| @@ -0,0 +1,475 @@ | |||
| import os | |||
| import pytest | |||
| from pathlib import Path | |||
| from fastNLP.core.drivers.torch_driver.deepspeed import DeepSpeedDriver | |||
| from fastNLP.core.samplers import ( | |||
| RandomSampler, | |||
| UnrepeatedSampler, | |||
| BucketedBatchSampler, | |||
| UnrepeatedRandomSampler, | |||
| UnrepeatedSequentialSampler, | |||
| ) | |||
| from tests.helpers.models.torch_model import TorchNormalModel_Classification_1 | |||
| from tests.helpers.datasets.torch_data import TorchNormalDataset, TorchNormalXYDataset | |||
| from tests.helpers.utils import magic_argv_env_context | |||
| from fastNLP.envs.distributed import rank_zero_rm | |||
| from fastNLP import logger | |||
| from fastNLP.envs.imports import _NEED_IMPORT_TORCH, _NEED_IMPORT_DEEPSPEED | |||
| if _NEED_IMPORT_TORCH: | |||
| import torch | |||
| import torch.distributed as dist | |||
| from torch.utils.data import DataLoader, BatchSampler | |||
| if _NEED_IMPORT_DEEPSPEED: | |||
| import deepspeed | |||
| def generate_driver(labels, features, device=[0,1], fp16=False, output_from_new_proc="all"): | |||
| torch_model = TorchNormalModel_Classification_1(labels, features) | |||
| torch_opt = torch.optim.Adam(params=torch_model.parameters(), lr=0.01) | |||
| device = [torch.device(i) for i in device] | |||
| driver = DeepSpeedDriver( | |||
| model=torch_model, | |||
| parallel_device=device, | |||
| fp16=fp16, | |||
| output_from_new_proc=output_from_new_proc | |||
| ) | |||
| driver.set_optimizers(torch_opt) | |||
| driver.setup() | |||
| return driver | |||
| def dataloader_with_bucketedbatchsampler(dataset, length, batch_size, shuffle, drop_last): | |||
| """ | |||
| 建立一个 batch_sampler 为 BucketedBatchSampler 的 dataloader | |||
| """ | |||
| dataloader = DataLoader( | |||
| dataset=dataset, | |||
| batch_sampler=BucketedBatchSampler( | |||
| dataset, | |||
| length, | |||
| batch_size, | |||
| shuffle=shuffle, | |||
| drop_last=drop_last, | |||
| ), | |||
| ) | |||
| return dataloader | |||
| def dataloader_with_randomsampler(dataset, batch_size, shuffle, drop_last, seed=0, unrepeated=False): | |||
| """ | |||
| 建立一个 sampler 为 RandomSampler 的 dataloader | |||
| """ | |||
| if unrepeated: | |||
| sampler = UnrepeatedRandomSampler(dataset, shuffle, seed) | |||
| else: | |||
| sampler = RandomSampler(dataset, shuffle, seed=seed) | |||
| dataloader = DataLoader( | |||
| dataset, | |||
| sampler=sampler, | |||
| drop_last=drop_last, | |||
| batch_size=batch_size | |||
| ) | |||
| return dataloader | |||
| ############################################################################ | |||
| # | |||
| # 测试 TorchDDPDriver 的一些函数 | |||
| # | |||
| ############################################################################ | |||
| @pytest.mark.torch | |||
| @magic_argv_env_context | |||
| def test_multi_drivers(): | |||
| """ | |||
| 测试使用了多个 TorchDDPDriver 的情况。 | |||
| """ | |||
| generate_driver(10, 10) | |||
| generate_driver(20, 10) | |||
| with pytest.raises(RuntimeError): | |||
| # 设备设置不同,应该报错 | |||
| generate_driver(20, 3, device=[0,1,2]) | |||
| assert False | |||
| dist.barrier() | |||
| if dist.is_initialized(): | |||
| dist.destroy_process_group() | |||
| @magic_argv_env_context | |||
