* move used readers from reproduction to io/dataset_loader.py (API shall not call anything from reproduction/)tags/v0.3.1^2
| @@ -9,9 +9,7 @@ from fastNLP.core.dataset import DataSet | |||
| from fastNLP.api.utils import load_url | |||
| from fastNLP.api.processor import ModelProcessor | |||
| from reproduction.chinese_word_segment.cws_io.cws_reader import ConllCWSReader | |||
| from reproduction.pos_tag_model.pos_reader import ZhConllPOSReader | |||
| from reproduction.Biaffine_parser.util import ConllxDataLoader, add_seg_tag | |||
| from fastNLP.io.dataset_loader import ConllCWSReader, ZhConllPOSReader, ConllxDataLoader, add_seg_tag | |||
| from fastNLP.core.instance import Instance | |||
| from fastNLP.api.pipeline import Pipeline | |||
| from fastNLP.core.metrics import SpanFPreRecMetric | |||
| @@ -31,6 +29,16 @@ class API: | |||
| self._dict = None | |||
| def predict(self, *args, **kwargs): | |||
| """Do prediction for the given input. | |||
| """ | |||
| raise NotImplementedError | |||
| def test(self, file_path): | |||
| """Test performance over the given data set. | |||
| :param str file_path: | |||
| :return: a dictionary of metric values | |||
| """ | |||
| raise NotImplementedError | |||
| def load(self, path, device): | |||
| @@ -322,3 +322,103 @@ class SetInputProcessor(Processor): | |||
| def process(self, dataset): | |||
| dataset.set_input(*self.fields, flag=self.flag) | |||
| return dataset | |||
| class VocabIndexerProcessor(Processor): | |||
| """ | |||
| 根据DataSet创建Vocabulary,并将其用数字index。新生成的index的field会被放在new_added_filed_name, 如果没有提供 | |||
| new_added_field_name, 则覆盖原有的field_name. | |||
| """ | |||
| def __init__(self, field_name, new_added_filed_name=None, min_freq=1, max_size=None, | |||
| verbose=0, is_input=True): | |||
| """ | |||
| :param field_name: 从哪个field_name创建词表,以及对哪个field_name进行index操作 | |||
| :param new_added_filed_name: index时,生成的index field的名称,如果不传入,则覆盖field_name. | |||
| :param min_freq: 创建的Vocabulary允许的单词最少出现次数. | |||
| :param max_size: 创建的Vocabulary允许的最大的单词数量 | |||
| :param verbose: 0, 不输出任何信息;1,输出信息 | |||
| :param bool is_input: | |||
| """ | |||
| super(VocabIndexerProcessor, self).__init__(field_name, new_added_filed_name) | |||
| self.min_freq = min_freq | |||
| self.max_size = max_size | |||
| self.verbose = verbose | |||
| self.is_input = is_input | |||
| def construct_vocab(self, *datasets): | |||
| """ | |||
| 使用传入的DataSet创建vocabulary | |||
| :param datasets: DataSet类型的数据,用于构建vocabulary | |||
| :return: | |||
| """ | |||
| self.vocab = Vocabulary(min_freq=self.min_freq, max_size=self.max_size) | |||
| for dataset in datasets: | |||
| assert isinstance(dataset, DataSet), "Only Dataset class is allowed, not {}.".format(type(dataset)) | |||
| dataset.apply(lambda ins: self.vocab.update(ins[self.field_name])) | |||
| self.vocab.build_vocab() | |||
| if self.verbose: | |||
| print("Vocabulary Constructed, has {} items.".format(len(self.vocab))) | |||
| def process(self, *datasets, only_index_dataset=None): | |||
| """ | |||
| 若还未建立Vocabulary,则使用dataset中的DataSet建立vocabulary;若已经有了vocabulary则使用已有的vocabulary。得到vocabulary | |||
| 后,则会index datasets与only_index_dataset。 | |||
| :param datasets: DataSet类型的数据 | |||
| :param only_index_dataset: DataSet, or list of DataSet. 该参数中的内容只会被用于index,不会被用于生成vocabulary。 | |||
| :return: | |||
| """ | |||
| if len(datasets) == 0 and not hasattr(self, 'vocab'): | |||
| raise RuntimeError("You have to construct vocabulary first. Or you have to pass datasets to construct it.") | |||
| if not hasattr(self, 'vocab'): | |||
| self.construct_vocab(*datasets) | |||
| else: | |||
| if self.verbose: | |||
| print("Using constructed vocabulary with {} items.".format(len(self.vocab))) | |||
| to_index_datasets = [] | |||
| if len(datasets) != 0: | |||
| for dataset in datasets: | |||
| assert isinstance(dataset, DataSet), "Only DataSet class is allowed, not {}.".format(type(dataset)) | |||
| to_index_datasets.append(dataset) | |||
| if not (only_index_dataset is None): | |||
| if isinstance(only_index_dataset, list): | |||
| for dataset in only_index_dataset: | |||
| assert isinstance(dataset, DataSet), "Only DataSet class is allowed, not {}.".format(type(dataset)) | |||
| to_index_datasets.append(dataset) | |||
