- add character vocab in preprocessor - add dataset loader for language model dataset - other minor adjustments - preserve only a little example data for language modeltags/v0.1.0^2
@@ -33,6 +33,10 @@ class Loss(object): | |||
"""Given a name of a loss function, return it from PyTorch. | |||
:param loss_name: str, the name of a loss function | |||
- cross_entropy: combines log softmax and nll loss in a single function. | |||
- nll: negative log likelihood | |||
:return loss: a PyTorch loss | |||
""" | |||
if loss_name == "cross_entropy": | |||
@@ -66,14 +66,26 @@ class Preprocessor(object): | |||
Preprocessors will check if those files are already in the directory and will reuse them in future calls. | |||
""" | |||
def __init__(self, label_is_seq=False): | |||
def __init__(self, label_is_seq=False, share_vocab=False, add_char_field=False): | |||
""" | |||
:param label_is_seq: bool, whether label is a sequence. If True, label vocabulary will preserve | |||
several special tokens for sequence processing. | |||
:param share_vocab: bool, whether word sequence and label sequence share the same vocabulary. Typically, this | |||
is only available when label_is_seq is True. Default: False. | |||
:param add_char_field: bool, whether to add character representations to all TextFields. Default: False. | |||
""" | |||
self.data_vocab = Vocabulary() | |||
self.label_vocab = Vocabulary(need_default=label_is_seq) | |||
if label_is_seq is True: | |||
if share_vocab is True: | |||
self.label_vocab = self.data_vocab | |||
else: | |||
self.label_vocab = Vocabulary() | |||
else: | |||
self.label_vocab = Vocabulary(need_default=False) | |||
self.character_vocab = Vocabulary(need_default=False) | |||
self.add_char_field = add_char_field | |||
@property | |||
def vocab_size(self): | |||
@@ -83,6 +95,12 @@ class Preprocessor(object): | |||
def num_classes(self): | |||
return len(self.label_vocab) | |||
@property | |||
def char_vocab_size(self): | |||
if self.character_vocab is None: | |||
self.build_char_dict() | |||
return len(self.character_vocab) | |||
def run(self, train_dev_data, test_data=None, pickle_path="./", train_dev_split=0, cross_val=False, n_fold=10): | |||
"""Main pre-processing pipeline. | |||
@@ -176,6 +194,16 @@ class Preprocessor(object): | |||
self.label_vocab.update(label) | |||
return self.data_vocab, self.label_vocab | |||
def build_char_dict(self): | |||
char_collection = set() | |||
for word in self.data_vocab.word2idx: | |||
if len(word) == 0: | |||
continue | |||
for ch in word: | |||
if ch not in char_collection: | |||
char_collection.add(ch) | |||
self.character_vocab.update(list(char_collection)) | |||
def build_reverse_dict(self): | |||
self.data_vocab.build_reverse_vocab() | |||
self.label_vocab.build_reverse_vocab() | |||
@@ -231,7 +231,7 @@ class Trainer(object): | |||
def data_forward(self, network, x): | |||
if self._task == "seq_label": | |||
y = network(x["word_seq"], x["word_seq_origin_len"]) | |||
elif self._task == "text_classify": | |||
elif self._task == "text_classify" or self._task == "language_model": | |||
y = network(x["word_seq"]) | |||
else: | |||
raise NotImplementedError("Unknown task type {}.".format(self._task)) | |||
@@ -239,7 +239,7 @@ class Trainer(object): | |||
if not self._graph_summaried: | |||
if self._task == "seq_label": | |||
self._summary_writer.add_graph(network, (x["word_seq"], x["word_seq_origin_len"]), verbose=False) | |||
elif self._task == "text_classify": | |||
elif self._task == "text_classify" or self._task == "language_model": | |||
self._summary_writer.add_graph(network, x["word_seq"], verbose=False) | |||
self._graph_summaried = True | |||
return y | |||