| def test_multi_optimizers(): | |||
| torch_model = TorchNormalModel_Classification_1(10, 10) | |||
| torch_opt = torch.optim.Adam(params=torch_model.parameters(), lr=0.01) | |||
| device = [torch.device(i) for i in device] | |||
| driver = DeepSpeedDriver( | |||
| model=torch_model, | |||
| parallel_device=device, | |||
| ) | |||
| driver.set_optimizers([torch_opt, torch_opt]) | |||
| with pytest.raises(ValueError): | |||
| driver.setup() | |||
| if dist.is_initialized(): | |||
| dist.destroy_process_group() | |||
| @pytest.mark.torch | |||
| class TestDeepSpeedDriverFunction: | |||
| """ | |||
| 测试 TorchDeepSpeedDriver 一些简单函数的测试类,基本都是测试能否运行、是否存在 import 错误等问题 | |||
| """ | |||
| @magic_argv_env_context | |||
| def test_simple_functions(self): | |||
| """ | |||
| 简单测试多个函数 | |||
| """ | |||
| driver = generate_driver(10, 10) | |||
| """ | |||
| 测试 move_data_to_device 函数。这个函数仅调用了 torch_move_data_to_device ,测试例在 | |||
| tests/core/utils/test_torch_utils.py中,就不重复测试了 | |||
| """ | |||
| driver.move_data_to_device(torch.rand((32, 64))) | |||
| dist.barrier() | |||
| """ | |||
| 测试 is_distributed 函数 | |||
| """ | |||
| assert driver.is_distributed() == True | |||
| dist.barrier() | |||
| """ | |||
| 测试 get_no_sync_context 函数 | |||
| """ | |||
| res = driver.get_model_no_sync_context() | |||
| dist.barrier() | |||
| """ | |||
| 测试 is_global_zero 函数 | |||
| """ | |||
| driver.is_global_zero() | |||
| dist.barrier() | |||
| """ | |||
| 测试 unwrap_model 函数 | |||
| """ | |||
| driver.unwrap_model() | |||
| dist.barrier() | |||
| """ | |||
| 测试 get_local_rank 函数 | |||
| """ | |||
| driver.get_local_rank() | |||
| dist.barrier() | |||
| """ | |||
| 测试 all_gather 函数 | |||
| 详细的测试在 test_dist_utils.py 中完成 | |||
| """ | |||
| obj = { | |||
| "rank": driver.global_rank | |||
| } | |||
| obj_list = driver.all_gather(obj, group=None) | |||
| for i, res in enumerate(obj_list): | |||
| assert res["rank"] == i | |||
| """ | |||
| 测试 broadcast_object 函数 | |||
| 详细的函数在 test_dist_utils.py 中完成 | |||
| """ | |||
| if driver.global_rank == 0: | |||
| obj = { | |||
| "rank": driver.global_rank | |||
| } | |||
| else: | |||
| obj = None | |||
| res = driver.broadcast_object(obj, src=0) | |||
| assert res["rank"] == 0 | |||
| if dist.is_initialized(): | |||
| dist.destroy_process_group() | |||
| ############################################################################ | |||
| # | |||
| # 测试 save 和 load 相关的功能 | |||
| # | |||
| ############################################################################ | |||
| @pytest.mark.torch | |||
| class TestSaveLoad: | |||
| """ | |||
| 测试多卡情况下 save 和 load 相关函数的表现 | |||
| """ | |||
| def setup_method(self): | |||
| self.dataset = TorchNormalXYDataset(100) | |||
| @magic_argv_env_context | |||
| @pytest.mark.parametrize("only_state_dict", ([True, False])) | |||
| def test_save_and_load_model(self, only_state_dict): | |||
| """ | |||
| 测试 save_model 和 load_model 函数 | |||
| """ | |||
| try: | |||
| path = "model" | |||
| dataloader = DataLoader(self.dataset, batch_size=2) | |||
| driver1, driver2 = generate_driver(20, 1), generate_driver(20, 1) | |||
| driver1.save_model(path, only_state_dict) | |||
| # 同步 | |||
| dist.barrier() | |||
| driver2.load_model(path, only_state_dict) | |||