| elif isinstance(only_index_dataset, DataSet): | |||
| to_index_datasets.append(only_index_dataset) | |||
| else: | |||
| raise TypeError('Only DataSet or list of DataSet is allowed, not {}.'.format(type(only_index_dataset))) | |||
| for dataset in to_index_datasets: | |||
| assert isinstance(dataset, DataSet), "Only DataSet class is allowed, not {}.".format(type(dataset)) | |||
| dataset.apply(lambda ins: [self.vocab.to_index(token) for token in ins[self.field_name]], | |||
| new_field_name=self.new_added_field_name, is_input=self.is_input) | |||
| # 只返回一个,infer时为了跟其他processor保持一致 | |||
| if len(to_index_datasets) == 1: | |||
| return to_index_datasets[0] | |||
| def set_vocab(self, vocab): | |||
| assert isinstance(vocab, Vocabulary), "Only fastNLP.core.Vocabulary is allowed, not {}.".format(type(vocab)) | |||
| self.vocab = vocab | |||
| def delete_vocab(self): | |||
| del self.vocab | |||
| def get_vocab_size(self): | |||
| return len(self.vocab) | |||
| def set_verbose(self, verbose): | |||
| """ | |||
| 设置processor verbose状态。 | |||
| :param verbose: int, 0,不输出任何信息;1,输出vocab 信息。 | |||
| :return: | |||
| """ | |||
| self.verbose = verbose | |||
| @@ -90,6 +90,7 @@ class NativeDataSetLoader(DataSetLoader): | |||
| """A simple example of DataSetLoader | |||
| """ | |||
| def __init__(self): | |||
| super(NativeDataSetLoader, self).__init__() | |||
| @@ -107,6 +108,7 @@ class RawDataSetLoader(DataSetLoader): | |||
| """A simple example of raw data reader | |||
| """ | |||
| def __init__(self): | |||
| super(RawDataSetLoader, self).__init__() | |||
| @@ -142,6 +144,7 @@ class POSDataSetLoader(DataSetLoader): | |||
| In this example, there are two sentences "Tom and Jerry ." and "Hello world !". Each word has its own label. | |||
| """ | |||
| def __init__(self): | |||
| super(POSDataSetLoader, self).__init__() | |||
| @@ -540,3 +543,373 @@ class SNLIDataSetLoader(DataSetLoader): | |||
| data_set.set_input("premise", "hypothesis", "premise_len", "hypothesis_len") | |||
| data_set.set_target("truth") | |||
| return data_set | |||
| class ConllCWSReader(object): | |||
| def __init__(self): | |||
| pass | |||
| def load(self, path, cut_long_sent=False): | |||
| """ | |||
| 返回的DataSet只包含raw_sentence这个field,内容为str。 | |||
| 假定了输入为conll的格式,以空行隔开两个句子,每行共7列,即 | |||
| 1 编者按 编者按 NN O 11 nmod:topic | |||
| 2 : : PU O 11 punct | |||
| 3 7月 7月 NT DATE 4 compound:nn | |||
| 4 12日 12日 NT DATE 11 nmod:tmod | |||
| 5 , , PU O 11 punct | |||
| 1 这 这 DT O 3 det | |||
| 2 款 款 M O 1 mark:clf | |||
| 3 飞行 飞行 NN O 8 nsubj | |||
| 4 从 从 P O 5 case | |||
| 5 外型 外型 NN O 8 nmod:prep | |||
| """ | |||
| datalist = [] | |||
| with open(path, 'r', encoding='utf-8') as f: | |||
| sample = [] | |||
| for line in f: | |||
| if line.startswith('\n'): | |||
| datalist.append(sample) | |||
| sample = [] | |||
| elif line.startswith('#'): | |||
| continue | |||
| else: | |||
| sample.append(line.split('\t')) | |||
| if len(sample) > 0: | |||
| datalist.append(sample) | |||
| ds = DataSet() | |||
| for sample in datalist: | |||
| # print(sample) | |||
| res = self.get_char_lst(sample) | |||
| if res is None: | |||
| continue | |||
| line = ' '.join(res) | |||
| if cut_long_sent: | |||
| sents = cut_long_sentence(line) | |||
| else: | |||
| sents = [line] | |||
| for raw_sentence in sents: | |||
| ds.append(Instance(raw_sentence=raw_sentence)) | |||
| return ds | |||
| def get_char_lst(self, sample): | |||
| if len(sample) == 0: | |||
| return None | |||
| text = [] | |||
| for w in sample: | |||
| t1, t2, t3, t4 = w[1], w[3], w[6], w[7] | |||
| if t3 == '_': | |||
| return None | |||
| text.append(t1) | |||
| return text | |||
| class POSCWSReader(DataSetLoader): | |||
| """ | |||
| 支持读取以下的情况, 即每一行是一个词, 用空行作为两句话的界限. | |||
| 迈 N | |||
| 向 N | |||
| 充 N | |||
| ... | |||
| 泽 I-PER | |||
| 民 I-PER | |||
| ( N | |||
| 一 N | |||
| 九 N | |||
| ... | |||
| :param filepath: | |||
| :return: | |||
| """ | |||
| def __init__(self, in_word_splitter=None): | |||
| super().__init__() | |||
| self.in_word_splitter = in_word_splitter | |||
| def load(self, filepath, in_word_splitter=None, cut_long_sent=False): | |||
| if in_word_splitter is None: | |||
| in_word_splitter = self.in_word_splitter | |||
| dataset = DataSet() | |||
| with open(filepath, 'r') as f: | |||