@@ -10,13 +10,15 @@ DEFAULT_WORD_TO_INDEX = {DEFAULT_PADDING_LABEL: 0, DEFAULT_UNKNOWN_LABEL: 1, | |||
DEFAULT_RESERVED_LABEL[0]: 2, DEFAULT_RESERVED_LABEL[1]: 3, | |||
DEFAULT_RESERVED_LABEL[2]: 4} | |||
def isiterable(p_object): | |||
try: | |||
it = iter(p_object) | |||
except TypeError: | |||
except TypeError: | |||
return False | |||
return True | |||
class Vocabulary(object): | |||
"""Use for word and index one to one mapping | |||
@@ -28,9 +30,11 @@ class Vocabulary(object): | |||
vocab["word"] | |||
vocab.to_word(5) | |||
""" | |||
def __init__(self, need_default=True): | |||
""" | |||
:param bool need_default: set if the Vocabulary has default labels reserved. | |||
:param bool need_default: set if the Vocabulary has default labels reserved for sequences. Default: True. | |||
""" | |||
if need_default: | |||
self.word2idx = deepcopy(DEFAULT_WORD_TO_INDEX) | |||
@@ -53,17 +57,16 @@ class Vocabulary(object): | |||
:param word: a list of str or str | |||
""" | |||
if not isinstance(word, str) and isiterable(word): | |||
# it's a nested list | |||
# it's a nested list | |||
for w in word: | |||
self.update(w) | |||
else: | |||
# it's a word to be added | |||
# it's a word to be added | |||
if word not in self.word2idx: | |||
self.word2idx[word] = len(self) | |||
if self.idx2word is not None: | |||
self.idx2word = None | |||
def __getitem__(self, w): | |||
"""To support usage like:: | |||
@@ -81,12 +84,12 @@ class Vocabulary(object): | |||
:param str w: | |||
""" | |||
return self[w] | |||
def unknown_idx(self): | |||
if self.unknown_label is None: | |||
if self.unknown_label is None: | |||
return None | |||
return self.word2idx[self.unknown_label] | |||
def padding_idx(self): | |||
if self.padding_label is None: | |||
return None | |||
@@ -95,8 +98,8 @@ class Vocabulary(object): | |||
def build_reverse_vocab(self): | |||
"""build 'index to word' dict based on 'word to index' dict | |||
""" | |||
self.idx2word = {self.word2idx[w] : w for w in self.word2idx} | |||
self.idx2word = {self.word2idx[w]: w for w in self.word2idx} | |||
def to_word(self, idx): | |||
"""given a word's index, return the word itself | |||
@@ -105,7 +108,7 @@ class Vocabulary(object): | |||
if self.idx2word is None: | |||
self.build_reverse_vocab() | |||
return self.idx2word[idx] | |||
def __getstate__(self): | |||
"""use to prepare data for pickle | |||
""" | |||
@@ -113,12 +116,9 @@ class Vocabulary(object): | |||
# no need to pickle idx2word as it can be constructed from word2idx | |||
del state['idx2word'] | |||
return state | |||
def __setstate__(self, state): | |||
"""use to restore state from pickle | |||
""" | |||
self.__dict__.update(state) | |||
self.idx2word = None | |||
@@ -21,7 +21,7 @@ class BaseLoader(object): | |||
class ToyLoader0(BaseLoader): | |||
""" | |||
For charLM | |||
For CharLM | |||
""" | |||
def __init__(self, data_path): | |||
@@ -208,6 +208,12 @@ class ConllLoader(DatasetLoader): | |||
class LMDatasetLoader(DatasetLoader): | |||
"""Language Model Dataset Loader | |||
This loader produces data for language model training in a supervised way. | |||
That means it has X and Y. | |||
""" | |||
def __init__(self, data_path): | |||
super(LMDatasetLoader, self).__init__(data_path) | |||
@@ -216,8 +222,20 @@ class LMDatasetLoader(DatasetLoader): | |||
raise FileNotFoundError("file {} not found.".format(self.data_path)) | |||
with open(self.data_path, "r", encoding="utf=8") as f: | |||
text = " ".join(f.readlines()) | |||
return text.strip().split() | |||
tokens = text.strip().split() | |||
return self.sentence_cut(tokens) | |||
def sentence_cut(self, tokens, sentence_length=15): | |||
start_idx = 0 | |||
data_set = [] | |||
for idx in range(len(tokens) // sentence_length): | |||
