| @@ -27,7 +27,6 @@ pipeline { | |||
| } | |||
| stage('Package Testing') { | |||
| steps { | |||
| sh 'python -m spacy download en' | |||
| sh 'pip install fitlog' | |||
| sh 'pytest ./tests --html=test_results.html --self-contained-html' | |||
| } | |||
| @@ -13,7 +13,7 @@ install: | |||
| - pip install pytest-cov | |||
| # command to run tests | |||
| script: | |||
| - python -m spacy download en | |||
| # - python -m spacy download en | |||
| - pytest --cov=fastNLP tests/ | |||
| after_success: | |||
| @@ -46,10 +46,8 @@ | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 1, | |||
| "metadata": { | |||
| "collapsed": true | |||
| }, | |||
| "execution_count": null, | |||
| "metadata": {}, | |||
| "outputs": [], | |||
| "source": [ | |||
| "from fastNLP.io import ChnSentiCorpLoader\n", | |||
| @@ -68,22 +66,9 @@ | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 2, | |||
| "execution_count": null, | |||
| "metadata": {}, | |||
| "outputs": [ | |||
| { | |||
| "name": "stdout", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "In total 3 datasets:\n", | |||
| "\tdev has 1200 instances.\n", | |||
| "\ttrain has 9600 instances.\n", | |||
| "\ttest has 1200 instances.\n", | |||
| "In total 0 vocabs:\n", | |||
| "\n" | |||
| ] | |||
| } | |||
| ], | |||
| "outputs": [], | |||
| "source": [ | |||
| "print(data_bundle)" | |||
| ] | |||
| @@ -97,20 +82,9 @@ | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 6, | |||
| "execution_count": null, | |||
| "metadata": {}, | |||
| "outputs": [ | |||
| { | |||
| "name": "stdout", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "DataSet({'raw_chars': 选择珠江花园的原因就是方便,有电动扶梯直接到达海边,周围餐馆、食廊、商场、超市、摊位一应俱全。酒店装修一般,但还算整洁。 泳池在大堂的屋顶,因此很小,不过女儿倒是喜欢。 包的早餐是西式的,还算丰富。 服务吗,一般 type=str,\n", | |||
| "'target': 1 type=str},\n", | |||
| "{'raw_chars': 15.4寸笔记本的键盘确实爽,基本跟台式机差不多了,蛮喜欢数字小键盘,输数字特方便,样子也很美观,做工也相当不错 type=str,\n", | |||
| "'target': 1 type=str})\n" | |||
| ] | |||
| } | |||
| ], | |||
| "outputs": [], | |||
| "source": [ | |||
| "print(data_bundle.get_dataset('train')[:2]) # 查看Train集前两个sample" | |||
| ] | |||
| @@ -127,10 +101,8 @@ | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 3, | |||
| "metadata": { | |||
| "collapsed": true | |||
| }, | |||
| "execution_count": null, | |||
| "metadata": {}, | |||
| "outputs": [], | |||
| "source": [ | |||
| "from fastNLP.io import ChnSentiCorpPipe\n", | |||
| @@ -141,24 +113,9 @@ | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 4, | |||
| "execution_count": null, | |||
| "metadata": {}, | |||
| "outputs": [ | |||
| { | |||
| "name": "stdout", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "In total 3 datasets:\n", | |||
| "\tdev has 1200 instances.\n", | |||
| "\ttrain has 9600 instances.\n", | |||
| "\ttest has 1200 instances.\n", | |||
| "In total 2 vocabs:\n", | |||
| "\tchars has 4409 entries.\n", | |||
| "\ttarget has 2 entries.\n", | |||
| "\n" | |||
| ] | |||
| } | |||
| ], | |||
| "outputs": [], | |||
| "source": [ | |||
| "print(data_bundle) # 打印data_bundle,查看其变化" | |||
| ] | |||
| @@ -172,24 +129,9 @@ | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 5, | |||
| "execution_count": null, | |||
| "metadata": {}, | |||
| "outputs": [ | |||
| { | |||
| "name": "stdout", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "DataSet({'raw_chars': 选择珠江花园的原因就是方便,有电动扶梯直接到达海边,周围餐馆、食廊、商场、超市、摊位一应俱全。酒店装修一般,但还算整洁。 泳池在大堂的屋顶,因此很小,不过女儿倒是喜欢。 包的早餐是西式的,还算丰富。 服务吗,一般 type=str,\n", | |||
| "'target': 1 type=int,\n", | |||
| "'chars': [338, 464, 1400, 784, 468, 739, 3, 289, 151, 21, 5, 88, 143, 2, 9, 81, 134, 2573, 766, 233, 196, 23, 536, 342, 297, 2, 405, 698, 132, 281, 74, 744, 1048, 74, 420, 387, 74, 412, 433, 74, 2021, 180, 8, 219, 1929, 213, 4, 34, 31, 96, 363, 8, 230, 2, 66, 18, 229, 331, 768, 4, 11, 1094, 479, 17, 35, 593, 3, 1126, 967, 2, 151, 245, 12, 44, 2, 6, 52, 260, 263, 635, 5, 152, 162, 4, 11, 336, 3, 154, 132, 5, 236, 443, 3, 2, 18, 229, 761, 700, 4, 11, 48, 59, 653, 2, 8, 230] type=list,\n", | |||
| "'seq_len': 106 type=int},\n", | |||
| "{'raw_chars': 15.4寸笔记本的键盘确实爽,基本跟台式机差不多了,蛮喜欢数字小键盘,输数字特方便,样子也很美观,做工也相当不错 type=str,\n", | |||