| words = [] | |||
| for line in f: | |||
| line = line.strip() | |||
| if len(line) == 0: # new line | |||
| if len(words) == 0: # 不能接受空行 | |||
| continue | |||
| line = ' '.join(words) | |||
| if cut_long_sent: | |||
| sents = cut_long_sentence(line) | |||
| else: | |||
| sents = [line] | |||
| for sent in sents: | |||
| instance = Instance(raw_sentence=sent) | |||
| dataset.append(instance) | |||
| words = [] | |||
| else: | |||
| line = line.split()[0] | |||
| if in_word_splitter is None: | |||
| words.append(line) | |||
| else: | |||
| words.append(line.split(in_word_splitter)[0]) | |||
| return dataset | |||
| class NaiveCWSReader(DataSetLoader): | |||
| """ | |||
| 这个reader假设了分词数据集为以下形式, 即已经用空格分割好内容了 | |||
| 这是 fastNLP , 一个 非常 good 的 包 . | |||
| 或者,即每个part后面还有一个pos tag | |||
| 也/D 在/P 團員/Na 之中/Ng ,/COMMACATEGORY | |||
| """ | |||
| def __init__(self, in_word_splitter=None): | |||
| super().__init__() | |||
| self.in_word_splitter = in_word_splitter | |||
| def load(self, filepath, in_word_splitter=None, cut_long_sent=False): | |||
| """ | |||
| 允许使用的情况有(默认以\t或空格作为seg) | |||
| 这是 fastNLP , 一个 非常 good 的 包 . | |||
| 和 | |||
| 也/D 在/P 團員/Na 之中/Ng ,/COMMACATEGORY | |||
| 如果splitter不为None则认为是第二种情况, 且我们会按splitter分割"也/D", 然后取第一部分. 例如"也/D".split('/')[0] | |||
| :param filepath: | |||
| :param in_word_splitter: | |||
| :return: | |||
| """ | |||
| if in_word_splitter == None: | |||
| in_word_splitter = self.in_word_splitter | |||
| dataset = DataSet() | |||
| with open(filepath, 'r') as f: | |||
| for line in f: | |||
| line = line.strip() | |||
| if len(line.replace(' ', '')) == 0: # 不能接受空行 | |||
| continue | |||
| if not in_word_splitter is None: | |||
| words = [] | |||
| for part in line.split(): | |||
| word = part.split(in_word_splitter)[0] | |||
| words.append(word) | |||
| line = ' '.join(words) | |||
| if cut_long_sent: | |||
| sents = cut_long_sentence(line) | |||
| else: | |||
| sents = [line] | |||
| for sent in sents: | |||
| instance = Instance(raw_sentence=sent) | |||
| dataset.append(instance) | |||
| return dataset | |||
| def cut_long_sentence(sent, max_sample_length=200): | |||
| """ | |||
| 将长于max_sample_length的sentence截成多段,只会在有空格的地方发生截断。所以截取的句子可能长于或者短于max_sample_length | |||
| :param sent: str. | |||
| :param max_sample_length: int. | |||
| :return: list of str. | |||
| """ | |||
| sent_no_space = sent.replace(' ', '') | |||
| cutted_sentence = [] | |||
| if len(sent_no_space) > max_sample_length: | |||
| parts = sent.strip().split() | |||
| new_line = '' | |||
| length = 0 | |||
| for part in parts: | |||
| length += len(part) | |||
| new_line += part + ' ' | |||
| if length > max_sample_length: | |||
| new_line = new_line[:-1] | |||
| cutted_sentence.append(new_line) | |||
| length = 0 | |||
| new_line = '' | |||
| if new_line != '': | |||
| cutted_sentence.append(new_line[:-1]) | |||
| else: | |||
| cutted_sentence.append(sent) | |||
| return cutted_sentence | |||
| class ZhConllPOSReader(object): | |||
| # 中文colln格式reader | |||
| def __init__(self): | |||
| pass | |||
| def load(self, path): | |||
| """ | |||
| 返回的DataSet, 包含以下的field | |||
| words:list of str, | |||
| tag: list of str, 被加入了BMES tag, 比如原来的序列为['VP', 'NN', 'NN', ..],会被认为是["S-VP", "B-NN", "M-NN",..] | |||
| 假定了输入为conll的格式,以空行隔开两个句子,每行共7列,即 | |||
| 1 编者按 编者按 NN O 11 nmod:topic | |||
| 2 : : PU O 11 punct | |||
| 3 7月 7月 NT DATE 4 compound:nn | |||
| 4 12日 12日 NT DATE 11 nmod:tmod | |||
| 5 , , PU O 11 punct | |||
| 1 这 这 DT O 3 det | |||
| 2 款 款 M O 1 mark:clf | |||
| 3 飞行 飞行 NN O 8 nsubj | |||
| 4 从 从 P O 5 case | |||
| 5 外型 外型 NN O 8 nmod:prep | |||
| """ | |||
| datalist = [] | |||
| with open(path, 'r', encoding='utf-8') as f: | |||
| sample = [] | |||
| for line in f: | |||
| if line.startswith('\n'): | |||
| datalist.append(sample) | |||
| sample = [] | |||
| elif line.startswith('#'): | |||
| continue | |||
| else: | |||
| sample.append(line.split('\t')) | |||
| if len(sample) > 0: | |||
| datalist.append(sample) | |||
| ds = DataSet() | |||
| for sample in datalist: | |||
| # print(sample) | |||
| res = self.get_one(sample) | |||
| if res is None: | |||
| continue | |||
| char_seq = [] | |||
| pos_seq = [] | |||
| for word, tag in zip(res[0], res[1]): | |||
| char_seq.extend(list(word)) | |||