x = tokens[start_idx * idx: start_idx * idx + sentence_length] | |||
y = tokens[start_idx * idx + 1: start_idx * idx + sentence_length + 1] | |||
if start_idx * idx + sentence_length + 1 >= len(tokens): | |||
# ad hoc | |||
y.extend(["<unk>"]) | |||
data_set.append([x, y]) | |||
return data_set | |||
class PeopleDailyCorpusLoader(DatasetLoader): | |||
""" | |||
@@ -1,215 +1,8 @@ | |||
import os | |||
import numpy as np | |||
import torch | |||
import torch.nn as nn | |||
import torch.nn.functional as F | |||
import torch.optim as optim | |||
from torch.autograd import Variable | |||
from fastNLP.models.base_model import BaseModel | |||
USE_GPU = True | |||
""" | |||
To be deprecated. | |||
""" | |||
class CharLM(BaseModel): | |||
""" | |||
Controller of the Character-level Neural Language Model | |||
""" | |||
def __init__(self, lstm_batch_size, lstm_seq_len): | |||
super(CharLM, self).__init__() | |||
""" | |||
Settings: should come from config loader or pre-processing | |||
""" | |||
self.word_embed_dim = 300 | |||
self.char_embedding_dim = 15 | |||
self.cnn_batch_size = lstm_batch_size * lstm_seq_len | |||
self.lstm_seq_len = lstm_seq_len | |||
self.lstm_batch_size = lstm_batch_size | |||
self.num_epoch = 10 | |||
self.old_PPL = 100000 | |||
self.best_PPL = 100000 | |||
""" | |||
These parameters are set by pre-processing. | |||
""" | |||
self.max_word_len = None | |||
self.num_char = None | |||
self.vocab_size = None | |||
self.preprocess("./data_for_tests/charlm.txt") | |||
self.data = None # named tuple to store all data set | |||
self.data_ready = False | |||
self.criterion = nn.CrossEntropyLoss() | |||
self._loss = None | |||
self.use_gpu = USE_GPU | |||
# word_emb_dim == hidden_size / num of hidden units | |||
self.hidden = (to_var(torch.zeros(2, self.lstm_batch_size, self.word_embed_dim)), | |||
to_var(torch.zeros(2, self.lstm_batch_size, self.word_embed_dim))) | |||
self.model = charLM(self.char_embedding_dim, | |||
self.word_embed_dim, | |||
self.vocab_size, | |||
self.num_char, | |||
use_gpu=self.use_gpu) | |||
for param in self.model.parameters(): | |||
nn.init.uniform(param.data, -0.05, 0.05) | |||
self.learning_rate = 0.1 | |||
self.optimizer = None | |||
def prepare_input(self, raw_text): | |||
""" | |||
:param raw_text: raw input text consisting of words | |||
:return: torch.Tensor, torch.Tensor | |||
feature matrix, label vector | |||
This function is only called once in Trainer.train, but may called multiple times in Tester.test | |||
So Tester will save test input for frequent calls. | |||
""" | |||
if os.path.exists("cache/prep.pt") is False: | |||
self.preprocess("./data_for_tests/charlm.txt") # To do: This is not good. Need to fix.. | |||
objects = torch.load("cache/prep.pt") | |||
word_dict = objects["word_dict"] | |||
char_dict = objects["char_dict"] | |||
max_word_len = self.max_word_len | |||
print("word/char dictionary built. Start making inputs.") | |||
words = raw_text | |||
input_vec = np.array(text2vec(words, char_dict, max_word_len)) | |||
# Labels are next-word index in word_dict with the same length as inputs | |||
input_label = np.array([word_dict[w] for w in words[1:]] + [word_dict[words[-1]]]) | |||
feature_input = torch.from_numpy(input_vec) | |||
label_input = torch.from_numpy(input_label) | |||
return feature_input, label_input | |||
def mode(self, test=False): | |||
if test: | |||
self.model.eval() | |||
else: | |||
self.model.train() | |||
def data_forward(self, x): | |||
""" | |||
:param x: Tensor of size [lstm_batch_size, lstm_seq_len, max_word_len+2] | |||
:return: Tensor of size [num_words, ?] | |||
""" | |||
# additional processing of inputs after batching | |||
num_seq = x.size()[0] // self.lstm_seq_len | |||