| for idx, batch in enumerate(dataloader): | |||
| batch = driver1.move_data_to_device(batch) | |||
| res1 = driver1.model( | |||
| batch, | |||
| fastnlp_fn=driver1.model.module.model.evaluate_step, | |||
| # Driver.model -> DataParallel.module -> _FleetWrappingModel.model | |||
| fastnlp_signature_fn=None, | |||
| wo_auto_param_call=False, | |||
| ) | |||
| res2 = driver2.model( | |||
| batch, | |||
| fastnlp_fn=driver2.model.module.model.evaluate_step, | |||
| fastnlp_signature_fn=None, | |||
| wo_auto_param_call=False, | |||
| ) | |||
| assert torch.equal(res1["preds"], res2["preds"]) | |||
| finally: | |||
| rank_zero_rm(path) | |||
| if dist.is_initialized(): | |||
| dist.destroy_process_group() | |||
| @magic_argv_env_context | |||
| @pytest.mark.parametrize("only_state_dict", ([True, False])) | |||
| @pytest.mark.parametrize("fp16", ([True, False])) | |||
| @pytest.mark.parametrize("device", ([[0,1]])) | |||
| def test_save_and_load_with_bucketedbatchsampler(self, device, only_state_dict, fp16): | |||
| """ | |||
| 测试save和load函数,主要测试 dataloader 被替换了 sampler 之后的情况 | |||
| """ | |||
| try: | |||
| path = "model.ckp" | |||
| num_replicas = len(device) | |||
| driver1, driver2 = generate_driver(20, 1, device=device, fp16=fp16), \ | |||
| generate_driver(20, 1, device=device, fp16=False) | |||
| dataloader = dataloader_with_bucketedbatchsampler( | |||
| self.dataset, | |||
| length=[10 for i in range(len(self.dataset))], | |||
| batch_size=4, | |||
| shuffle=True, | |||
| drop_last=False | |||
| ) | |||
| dataloader.batch_sampler.set_distributed( | |||
| num_replicas=driver1.world_size, | |||
| rank=driver1.global_rank, | |||
| pad=True | |||
| ) | |||
| num_consumed_batches = 4 | |||
| already_seen_x_set = set() | |||
| already_seen_y_set = set() | |||
| driver1.set_sampler_epoch(dataloader, 4) | |||
| for idx, batch in enumerate(dataloader): | |||
| if idx >= num_consumed_batches: | |||
| break | |||
| already_seen_x_set.update(batch["x"].reshape(-1, ).tolist()) | |||
| already_seen_y_set.update(batch["y"].reshape(-1, ).tolist()) | |||
| # 同步 | |||
| dist.barrier() | |||
| # 保存状态 | |||
| sampler_states = dataloader.batch_sampler.state_dict() | |||
| save_states = {"num_consumed_batches": num_consumed_batches} | |||
| driver1.save_checkpoint(Path(path), save_states, dataloader, only_state_dict, should_save_model=True) | |||
| dist.barrier() | |||
| # 加载 | |||
| # 更改 batch_size | |||
| dataloader = dataloader_with_bucketedbatchsampler( | |||
| self.dataset, | |||
| length=[10 for i in range(len(self.dataset))], | |||
| batch_size=2, | |||
| shuffle=True, | |||
| drop_last=False | |||
| ) | |||
| dataloader.batch_sampler.set_distributed( | |||
| num_replicas=driver2.world_size, | |||
| rank=driver2.global_rank, | |||
| pad=True | |||
| ) | |||
| dist.barrier() | |||
| load_states = driver2.load_checkpoint(Path(path), dataloader, only_state_dict, should_load_model=True) | |||
| dist.barrier() | |||
| replaced_loader = load_states.pop("dataloader") | |||
| # 1. 检查 optimizer 的状态 | |||
| # TODO optimizer 的 state_dict 总是为空 | |||
| # 2. 检查 batch_sampler 是否被正确地加载和替换 | |||
| assert not (replaced_loader is dataloader) | |||
| assert replaced_loader.batch_sampler is dataloader.batch_sampler | |||