| if len(word) == 1: | |||
| pos_seq.append('S-{}'.format(tag)) | |||
| elif len(word) > 1: | |||
| pos_seq.append('B-{}'.format(tag)) | |||
| for _ in range(len(word) - 2): | |||
| pos_seq.append('M-{}'.format(tag)) | |||
| pos_seq.append('E-{}'.format(tag)) | |||
| else: | |||
| raise ValueError("Zero length of word detected.") | |||
| ds.append(Instance(words=char_seq, | |||
| tag=pos_seq)) | |||
| return ds | |||
| def get_one(self, sample): | |||
| if len(sample) == 0: | |||
| return None | |||
| text = [] | |||
| pos_tags = [] | |||
| for w in sample: | |||
| t1, t2, t3, t4 = w[1], w[3], w[6], w[7] | |||
| if t3 == '_': | |||
| return None | |||
| text.append(t1) | |||
| pos_tags.append(t2) | |||
| return text, pos_tags | |||
| class ConllPOSReader(object): | |||
| # 返回的Dataset包含words(list of list, 里层的list是character), tag两个field(list of str, str是标有BIO的tag)。 | |||
| def __init__(self): | |||
| pass | |||
| def load(self, path): | |||
| datalist = [] | |||
| with open(path, 'r', encoding='utf-8') as f: | |||
| sample = [] | |||
| for line in f: | |||
| if line.startswith('\n'): | |||
| datalist.append(sample) | |||
| sample = [] | |||
| elif line.startswith('#'): | |||
| continue | |||
| else: | |||
| sample.append(line.split('\t')) | |||
| if len(sample) > 0: | |||
| datalist.append(sample) | |||
| ds = DataSet() | |||
| for sample in datalist: | |||
| # print(sample) | |||
| res = self.get_one(sample) | |||
| if res is None: | |||
| continue | |||
| char_seq = [] | |||
| pos_seq = [] | |||
| for word, tag in zip(res[0], res[1]): | |||
| if len(word) == 1: | |||
| char_seq.append(word) | |||
| pos_seq.append('S-{}'.format(tag)) | |||
| elif len(word) > 1: | |||
| pos_seq.append('B-{}'.format(tag)) | |||
| for _ in range(len(word) - 2): | |||
| pos_seq.append('M-{}'.format(tag)) | |||
| pos_seq.append('E-{}'.format(tag)) | |||
| char_seq.extend(list(word)) | |||
| else: | |||
| raise ValueError("Zero length of word detected.") | |||
| ds.append(Instance(words=char_seq, | |||
| tag=pos_seq)) | |||
| return ds | |||
| class ConllxDataLoader(object): | |||
| def load(self, path): | |||
| datalist = [] | |||
| with open(path, 'r', encoding='utf-8') as f: | |||
| sample = [] | |||
| for line in f: | |||
| if line.startswith('\n'): | |||
| datalist.append(sample) | |||
| sample = [] | |||
| elif line.startswith('#'): | |||
| continue | |||
| else: | |||
| sample.append(line.split('\t')) | |||
| if len(sample) > 0: | |||
| datalist.append(sample) | |||
| data = [self.get_one(sample) for sample in datalist] | |||
| return list(filter(lambda x: x is not None, data)) | |||
| def get_one(self, sample): | |||
| sample = list(map(list, zip(*sample))) | |||
| if len(sample) == 0: | |||
| return None | |||
| for w in sample[7]: | |||
| if w == '_': | |||
| print('Error Sample {}'.format(sample)) | |||
| return None | |||
| # return word_seq, pos_seq, head_seq, head_tag_seq | |||
| return sample[1], sample[3], list(map(int, sample[6])), sample[7] | |||
| def add_seg_tag(data): | |||
| """ | |||
| :param data: list of ([word], [pos], [heads], [head_tags]) | |||
| :return: list of ([word], [pos]) | |||
| """ | |||
| _processed = [] | |||
| for word_list, pos_list, _, _ in data: | |||
| new_sample = [] | |||
| for word, pos in zip(word_list, pos_list): | |||
| if len(word) == 1: | |||
| new_sample.append((word, 'S-' + pos)) | |||
| else: | |||
| new_sample.append((word[0], 'B-' + pos)) | |||
| for c in word[1:-1]: | |||
| new_sample.append((c, 'M-' + pos)) | |||
| new_sample.append((word[-1], 'E-' + pos)) | |||
| _processed.append(list(map(list, zip(*new_sample)))) | |||
| return _processed | |||
| @@ -5,7 +5,7 @@ sys.path.extend(['/home/yfshao/workdir/dev_fastnlp']) | |||
| import torch | |||
| import argparse | |||
| from reproduction.Biaffine_parser.util import ConllxDataLoader, add_seg_tag | |||
| from fastNLP.io.dataset_loader import ConllxDataLoader, add_seg_tag | |||
| from fastNLP.core.dataset import DataSet | |||
| from fastNLP.core.instance import Instance | |||
| @@ -4,20 +4,15 @@ import sys | |||
| sys.path.append(os.path.join(os.path.dirname(__file__), '../..')) | |||
| import fastNLP | |||
| import torch | |||
| from fastNLP.core.trainer import Trainer | |||
