NN I-NP O +match NN I-NP O +of IN B-PP O +the DT B-NP O +group NN I-NP O +, , O O +crashing VBG B-VP O +to TO B-PP O +a DT B-NP O +surprise NN I-NP O +2-0 CD I-NP O +defeat NN I-NP O +to TO B-PP O +newcomers NNS B-NP O +Uzbekistan NNP I-NP B-LOC +. . O O + +China NNP B-NP B-LOC +controlled VBD B-VP O +most JJS B-NP O +of IN B-PP O +the DT B-NP O +match NN I-NP O +and CC O O +saw VBD B-VP O +several JJ B-NP O +chances NNS I-NP O +missed VBD B-VP O +until IN B-SBAR O +the DT B-NP O +78th JJ I-NP O +minute NN I-NP O +when WRB B-ADVP O +Uzbek NNP B-NP B-MISC +striker NN I-NP O +Igor JJ B-NP B-PER +Shkvyrin NNP I-NP I-PER +took VBD B-VP O +advantage NN B-NP O +of IN B-PP O +a DT B-NP O +misdirected JJ I-NP O +defensive JJ I-NP O +header NN I-NP O +to TO B-VP O +lob VB I-VP O +the DT B-NP O +ball NN I-NP O +over IN B-PP O +the DT B-NP O +advancing VBG I-NP O +Chinese JJ I-NP B-MISC +keeper NN I-NP O +and CC O O +into IN B-PP O +an DT B-NP O +empty JJ I-NP O +net NN I-NP O +. . O O + +Oleg NNP B-NP B-PER +Shatskiku NNP I-NP I-PER +made VBD B-VP O +sure JJ B-ADJP O +of IN B-PP O +the DT B-NP O +win VBP B-VP O +in IN B-PP O +injury NN B-NP O +time NN I-NP O +, , O O +hitting VBG B-VP O +an DT B-NP O +unstoppable JJ I-NP O +left VBD B-VP O +foot NN B-NP O +shot NN I-NP O +from IN B-PP O +just RB B-NP O +outside IN B-PP O +the DT B-NP O +area NN I-NP O +. . O O + +The DT B-NP O +former JJ I-NP O +Soviet JJ I-NP B-MISC +republic NN I-NP O +was VBD B-VP O +playing VBG I-VP O +in IN B-PP O +an DT B-NP O +Asian NNP I-NP B-MISC +Cup NNP I-NP I-MISC +finals NNS I-NP O +tie NN I-NP O +for IN B-PP O +the DT B-NP O +first JJ I-NP O +time NN I-NP O +. . O O + +Despite IN B-PP O +winning VBG B-VP O +the DT B-NP O +Asian JJ I-NP B-MISC +Games NNPS I-NP I-MISC +title NN I-NP O +two CD B-NP O +years NNS I-NP O +ago RB B-ADVP O +, , O O +Uzbekistan NNP B-NP B-LOC +are VBP B-VP O +in IN B-PP O +the DT B-NP O +finals NNS I-NP O +as IN B-SBAR O +outsiders NNS B-NP O +. . O O + +Two CD B-NP O +goals NNS I-NP O +from IN B-PP O +defensive JJ B-NP O +errors NNS I-NP O +in IN B-PP O +the DT B-NP O +last JJ I-NP O +six CD I-NP O +minutes NNS I-NP O +allowed VBD B-VP O +Japan NNP B-NP B-LOC +to TO B-VP O +come VB I-VP O +from IN B-PP O +behind NN B-NP O +and CC O O +collect VB B-VP O +all DT B-NP O +three CD I-NP O +points NNS I-NP O +from IN B-PP O +their PRP$ B-NP O +opening NN I-NP O +meeting NN I-NP O +against IN B-PP O +Syria NNP B-NP B-LOC +. . O O + +Takuya NNP B-NP B-PER +Takagi NNP I-NP I-PER +scored VBD B-VP O +the DT B-NP O +winner NN I-NP O +in IN B-PP O +the DT B-NP O +88th JJ I-NP O +minute NN I-NP O +, , O O +rising VBG B-VP O +to TO I-VP O +head VB I-VP O +a DT B-NP O +Hiroshige NNP I-NP B-PER +Yanagimoto NNP I-NP I-PER +cross VB B-VP O +towards IN B-PP O +the DT B-NP O +Syrian JJ I-NP B-MISC +goal NN I-NP O +which WDT B-NP O +goalkeeper VBD B-VP O +Salem NNP B-NP B-PER +Bitar NNP I-NP I-PER +appeared VBD B-VP O +to TO I-VP O +have VB I-VP O +covered VBN I-VP O +but CC O O +then RB B-VP O +allowed VBN I-VP O +to TO I-VP O +slip VB I-VP O +into IN B-PP O +the DT B-NP O +net NN I-NP O +. . O O + +It PRP B-NP O +was VBD B-VP O +the DT B-NP O +second JJ I-NP O +costly JJ I-NP O +blunder NN I-NP O +by IN B-PP O +Syria NNP B-NP B-LOC +in IN B-PP O +four CD B-NP O +minutes NNS I-NP O +. . O O + +Defender NNP B-NP O +Hassan NNP I-NP B-PER +Abbas NNP I-NP I-PER +rose VBD B-VP O +to TO I-VP O +intercept VB I-VP O +a DT B-NP O +long JJ I-NP O +ball NN I-NP O +into IN B-PP O +the DT B-NP O +area NN I-NP O +in IN B-PP O +the DT B-NP O +84th JJ I-NP O +minute NN I-NP O +but CC O O +only RB B-ADVP O +managed VBD B-VP O +to TO I-VP O +divert VB I-VP O +it PRP B-NP O +into IN B-PP O +the DT B-NP O +top JJ I-NP O +corner NN I-NP O +of IN B-PP O +Bitar NN B-NP B-PER +'s POS B-NP O +goal NN I-NP O +. . O O + +Nader NNP B-NP B-PER +Jokhadar NNP I-NP I-PER +had VBD B-VP O +given VBN I-VP O +Syria NNP B-NP B-LOC +the DT B-NP O +lead NN I-NP O +with IN B-PP O +a DT B-NP O +well-struck NN I-NP O +header NN I-NP O +in IN B-PP O +the DT B-NP O +seventh JJ I-NP O +minute NN I-NP O +. . O O + +Japan NNP B-NP B-LOC +then RB B-ADVP O +laid VBD B-VP O +siege NN B-NP O +to TO B-PP O +the DT B-NP O +Syrian JJ I-NP B-MISC +penalty NN I-NP O +area NN I-NP O +for IN B-PP O +most JJS B-NP O +of IN B-PP O +the DT B-NP O +game NN I-NP O +but CC O O +rarely RB B-VP O +breached VBD I-VP O +the DT B-NP O +Syrian JJ I-NP B-MISC +defence NN I-NP O +. . O O + +Bitar NN B-NP B-PER +pulled VBD B-VP O +off RP B-PRT O +fine JJ B-NP O +saves VBZ B-VP O +whenever WRB B-ADVP O +they PRP B-NP O +did VBD B-VP O +. . O O + +Japan NNP B-NP B-LOC +coach NN I-NP O +Shu NNP I-NP B-PER +Kamo NNP I-NP I-PER +said VBD B-VP O +: : O O +' '' O O +' POS B-NP O +The DT I-NP O +Syrian JJ I-NP B-MISC +own JJ I-NP O +goal NN I-NP O +proved VBD B-VP O +lucky JJ B-ADJP O +for IN B-PP O +us PRP B-NP O +. . O O + +The DT B-NP O +Syrians NNPS I-NP B-MISC +scored VBD B-VP O +early JJ B-NP O +and CC O O +then RB B-VP O +played VBN I-VP O +defensively RB B-ADVP O +and CC O O +adopted VBD B-VP O +long RB I-VP O +balls VBZ I-VP O +which WDT B-NP O +made VBD B-VP O +it PRP B-NP O +hard JJ B-ADJP O +for IN B-PP O +us PRP B-NP O +. . O O +' '' O O + +' '' O O + +Japan NNP B-NP B-LOC +, , O O +co-hosts VBZ B-VP O +of IN B-PP O +the DT B-NP O +World NNP I-NP B-MISC +Cup NNP I-NP I-MISC +in IN B-PP O +2002 CD B-NP O +and CC O O +ranked VBD B-VP O +20th JJ B-NP O +in IN B-PP O +the DT B-NP O +world NN I-NP O +by IN B-PP O +FIFA NNP B-NP B-ORG +, , O O +are VBP B-VP O +favourites JJ B-ADJP O +to TO B-VP O +regain VB I-VP O +their PRP$ B-NP O +title NN I-NP O +here RB B-ADVP O +. . O O + +Hosts NNPS B-NP O +UAE NNP I-NP B-LOC +play NN I-NP O +Kuwait NNP I-NP B-LOC +and CC O O +South NNP B-NP B-LOC +Korea NNP I-NP I-LOC +take VBP B-VP O +on IN B-PP O +Indonesia NNP B-NP B-LOC +on IN B-PP O +Saturday NNP B-NP O +in IN B-PP O +Group NNP B-NP O +A NNP I-NP O +matches VBZ B-VP O +. . O O + +All DT B-NP O +four CD I-NP O +teams NNS I-NP O +are VBP B-VP O +level NN B-NP O +with IN B-PP O +one CD B-NP O +point NN I-NP O +each DT B-NP O +from IN B-PP O +one CD B-NP O +game NN I-NP O +. . O O \ No newline at end of file diff --git a/test/io/test_dataset_loader.py b/test/io/test_dataset_loader.py new file mode 100644 index 00000000..9bee175b --- /dev/null +++ b/test/io/test_dataset_loader.py @@ -0,0 +1,23 @@ +import os +import unittest + +from fastNLP.io.dataset_loader import Conll2003Loader +class TestDatasetLoader(unittest.TestCase): + + def test_case_1(self): + ''' + Test the the loader of Conll2003 dataset + ''' + + dataset_path = "test/data_for_tests/conll_2003_example.txt" + loader = Conll2003Loader() + dataset_2003 = loader.load(dataset_path) + + for item in dataset_2003: + len0 = len(item["label0_list"]) + len1 = len(item["label1_list"]) + len2 = len(item["label2_list"]) + lentoken = len(item["token_list"]) + self.assertNotEqual(len0, 0) + self.assertEqual(len0, len1) + self.assertEqual(len1, len2) \ No newline at end of file