| assert isinstance(replaced_loader.batch_sampler, BucketedBatchSampler) | |||
| if os.environ['FASTNLP_GLOBAL_RANK'] == '0': | |||
| assert replaced_loader.batch_sampler.seed == sampler_states["seed"] | |||
| assert replaced_loader.batch_sampler.num_consumed_samples == num_consumed_batches * 4 * num_replicas | |||
| # 3. 检查 fp16 是否被加载 | |||
| if fp16: | |||
| assert not isinstance(driver2.grad_scaler, torch.cuda.amp.GradScaler) | |||
| # 4. 检查 model 的参数是否正确 | |||
| # 5. 检查 batch_idx | |||
| start_batch = load_states.pop('batch_idx_in_epoch') | |||
| assert start_batch == 2 * num_consumed_batches | |||
| left_x_batches = set() | |||
| left_y_batches = set() | |||
| driver2.set_sampler_epoch(replaced_loader, 4) | |||
| for idx, batch in enumerate(replaced_loader): | |||
| left_x_batches.update(batch["x"].reshape(-1, ).tolist()) | |||
| left_y_batches.update(batch["y"].reshape(-1, ).tolist()) | |||
| res1 = driver1.model( | |||
| batch, | |||
| fastnlp_fn=driver1.model.module.model.evaluate_step, | |||
| # Driver.model -> DataParallel.module -> _FleetWrappingModel.model | |||
| fastnlp_signature_fn=None, | |||
| wo_auto_param_call=False, | |||
| ) | |||
| res2 = driver2.model( | |||
| batch, | |||
| fastnlp_fn=driver2.model.module.model.evaluate_step, | |||
| fastnlp_signature_fn=None, | |||
| wo_auto_param_call=False, | |||
| ) | |||
| assert torch.equal(res1["preds"], res2["preds"]) | |||
| assert len(left_x_batches) + len(already_seen_x_set) == len(self.dataset) / num_replicas | |||
| assert len(left_x_batches | already_seen_x_set) == len(self.dataset) / num_replicas | |||
| assert len(left_y_batches) + len(already_seen_y_set) == len(self.dataset) / num_replicas | |||
| assert len(left_y_batches | already_seen_y_set) == len(self.dataset) / num_replicas | |||
| dist.barrier() | |||
| finally: | |||
| rank_zero_rm(path) | |||
| if dist.is_initialized(): | |||
| dist.destroy_process_group() | |||
| @magic_argv_env_context | |||
| @pytest.mark.parametrize("only_state_dict", ([True, False])) | |||
| @pytest.mark.parametrize("fp16", ([True, False])) | |||
| @pytest.mark.parametrize("device", ([[0,1]])) | |||
| def test_save_and_load_with_randomsampler(self, device, only_state_dict, fp16): | |||
| """ | |||
| 测试save和load函数,主要测试 dataloader 被替换了 batch_sampler 的情况 | |||
| """ | |||
| try: | |||
| path = "checkpoints/" | |||
| num_replicas = len(device) | |||
| driver1 = generate_driver(20, 1, device=device, fp16=fp16) | |||
| driver2 = generate_driver(20, 1, device=device, fp16=False) | |||
| dataloader = dataloader_with_randomsampler(self.dataset, 4, True, False, unrepeated=False) | |||
| dataloader.batch_sampler.sampler.set_distributed( | |||
| num_replicas=driver1.world_size, | |||
| rank=driver1.global_rank, | |||
| pad=True | |||
| ) | |||
| num_consumed_batches = 4 | |||
| already_seen_x_set = set() | |||
| already_seen_y_set = set() | |||
| driver1.set_sampler_epoch(dataloader, 4) | |||
| for idx, batch in enumerate(dataloader): | |||
| if idx >= num_consumed_batches: | |||
| break | |||
| already_seen_x_set.update(batch["x"].reshape(-1, ).tolist()) | |||
| already_seen_y_set.update(batch["y"].reshape(-1, ).tolist()) | |||
| # 同步 | |||
| dist.barrier() | |||
| # 保存状态 | |||