| from fastNLP.core.instance import Instance | |||
| from fastNLP.api.pipeline import Pipeline | |||
| from fastNLP.models.biaffine_parser import BiaffineParser, ParserMetric, ParserLoss | |||
| from fastNLP.core.vocabulary import Vocabulary | |||
| from fastNLP.core.dataset import DataSet | |||
| from fastNLP.core.tester import Tester | |||
| from fastNLP.io.config_io import ConfigLoader, ConfigSection | |||
| from fastNLP.io.model_io import ModelLoader | |||
| from fastNLP.io.embed_loader import EmbedLoader | |||
| from fastNLP.io.model_io import ModelSaver | |||
| from reproduction.Biaffine_parser.util import ConllxDataLoader, MyDataloader | |||
| from fastNLP.io.dataset_loader import ConllxDataLoader | |||
| from fastNLP.api.processor import * | |||
| BOS = '<BOS>' | |||
| @@ -1,34 +1,3 @@ | |||
| class ConllxDataLoader(object): | |||
| def load(self, path): | |||
| datalist = [] | |||
| with open(path, 'r', encoding='utf-8') as f: | |||
| sample = [] | |||
| for line in f: | |||
| if line.startswith('\n'): | |||
| datalist.append(sample) | |||
| sample = [] | |||
| elif line.startswith('#'): | |||
| continue | |||
| else: | |||
| sample.append(line.split('\t')) | |||
| if len(sample) > 0: | |||
| datalist.append(sample) | |||
| data = [self.get_one(sample) for sample in datalist] | |||
| return list(filter(lambda x: x is not None, data)) | |||
| def get_one(self, sample): | |||
| sample = list(map(list, zip(*sample))) | |||
| if len(sample) == 0: | |||
| return None | |||
| for w in sample[7]: | |||
| if w == '_': | |||
| print('Error Sample {}'.format(sample)) | |||
| return None | |||
| # return word_seq, pos_seq, head_seq, head_tag_seq | |||
| return sample[1], sample[3], list(map(int, sample[6])), sample[7] | |||
| class MyDataloader: | |||
| def load(self, data_path): | |||
| with open(data_path, "r", encoding="utf-8") as f: | |||
| @@ -56,23 +25,3 @@ class MyDataloader: | |||
| return data | |||
| def add_seg_tag(data): | |||
| """ | |||
| :param data: list of ([word], [pos], [heads], [head_tags]) | |||
| :return: list of ([word], [pos]) | |||
| """ | |||
| _processed = [] | |||
| for word_list, pos_list, _, _ in data: | |||
| new_sample = [] | |||
| for word, pos in zip(word_list, pos_list): | |||
| if len(word) == 1: | |||
| new_sample.append((word, 'S-' + pos)) | |||
| else: | |||
| new_sample.append((word[0], 'B-' + pos)) | |||
| for c in word[1:-1]: | |||
| new_sample.append((c, 'M-' + pos)) | |||
| new_sample.append((word[-1], 'E-' + pos)) | |||
| _processed.append(list(map(list, zip(*new_sample)))) | |||
| return _processed | |||
| @@ -1,197 +1,3 @@ | |||
| from fastNLP.core.dataset import DataSet | |||
| from fastNLP.core.instance import Instance | |||
| from fastNLP.io.dataset_loader import DataSetLoader | |||
| def cut_long_sentence(sent, max_sample_length=200): | |||
| """ | |||
| 将长于max_sample_length的sentence截成多段,只会在有空格的地方发生截断。所以截取的句子可能长于或者短于max_sample_length | |||
| :param sent: str. | |||
| :param max_sample_length: int. | |||
| :return: list of str. | |||
| """ | |||
| sent_no_space = sent.replace(' ', '') | |||
| cutted_sentence = [] | |||
| if len(sent_no_space) > max_sample_length: | |||
| parts = sent.strip().split() | |||
| new_line = '' | |||
| length = 0 | |||
| for part in parts: | |||
| length += len(part) | |||
| new_line += part + ' ' | |||
| if length > max_sample_length: | |||
| new_line = new_line[:-1] | |||
| cutted_sentence.append(new_line) | |||
| length = 0 | |||
| new_line = '' | |||
| if new_line != '': | |||
| cutted_sentence.append(new_line[:-1]) | |||
| else: | |||
| cutted_sentence.append(sent) | |||
| return cutted_sentence | |||
| class NaiveCWSReader(DataSetLoader): | |||
| """ | |||
| 这个reader假设了分词数据集为以下形式, 即已经用空格分割好内容了 | |||
| 这是 fastNLP , 一个 非常 good 的 包 . | |||
| 或者,即每个part后面还有一个pos tag | |||
| 也/D 在/P 團員/Na 之中/Ng ,/COMMACATEGORY | |||
| """ | |||
| def __init__(self, in_word_splitter=None): | |||
| super().__init__() | |||
| self.in_word_splitter = in_word_splitter | |||
| def load(self, filepath, in_word_splitter=None, cut_long_sent=False): | |||
| """ | |||
| 允许使用的情况有(默认以\t或空格作为seg) | |||
| 这是 fastNLP , 一个 非常 good 的 包 . | |||
| 和 | |||
| 也/D 在/P 團員/Na 之中/Ng ,/COMMACATEGORY | |||
| 如果splitter不为None则认为是第二种情况, 且我们会按splitter分割"也/D", 然后取第一部分. 例如"也/D".split('/')[0] | |||