| "'target': 1 type=int,\n", | |||
| "'chars': [50, 133, 20, 135, 945, 520, 343, 24, 3, 301, 176, 350, 86, 785, 2, 456, 24, 461, 163, 443, 128, 109, 6, 47, 7, 2, 916, 152, 162, 524, 296, 44, 301, 176, 2, 1384, 524, 296, 259, 88, 143, 2, 92, 67, 26, 12, 277, 269, 2, 188, 223, 26, 228, 83, 6, 63] type=list,\n", | |||
| "'seq_len': 56 type=int})\n" | |||
| ] | |||
| } | |||
| ], | |||
| "outputs": [], | |||
| "source": [ | |||
| "print(data_bundle.get_dataset('train')[:2])" | |||
| ] | |||
| @@ -203,17 +145,9 @@ | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 6, | |||
| "execution_count": null, | |||
| "metadata": {}, | |||
| "outputs": [ | |||
| { | |||
| "name": "stdout", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "Vocabulary(['选', '择', '珠', '江', '花']...)\n" | |||
| ] | |||
| } | |||
| ], | |||
| "outputs": [], | |||
| "source": [ | |||
| "char_vocab = data_bundle.get_vocab('chars')\n", | |||
| "print(char_vocab)" | |||
| @@ -228,18 +162,9 @@ | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 7, | |||
| "execution_count": null, | |||
| "metadata": {}, | |||
| "outputs": [ | |||
| { | |||
| "name": "stdout", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "'选'的index是338\n", | |||
| "index:338对应的汉字是选\n" | |||
| ] | |||
| } | |||
| ], | |||
| "outputs": [], | |||
| "source": [ | |||
| "index = char_vocab.to_index('选')\n", | |||
| "print(\"'选'的index是{}\".format(index)) # 这个值与上面打印出来的第一个instance的chars的第一个index是一致的\n", | |||
| @@ -256,17 +181,9 @@ | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 8, | |||
| "execution_count": null, | |||
| "metadata": {}, | |||
| "outputs": [ | |||
| { | |||
| "name": "stdout", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "Found 4321 out of 4409 words in the pre-training embedding.\n" | |||
| ] | |||
| } | |||
| ], | |||
| "outputs": [], | |||
| "source": [ | |||
| "from fastNLP.embeddings import StaticEmbedding\n", | |||
| "\n", | |||
| @@ -283,10 +200,8 @@ | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 9, | |||
| "metadata": { | |||
| "collapsed": true | |||
| }, | |||
| "execution_count": null, | |||
| "metadata": {}, | |||
| "outputs": [], | |||
| "source": [ | |||
| "from torch import nn\n", | |||
| @@ -329,288 +244,9 @@ | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 10, | |||
| "execution_count": null, | |||
| "metadata": {}, | |||
| "outputs": [ | |||
| { | |||
| "name": "stdout", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "input fields after batch(if batch size is 2):\n", | |||
| "\ttarget: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n", | |||
| "\tchars: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 106]) \n", | |||
| "\tseq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n", | |||
| "target fields after batch(if batch size is 2):\n", | |||
| "\ttarget: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n", | |||
| "\tseq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n", | |||
| "\n", | |||
| "Evaluate data in 0.01 seconds!\n", | |||
| "training epochs started 2019-09-03-23-57-10\n" | |||
| ] | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/plain": [ | |||
| "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=3000), HTML(value='')), layout=Layout(display…" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/plain": [ | |||
| "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "name": "stdout", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "\r", | |||
| "Evaluate data in 0.43 seconds!\n", | |||
| "\r", | |||
| "Evaluation on dev at Epoch 1/10. Step:300/3000: \n", | |||
| "\r", | |||
| "AccuracyMetric: acc=0.81\n", | |||
| "\n" | |||
| ] | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/plain": [ | |||
| "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "name": "stdout", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "\r", | |||
| "Evaluate data in 0.44 seconds!\n", | |||
| "\r", | |||
| "Evaluation on dev at Epoch 2/10. Step:600/3000: \n", | |||
| "\r", | |||
| "AccuracyMetric: acc=0.8675\n", | |||
| "\n" | |||
| ] | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/plain": [ | |||