x = x[:num_seq * self.lstm_seq_len, :] | |||
x = x.view(-1, self.lstm_seq_len, self.max_word_len + 2) | |||
# detach hidden state of LSTM from last batch | |||
hidden = [state.detach() for state in self.hidden] | |||
output, self.hidden = self.model(to_var(x), hidden) | |||
return output | |||
def grad_backward(self): | |||
self.model.zero_grad() | |||
self._loss.backward() | |||
torch.nn.utils.clip_grad_norm(self.model.parameters(), 5, norm_type=2) | |||
self.optimizer.step() | |||
def get_loss(self, predict, truth): | |||
self._loss = self.criterion(predict, to_var(truth)) | |||
return self._loss.data # No pytorch data structure exposed outsides | |||
def define_optimizer(self): | |||
# redefine optimizer for every new epoch | |||
self.optimizer = optim.SGD(self.model.parameters(), lr=self.learning_rate, momentum=0.85) | |||
def save(self): | |||
print("network saved") | |||
# torch.save(self.models, "cache/models.pkl") | |||
def preprocess(self, all_text_files): | |||
word_dict, char_dict = create_word_char_dict(all_text_files) | |||
num_char = len(char_dict) | |||
self.vocab_size = len(word_dict) | |||
char_dict["BOW"] = num_char + 1 | |||
char_dict["EOW"] = num_char + 2 | |||
char_dict["PAD"] = 0 | |||
self.num_char = num_char + 3 | |||
# char_dict is a dict of (int, string), int counting from 0 to 47 | |||
reverse_word_dict = {value: key for key, value in word_dict.items()} | |||
self.max_word_len = max([len(word) for word in word_dict]) | |||
objects = { | |||
"word_dict": word_dict, | |||
"char_dict": char_dict, | |||
"reverse_word_dict": reverse_word_dict, | |||
} | |||
if not os.path.exists("cache"): | |||
os.mkdir("cache") | |||
torch.save(objects, "cache/prep.pt") | |||
print("Preprocess done.") | |||
""" | |||
Global Functions | |||
""" | |||
def batch_generator(x, batch_size): | |||
# x: [num_words, in_channel, height, width] | |||
# partitions x into batches | |||
num_step = x.size()[0] // batch_size | |||
for t in range(num_step): | |||
yield x[t * batch_size:(t + 1) * batch_size] | |||
def text2vec(words, char_dict, max_word_len): | |||
""" Return list of list of int """ | |||
word_vec = [] | |||
for word in words: | |||
vec = [char_dict[ch] for ch in word] | |||
if len(vec) < max_word_len: | |||
vec += [char_dict["PAD"] for _ in range(max_word_len - len(vec))] | |||
vec = [char_dict["BOW"]] + vec + [char_dict["EOW"]] | |||
word_vec.append(vec) | |||
return word_vec | |||
def read_data(file_name): | |||
with open(file_name, 'r') as f: | |||
corpus = f.read().lower() | |||
import re | |||
corpus = re.sub(r"<unk>", "unk", corpus) | |||
return corpus.split() | |||
def get_char_dict(vocabulary): | |||
char_dict = dict() | |||
count = 1 | |||
for word in vocabulary: | |||
for ch in word: | |||
if ch not in char_dict: | |||
char_dict[ch] = count | |||
count += 1 | |||
return char_dict | |||
def create_word_char_dict(*file_name): | |||
text = [] | |||
for file in file_name: | |||
text += read_data(file) | |||
word_dict = {word: ix for ix, word in enumerate(set(text))} | |||
char_dict = get_char_dict(word_dict) | |||
return word_dict, char_dict | |||
def to_var(x): | |||
if torch.cuda.is_available() and USE_GPU: | |||
x = x.cuda() | |||
return Variable(x) | |||
""" | |||
Neural Network | |||
""" | |||
from fastNLP.modules.encoder.lstm import LSTM | |||
class Highway(nn.Module): | |||
@@ -225,9 +18,8 @@ class Highway(nn.Module): | |||
return torch.mul(t, F.relu(self.fc2(x))) + torch.mul(1 - t, x) | |||
class charLM(nn.Module): | |||
"""Character-level Neural Language Model | |||
CNN + highway network + LSTM | |||
class CharLM(nn.Module): | |||
"""CNN + highway network + LSTM | |||