| sampler_states = dataloader.batch_sampler.sampler.state_dict() | |||
| save_states = {"num_consumed_batches": num_consumed_batches} | |||
| if only_state_dict: | |||
| driver1.save_checkpoint(Path(path), save_states, dataloader, only_state_dict, should_save_model=True) | |||
| else: | |||
| driver1.save_checkpoint(Path(path), save_states, dataloader, only_state_dict, should_save_model=True, input_spec=[torch.ones((16, 10))]) | |||
| dist.barrier() # 等待save成功 | |||
| # 加载 | |||
| # 更改 batch_size | |||
| dataloader = dataloader_with_randomsampler(self.dataset, 2, True, False, unrepeated=False) | |||
| dataloader.batch_sampler.sampler.set_distributed( | |||
| num_replicas=driver2.world_size, | |||
| rank=driver2.global_rank, | |||
| pad=True | |||
| ) | |||
| load_states = driver2.load_checkpoint(Path(path), dataloader, only_state_dict, should_load_model=True) | |||
| replaced_loader = load_states.pop("dataloader") | |||
| # 1. 检查 optimizer 的状态 | |||
| # TODO optimizer 的 state_dict 总是为空 | |||
| # 2. 检查 sampler 是否被正确地加载和替换 | |||
| assert not (replaced_loader is dataloader) | |||
| assert isinstance(replaced_loader.batch_sampler.sampler, RandomSampler) | |||
| if os.environ['FASTNLP_GLOBAL_RANK'] == '0': | |||
| assert replaced_loader.batch_sampler.sampler.seed == sampler_states["seed"] | |||
| assert replaced_loader.batch_sampler.sampler.epoch == sampler_states["epoch"] | |||
| assert len(replaced_loader.batch_sampler.sampler.dataset) == sampler_states["length"] | |||
| assert replaced_loader.batch_sampler.sampler.shuffle == sampler_states["shuffle"] | |||
| assert replaced_loader.batch_sampler.sampler.num_consumed_samples == 4 * num_consumed_batches * num_replicas | |||
| # 3. 检查 fp16 是否被加载 | |||
| if fp16: | |||
| assert not isinstance(driver2.grad_scaler, torch.cuda.amp.GradScaler) | |||
| # 4. 检查 model 的参数是否正确 | |||
| # 5. 检查 batch_idx | |||
| start_batch = load_states.pop('batch_idx_in_epoch') | |||
| assert start_batch == 2 * num_consumed_batches | |||
| left_x_batches = set() | |||
| left_y_batches = set() | |||
| driver2.set_sampler_epoch(replaced_loader, 4) | |||
| for idx, batch in enumerate(replaced_loader): | |||
| left_x_batches.update(batch["x"].reshape(-1, ).tolist()) | |||
| left_y_batches.update(batch["y"].reshape(-1, ).tolist()) | |||
| res1 = driver1.model( | |||
| batch, | |||
| fastnlp_fn=driver1.model.module.model.evaluate_step, | |||
| # Driver.model -> DataParallel.module -> _FleetWrappingModel.model | |||
| fastnlp_signature_fn=None, | |||
| wo_auto_param_call=False, | |||
| ) | |||
| res2 = driver2.model( | |||
| batch, | |||
| fastnlp_fn=driver2.model.module.model.evaluate_step, | |||
| fastnlp_signature_fn=None, | |||
| wo_auto_param_call=False, | |||
| ) | |||
| assert torch.equal(res1["preds"], res2["preds"]) | |||
| assert len(left_x_batches) + len(already_seen_x_set) == len(self.dataset) / num_replicas | |||
| assert len(left_x_batches | already_seen_x_set) == len(self.dataset) / num_replicas | |||
| assert len(left_y_batches) + len(already_seen_y_set) == len(self.dataset) / num_replicas | |||
| assert len(left_y_batches | already_seen_y_set) == len(self.dataset) / num_replicas | |||
| finally: | |||
| rank_zero_rm(path) | |||
| if dist.is_initialized(): | |||
| dist.destroy_process_group() | |||