| :param filepath: | |||
| :param in_word_splitter: | |||
| :return: | |||
| """ | |||
| if in_word_splitter == None: | |||
| in_word_splitter = self.in_word_splitter | |||
| dataset = DataSet() | |||
| with open(filepath, 'r') as f: | |||
| for line in f: | |||
| line = line.strip() | |||
| if len(line.replace(' ', ''))==0: # 不能接受空行 | |||
| continue | |||
| if not in_word_splitter is None: | |||
| words = [] | |||
| for part in line.split(): | |||
| word = part.split(in_word_splitter)[0] | |||
| words.append(word) | |||
| line = ' '.join(words) | |||
| if cut_long_sent: | |||
| sents = cut_long_sentence(line) | |||
| else: | |||
| sents = [line] | |||
| for sent in sents: | |||
| instance = Instance(raw_sentence=sent) | |||
| dataset.append(instance) | |||
| return dataset | |||
| class POSCWSReader(DataSetLoader): | |||
| """ | |||
| 支持读取以下的情况, 即每一行是一个词, 用空行作为两句话的界限. | |||
| 迈 N | |||
| 向 N | |||
| 充 N | |||
| ... | |||
| 泽 I-PER | |||
| 民 I-PER | |||
| ( N | |||
| 一 N | |||
| 九 N | |||
| ... | |||
| :param filepath: | |||
| :return: | |||
| """ | |||
| def __init__(self, in_word_splitter=None): | |||
| super().__init__() | |||
| self.in_word_splitter = in_word_splitter | |||
| def load(self, filepath, in_word_splitter=None, cut_long_sent=False): | |||
| if in_word_splitter is None: | |||
| in_word_splitter = self.in_word_splitter | |||
| dataset = DataSet() | |||
| with open(filepath, 'r') as f: | |||
| words = [] | |||
| for line in f: | |||
| line = line.strip() | |||
| if len(line) == 0: # new line | |||
| if len(words)==0: # 不能接受空行 | |||
| continue | |||
| line = ' '.join(words) | |||
| if cut_long_sent: | |||
| sents = cut_long_sentence(line) | |||
| else: | |||
| sents = [line] | |||
| for sent in sents: | |||
| instance = Instance(raw_sentence=sent) | |||
| dataset.append(instance) | |||
| words = [] | |||
| else: | |||
| line = line.split()[0] | |||
| if in_word_splitter is None: | |||
| words.append(line) | |||
| else: | |||
| words.append(line.split(in_word_splitter)[0]) | |||
| return dataset | |||
| class ConllCWSReader(object): | |||
| def __init__(self): | |||
| pass | |||
| def load(self, path, cut_long_sent=False): | |||
| """ | |||
| 返回的DataSet只包含raw_sentence这个field,内容为str。 | |||
| 假定了输入为conll的格式,以空行隔开两个句子,每行共7列,即 | |||
| 1 编者按 编者按 NN O 11 nmod:topic | |||
| 2 : : PU O 11 punct | |||
| 3 7月 7月 NT DATE 4 compound:nn | |||
| 4 12日 12日 NT DATE 11 nmod:tmod | |||
| 5 , , PU O 11 punct | |||
| 1 这 这 DT O 3 det | |||
| 2 款 款 M O 1 mark:clf | |||
| 3 飞行 飞行 NN O 8 nsubj | |||
| 4 从 从 P O 5 case | |||
| 5 外型 外型 NN O 8 nmod:prep | |||
| """ | |||
| datalist = [] | |||
| with open(path, 'r', encoding='utf-8') as f: | |||
| sample = [] | |||
| for line in f: | |||
| if line.startswith('\n'): | |||
| datalist.append(sample) | |||
| sample = [] | |||
| elif line.startswith('#'): | |||
| continue | |||
| else: | |||
| sample.append(line.split('\t')) | |||
| if len(sample) > 0: | |||
| datalist.append(sample) | |||
| ds = DataSet() | |||
| for sample in datalist: | |||
| # print(sample) | |||
| res = self.get_char_lst(sample) | |||
| if res is None: | |||
| continue | |||
| line = ' '.join(res) | |||
| if cut_long_sent: | |||
| sents = cut_long_sentence(line) | |||
| else: | |||
| sents = [line] | |||
| for raw_sentence in sents: | |||
| ds.append(Instance(raw_sentence=raw_sentence)) | |||
| return ds | |||
| def get_char_lst(self, sample): | |||
| if len(sample)==0: | |||
| return None | |||
| text = [] | |||
| for w in sample: | |||
| t1, t2, t3, t4 = w[1], w[3], w[6], w[7] | |||
| if t3 == '_': | |||
| return None | |||
| text.append(t1) | |||
| return text | |||
| @@ -226,109 +226,6 @@ class Pre2Post2BigramProcessor(BigramProcessor): | |||
| return bigrams | |||
| # 这里需要建立vocabulary了,但是遇到了以下的问题 | |||
| # (1) 如果使用Processor的方式的话,但是在这种情况返回的不是dataset。所以建立vocabulary的工作用另外的方式实现,不借用 | |||
| # Processor了 | |||
| # TODO 如何将建立vocab和index这两步统一了? | |||
| class VocabIndexerProcessor(Processor): | |||
| """ | |||
| 根据DataSet创建Vocabulary,并将其用数字index。新生成的index的field会被放在new_added_filed_name, 如果没有提供 | |||
| new_added_field_name, 则覆盖原有的field_name. | |||
| """ | |||
| def __init__(self, field_name, new_added_filed_name=None, min_freq=1, max_size=None, | |||