# Input: | |||
4D tensor with shape [batch_size, in_channel, height, width] | |||
# Output: | |||
@@ -241,8 +33,8 @@ class charLM(nn.Module): | |||
""" | |||
def __init__(self, char_emb_dim, word_emb_dim, | |||
vocab_size, num_char, use_gpu): | |||
super(charLM, self).__init__() | |||
vocab_size, num_char): | |||
super(CharLM, self).__init__() | |||
self.char_emb_dim = char_emb_dim | |||
self.word_emb_dim = word_emb_dim | |||
self.vocab_size = vocab_size | |||
@@ -254,8 +46,7 @@ class charLM(nn.Module): | |||
self.convolutions = [] | |||
# list of tuples: (the number of filter, width) | |||
# self.filter_num_width = [(25, 1), (50, 2), (75, 3), (100, 4), (125, 5), (150, 6)] | |||
self.filter_num_width = [(25, 1), (50, 2), (75, 3)] | |||
self.filter_num_width = [(25, 1), (50, 2), (75, 3), (100, 4), (125, 5), (150, 6)] | |||
for out_channel, filter_width in self.filter_num_width: | |||
self.convolutions.append( | |||
@@ -278,29 +69,13 @@ class charLM(nn.Module): | |||
# LSTM | |||
self.lstm_num_layers = 2 | |||
self.lstm = nn.LSTM(input_size=self.highway_input_dim, | |||
hidden_size=self.word_emb_dim, | |||
num_layers=self.lstm_num_layers, | |||
bias=True, | |||
dropout=0.5, | |||
batch_first=True) | |||
self.lstm = LSTM(self.highway_input_dim, hidden_size=self.word_emb_dim, num_layers=self.lstm_num_layers, | |||
dropout=0.5) | |||
# output layer | |||
self.dropout = nn.Dropout(p=0.5) | |||
self.linear = nn.Linear(self.word_emb_dim, self.vocab_size) | |||
if use_gpu is True: | |||
for x in range(len(self.convolutions)): | |||
self.convolutions[x] = self.convolutions[x].cuda() | |||
self.highway1 = self.highway1.cuda() | |||
self.highway2 = self.highway2.cuda() | |||
self.lstm = self.lstm.cuda() | |||
self.dropout = self.dropout.cuda() | |||
self.char_embed = self.char_embed.cuda() | |||
self.linear = self.linear.cuda() | |||
self.batch_norm = self.batch_norm.cuda() | |||
def forward(self, x, hidden): | |||
def forward(self, x): | |||
# Input: Variable of Tensor with shape [num_seq, seq_len, max_word_len+2] | |||
# Return: Variable of Tensor with shape [num_words, len(word_dict)] | |||
lstm_batch_size = x.size()[0] | |||
@@ -313,7 +88,7 @@ class charLM(nn.Module): | |||
# [num_seq*seq_len, max_word_len+2, char_emb_dim] | |||
x = torch.transpose(x.view(x.size()[0], 1, x.size()[1], -1), 2, 3) | |||
# [num_seq*seq_len, 1, char_emb_dim, max_word_len+2] | |||
# [num_seq*seq_len, 1, max_word_len+2, char_emb_dim] | |||
x = self.conv_layers(x) | |||
# [num_seq*seq_len, total_num_filters] | |||
@@ -328,7 +103,7 @@ class charLM(nn.Module): | |||
x = x.contiguous().view(lstm_batch_size, lstm_seq_len, -1) | |||
# [num_seq, seq_len, total_num_filters] | |||
x, hidden = self.lstm(x, hidden) | |||
x, hidden = self.lstm(x) | |||
# [seq_len, num_seq, hidden_size] | |||
x = self.dropout(x) | |||
@@ -339,7 +114,7 @@ class charLM(nn.Module): | |||
x = self.linear(x) | |||
# [num_seq*seq_len, vocab_size] | |||
return x, hidden | |||
return x | |||
def conv_layers(self, x): | |||
chosen_list = list() | |||
@@ -31,7 +31,7 @@ class SeqLabeling(BaseModel): | |||
num_classes = args["num_classes"] | |||
self.Embedding = encoder.embedding.Embedding(vocab_size, word_emb_dim) | |||
self.Rnn = encoder.lstm.Lstm(word_emb_dim, hidden_dim) | |||
self.Rnn = encoder.lstm.LSTM(word_emb_dim, hidden_dim) | |||
self.Linear = encoder.linear.Linear(hidden_dim, num_classes) | |||
self.Crf = decoder.CRF.ConditionalRandomField(num_classes) | |||
self.mask = None | |||
@@ -97,7 +97,7 @@ class AdvSeqLabel(SeqLabeling): | |||
num_classes = args["num_classes"] | |||
self.Embedding = encoder.embedding.Embedding(vocab_size, word_emb_dim, init_emb=emb) | |||
