|
@@ -171,11 +171,11 @@ class Trainer(object): |
|
|
|
|
|
|
|
|
loss = self.get_loss(prediction, batch_y) |
|
|
loss = self.get_loss(prediction, batch_y) |
|
|
self.grad_backward(loss) |
|
|
self.grad_backward(loss) |
|
|
if torch.rand(1).item() < 0.001: |
|
|
|
|
|
print('[grads at epoch: {:>3} step: {:>4}]'.format(kwargs['epoch'], step)) |
|
|
|
|
|
for name, p in self._model.named_parameters(): |
|
|
|
|
|
if p.requires_grad: |
|
|
|
|
|
print('\t{} {} {}'.format(name, tuple(p.size()), torch.sum(p.grad).item())) |
|
|
|
|
|
|
|
|
# if torch.rand(1).item() < 0.001: |
|
|
|
|
|
# print('[grads at epoch: {:>3} step: {:>4}]'.format(kwargs['epoch'], step)) |
|
|
|
|
|
# for name, p in self._model.named_parameters(): |
|
|
|
|
|
# if p.requires_grad: |
|
|
|
|
|
# print('\t{} {} {}'.format(name, tuple(p.size()), torch.sum(p.grad).item())) |
|
|
self.update() |
|
|
self.update() |
|
|
self._summary_writer.add_scalar("loss", loss.item(), global_step=step) |
|
|
self._summary_writer.add_scalar("loss", loss.item(), global_step=step) |
|
|
|
|
|
|
|
|