| verbose=0, is_input=True): | |||
| """ | |||
| :param field_name: 从哪个field_name创建词表,以及对哪个field_name进行index操作 | |||
| :param new_added_filed_name: index时,生成的index field的名称,如果不传入,则覆盖field_name. | |||
| :param min_freq: 创建的Vocabulary允许的单词最少出现次数. | |||
| :param max_size: 创建的Vocabulary允许的最大的单词数量 | |||
| :param verbose: 0, 不输出任何信息;1,输出信息 | |||
| :param bool is_input: | |||
| """ | |||
| super(VocabIndexerProcessor, self).__init__(field_name, new_added_filed_name) | |||
| self.min_freq = min_freq | |||
| self.max_size = max_size | |||
| self.verbose =verbose | |||
| self.is_input = is_input | |||
| def construct_vocab(self, *datasets): | |||
| """ | |||
| 使用传入的DataSet创建vocabulary | |||
| :param datasets: DataSet类型的数据,用于构建vocabulary | |||
| :return: | |||
| """ | |||
| self.vocab = Vocabulary(min_freq=self.min_freq, max_size=self.max_size) | |||
| for dataset in datasets: | |||
| assert isinstance(dataset, DataSet), "Only Dataset class is allowed, not {}.".format(type(dataset)) | |||
| dataset.apply(lambda ins: self.vocab.update(ins[self.field_name])) | |||
| self.vocab.build_vocab() | |||
| if self.verbose: | |||
| print("Vocabulary Constructed, has {} items.".format(len(self.vocab))) | |||
| def process(self, *datasets, only_index_dataset=None): | |||
| """ | |||
| 若还未建立Vocabulary,则使用dataset中的DataSet建立vocabulary;若已经有了vocabulary则使用已有的vocabulary。得到vocabulary | |||
| 后,则会index datasets与only_index_dataset。 | |||
| :param datasets: DataSet类型的数据 | |||
| :param only_index_dataset: DataSet, or list of DataSet. 该参数中的内容只会被用于index,不会被用于生成vocabulary。 | |||
| :return: | |||
| """ | |||
| if len(datasets)==0 and not hasattr(self,'vocab'): | |||
| raise RuntimeError("You have to construct vocabulary first. Or you have to pass datasets to construct it.") | |||
| if not hasattr(self, 'vocab'): | |||
| self.construct_vocab(*datasets) | |||
| else: | |||
| if self.verbose: | |||
| print("Using constructed vocabulary with {} items.".format(len(self.vocab))) | |||
| to_index_datasets = [] | |||
| if len(datasets)!=0: | |||
| for dataset in datasets: | |||
| assert isinstance(dataset, DataSet), "Only DataSet class is allowed, not {}.".format(type(dataset)) | |||
| to_index_datasets.append(dataset) | |||
| if not (only_index_dataset is None): | |||
| if isinstance(only_index_dataset, list): | |||
| for dataset in only_index_dataset: | |||
| assert isinstance(dataset, DataSet), "Only DataSet class is allowed, not {}.".format(type(dataset)) | |||
| to_index_datasets.append(dataset) | |||
| elif isinstance(only_index_dataset, DataSet): | |||
| to_index_datasets.append(only_index_dataset) | |||
| else: | |||
| raise TypeError('Only DataSet or list of DataSet is allowed, not {}.'.format(type(only_index_dataset))) | |||
| for dataset in to_index_datasets: | |||
| assert isinstance(dataset, DataSet), "Only DataSet class is allowed, not {}.".format(type(dataset)) | |||
| dataset.apply(lambda ins: [self.vocab.to_index(token) for token in ins[self.field_name]], | |||
| new_field_name=self.new_added_field_name, is_input=self.is_input) | |||
| # 只返回一个,infer时为了跟其他processor保持一致 | |||
| if len(to_index_datasets) == 1: | |||
| return to_index_datasets[0] | |||
| def set_vocab(self, vocab): | |||
| assert isinstance(vocab, Vocabulary), "Only fastNLP.core.Vocabulary is allowed, not {}.".format(type(vocab)) | |||
| self.vocab = vocab | |||
| def delete_vocab(self): | |||
| del self.vocab | |||
| def get_vocab_size(self): | |||
| return len(self.vocab) | |||
| def set_verbose(self, verbose): | |||
| """ | |||
| 设置processor verbose状态。 | |||
| :param verbose: int, 0,不输出任何信息;1,输出vocab 信息。 | |||
| :return: | |||
| """ | |||
| self.verbose = verbose | |||
| class VocabProcessor(Processor): | |||
| def __init__(self, field_name, min_freq=1, max_size=None): | |||
| @@ -1,6 +1,5 @@ | |||
| from fastNLP.io.dataset_loader import ZhConllPOSReader | |||
| from fastNLP.core.dataset import DataSet | |||
| from fastNLP.core.instance import Instance | |||
| def cut_long_sentence(sent, max_sample_length=200): | |||
| sent_no_space = sent.replace(' ', '') | |||
| @@ -24,129 +23,6 @@ def cut_long_sentence(sent, max_sample_length=200): | |||
| return cutted_sentence | |||
| class ConllPOSReader(object): | |||
| # 返回的Dataset包含words(list of list, 里层的list是character), tag两个field(list of str, str是标有BIO的tag)。 | |||