self.Rnn = encoder.lstm.Lstm(word_emb_dim, hidden_dim, num_layers=3, dropout=0.3, bidirectional=True) | |||
self.Rnn = encoder.lstm.LSTM(word_emb_dim, hidden_dim, num_layers=3, dropout=0.3, bidirectional=True) | |||
self.Linear1 = encoder.Linear(hidden_dim * 2, hidden_dim * 2 // 3) | |||
self.batch_norm = torch.nn.BatchNorm1d(hidden_dim * 2 // 3) | |||
self.relu = torch.nn.ReLU() | |||
@@ -1,10 +1,10 @@ | |||
from .embedding import Embedding | |||
from .linear import Linear | |||
from .lstm import Lstm | |||
from .conv import Conv | |||
from .conv_maxpool import ConvMaxpool | |||
from .embedding import Embedding | |||
from .linear import Linear | |||
from .lstm import LSTM | |||
__all__ = ["Lstm", | |||
__all__ = ["LSTM", | |||
"Embedding", | |||
"Linear", | |||
"Conv", | |||
@@ -1,9 +1,10 @@ | |||
import torch.nn as nn | |||
from fastNLP.modules.utils import initial_parameter | |||
class Lstm(nn.Module): | |||
""" | |||
LSTM module | |||
class LSTM(nn.Module): | |||
"""Long Short Term Memory | |||
Args: | |||
input_size : input size | |||
@@ -13,13 +14,17 @@ class Lstm(nn.Module): | |||
bidirectional : If True, becomes a bidirectional RNN. Default: False. | |||
""" | |||
def __init__(self, input_size, hidden_size=100, num_layers=1, dropout=0, bidirectional=False , initial_method = None): | |||
super(Lstm, self).__init__() | |||
def __init__(self, input_size, hidden_size=100, num_layers=1, dropout=0.0, bidirectional=False, | |||
initial_method=None): | |||
super(LSTM, self).__init__() | |||
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, bias=True, batch_first=True, | |||
dropout=dropout, bidirectional=bidirectional) | |||
initial_parameter(self, initial_method) | |||
def forward(self, x): | |||
x, _ = self.lstm(x) | |||
return x | |||
if __name__ == "__main__": | |||
lstm = Lstm(10) | |||
lstm = LSTM(10) |
@@ -0,0 +1,25 @@ | |||
from fastNLP.core.loss import Loss | |||
from fastNLP.core.preprocess import Preprocessor | |||
from fastNLP.core.trainer import Trainer | |||
from fastNLP.loader.dataset_loader import LMDatasetLoader | |||
from fastNLP.models.char_language_model import CharLM | |||
PICKLE = "./save/" | |||
def train(): | |||
loader = LMDatasetLoader("./train.txt") | |||
train_data = loader.load() | |||
pre = Preprocessor(label_is_seq=True, share_vocab=True) | |||
train_set = pre.run(train_data, pickle_path=PICKLE) | |||
model = CharLM(50, 50, pre.vocab_size, pre.char_vocab_size) | |||
trainer = Trainer(task="language_model", loss=Loss("cross_entropy")) | |||
trainer.train(model, train_set) | |||
if __name__ == "__main__": | |||
train() |
@@ -9,7 +9,7 @@ from fastNLP.models.base_model import BaseModel | |||
from fastNLP.modules.aggregator.self_attention import SelfAttention | |||
from fastNLP.modules.decoder.MLP import MLP | |||
from fastNLP.modules.encoder.embedding import Embedding as Embedding | |||
from fastNLP.modules.encoder.lstm import Lstm | |||
from fastNLP.modules.encoder.lstm import LSTM | |||
train_data_path = 'small_train_data.txt' | |||
dev_data_path = 'small_dev_data.txt' | |||
@@ -43,7 +43,7 @@ class SELF_ATTENTION_YELP_CLASSIFICATION(BaseModel): | |||
def __init__(self, args=None): | |||
super(SELF_ATTENTION_YELP_CLASSIFICATION,self).__init__() | |||
self.embedding = Embedding(len(word2index) ,embeding_size , init_emb= None ) | |||
self.lstm = Lstm(input_size = embeding_size,hidden_size = lstm_hidden_size ,bidirectional = True) | |||
self.lstm = LSTM(input_size=embeding_size, hidden_size=lstm_hidden_size, bidirectional=True) | |||
self.attention = SelfAttention(lstm_hidden_size * 2 ,dim =attention_unit ,num_vec=attention_hops) | |||
self.mlp = MLP(size_layer=[lstm_hidden_size * 2*attention_hops ,nfc ,class_num ]) | |||
def forward(self,x): | |||