| def __init__(self): | |||
| pass | |||
| def load(self, path): | |||
| datalist = [] | |||
| with open(path, 'r', encoding='utf-8') as f: | |||
| sample = [] | |||
| for line in f: | |||
| if line.startswith('\n'): | |||
| datalist.append(sample) | |||
| sample = [] | |||
| elif line.startswith('#'): | |||
| continue | |||
| else: | |||
| sample.append(line.split('\t')) | |||
| if len(sample) > 0: | |||
| datalist.append(sample) | |||
| ds = DataSet() | |||
| for sample in datalist: | |||
| # print(sample) | |||
| res = self.get_one(sample) | |||
| if res is None: | |||
| continue | |||
| char_seq = [] | |||
| pos_seq = [] | |||
| for word, tag in zip(res[0], res[1]): | |||
| if len(word)==1: | |||
| char_seq.append(word) | |||
| pos_seq.append('S-{}'.format(tag)) | |||
| elif len(word)>1: | |||
| pos_seq.append('B-{}'.format(tag)) | |||
| for _ in range(len(word)-2): | |||
| pos_seq.append('M-{}'.format(tag)) | |||
| pos_seq.append('E-{}'.format(tag)) | |||
| char_seq.extend(list(word)) | |||
| else: | |||
| raise ValueError("Zero length of word detected.") | |||
| ds.append(Instance(words=char_seq, | |||
| tag=pos_seq)) | |||
| return ds | |||
| class ZhConllPOSReader(object): | |||
| # 中文colln格式reader | |||
| def __init__(self): | |||
| pass | |||
| def load(self, path): | |||
| """ | |||
| 返回的DataSet, 包含以下的field | |||
| words:list of str, | |||
| tag: list of str, 被加入了BMES tag, 比如原来的序列为['VP', 'NN', 'NN', ..],会被认为是["S-VP", "B-NN", "M-NN",..] | |||
| 假定了输入为conll的格式,以空行隔开两个句子,每行共7列,即 | |||
| 1 编者按 编者按 NN O 11 nmod:topic | |||
| 2 : : PU O 11 punct | |||
| 3 7月 7月 NT DATE 4 compound:nn | |||
| 4 12日 12日 NT DATE 11 nmod:tmod | |||
| 5 , , PU O 11 punct | |||
| 1 这 这 DT O 3 det | |||
| 2 款 款 M O 1 mark:clf | |||
| 3 飞行 飞行 NN O 8 nsubj | |||
| 4 从 从 P O 5 case | |||
| 5 外型 外型 NN O 8 nmod:prep | |||
| """ | |||
| datalist = [] | |||
| with open(path, 'r', encoding='utf-8') as f: | |||
| sample = [] | |||
| for line in f: | |||
| if line.startswith('\n'): | |||
| datalist.append(sample) | |||
| sample = [] | |||
| elif line.startswith('#'): | |||
| continue | |||
| else: | |||
| sample.append(line.split('\t')) | |||
| if len(sample) > 0: | |||
| datalist.append(sample) | |||
| ds = DataSet() | |||
| for sample in datalist: | |||
| # print(sample) | |||
| res = self.get_one(sample) | |||
| if res is None: | |||
| continue | |||
| char_seq = [] | |||
| pos_seq = [] | |||
| for word, tag in zip(res[0], res[1]): | |||
| char_seq.extend(list(word)) | |||
| if len(word)==1: | |||
| pos_seq.append('S-{}'.format(tag)) | |||
| elif len(word)>1: | |||
| pos_seq.append('B-{}'.format(tag)) | |||
| for _ in range(len(word)-2): | |||
| pos_seq.append('M-{}'.format(tag)) | |||
| pos_seq.append('E-{}'.format(tag)) | |||
| else: | |||
| raise ValueError("Zero length of word detected.") | |||
| ds.append(Instance(words=char_seq, | |||
| tag=pos_seq)) | |||
| return ds | |||
| def get_one(self, sample): | |||
| if len(sample)==0: | |||
| return None | |||
| text = [] | |||
| pos_tags = [] | |||
| for w in sample: | |||
| t1, t2, t3, t4 = w[1], w[3], w[6], w[7] | |||
| if t3 == '_': | |||
| return None | |||
| text.append(t1) | |||
| pos_tags.append(t2) | |||
| return text, pos_tags | |||
| if __name__ == '__main__': | |||
| reader = ZhConllPOSReader() | |||
| d = reader.load('/home/hyan/train.conllx') | |||
| @@ -10,13 +10,12 @@ sys.path.append(os.path.join(os.path.dirname(__file__), '../..')) | |||
| from fastNLP.api.pipeline import Pipeline | |||
| from fastNLP.api.processor import SeqLenProcessor | |||
| from fastNLP.api.processor import SeqLenProcessor, VocabIndexerProcessor | |||
| from fastNLP.core.metrics import SpanFPreRecMetric | |||
| from fastNLP.core.trainer import Trainer | |||
| from fastNLP.io.config_io import ConfigLoader, ConfigSection | |||
| from fastNLP.models.sequence_modeling import AdvSeqLabel | |||
| from reproduction.chinese_word_segment.process.cws_processor import VocabIndexerProcessor | |||
| from reproduction.pos_tag_model.pos_reader import ZhConllPOSReader | |||
| from fastNLP.io.dataset_loader import ZhConllPOSReader | |||
| from fastNLP.api.processor import ModelProcessor, Index2WordProcessor | |||
| cfgfile = './pos_tag.cfg' | |||