| "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "name": "stdout", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "\r", | |||
| "Evaluate data in 0.44 seconds!\n", | |||
| "\r", | |||
| "Evaluation on dev at Epoch 3/10. Step:900/3000: \n", | |||
| "\r", | |||
| "AccuracyMetric: acc=0.878333\n", | |||
| "\n" | |||
| ] | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/plain": [ | |||
| "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "name": "stdout", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "\r", | |||
| "Evaluate data in 0.43 seconds!\n", | |||
| "\r", | |||
| "Evaluation on dev at Epoch 4/10. Step:1200/3000: \n", | |||
| "\r", | |||
| "AccuracyMetric: acc=0.873333\n", | |||
| "\n" | |||
| ] | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/plain": [ | |||
| "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "name": "stdout", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "\r", | |||
| "Evaluate data in 0.44 seconds!\n", | |||
| "\r", | |||
| "Evaluation on dev at Epoch 5/10. Step:1500/3000: \n", | |||
| "\r", | |||
| "AccuracyMetric: acc=0.878333\n", | |||
| "\n" | |||
| ] | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/plain": [ | |||
| "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "name": "stdout", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "\r", | |||
| "Evaluate data in 0.42 seconds!\n", | |||
| "\r", | |||
| "Evaluation on dev at Epoch 6/10. Step:1800/3000: \n", | |||
| "\r", | |||
| "AccuracyMetric: acc=0.895833\n", | |||
| "\n" | |||
| ] | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/plain": [ | |||
| "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "name": "stdout", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "\r", | |||
| "Evaluate data in 0.44 seconds!\n", | |||
| "\r", | |||
| "Evaluation on dev at Epoch 7/10. Step:2100/3000: \n", | |||
| "\r", | |||
| "AccuracyMetric: acc=0.8975\n", | |||
| "\n" | |||
| ] | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/plain": [ | |||
| "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "name": "stdout", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "\r", | |||
| "Evaluate data in 0.43 seconds!\n", | |||
| "\r", | |||
| "Evaluation on dev at Epoch 8/10. Step:2400/3000: \n", | |||
| "\r", | |||
| "AccuracyMetric: acc=0.894167\n", | |||
| "\n" | |||
| ] | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/plain": [ | |||
| "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "name": "stdout", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "\r", | |||
| "Evaluate data in 0.48 seconds!\n", | |||
| "\r", | |||
| "Evaluation on dev at Epoch 9/10. Step:2700/3000: \n", | |||
| "\r", | |||
| "AccuracyMetric: acc=0.8875\n", | |||
| "\n" | |||
| ] | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/plain": [ | |||
| "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=38), HTML(value='')), layout=Layout(display='…" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "name": "stdout", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "\r", | |||
| "Evaluate data in 0.43 seconds!\n", | |||
| "\r", | |||
| "Evaluation on dev at Epoch 10/10. Step:3000/3000: \n", | |||
| "\r", | |||
| "AccuracyMetric: acc=0.895833\n", | |||
| "\n", | |||
| "\r\n", | |||
| "In Epoch:7/Step:2100, got best dev performance:\n", | |||
| "AccuracyMetric: acc=0.8975\n", | |||
| "Reloaded the best model.\n" | |||
| ] | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/plain": [ | |||
| "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=19), HTML(value='')), layout=Layout(display='…" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "name": "stdout", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "\r", | |||
| "Evaluate data in 0.34 seconds!\n", | |||
| "[tester] \n", | |||
| "AccuracyMetric: acc=0.8975\n" | |||
| ] | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/plain": [ | |||
| "{'AccuracyMetric': {'acc': 0.8975}}" | |||
| ] | |||
| }, | |||
| "execution_count": 10, | |||
| "metadata": {}, | |||
| "output_type": "execute_result" | |||
| } | |||
| ], | |||
| "outputs": [], | |||
| "source": [ | |||
| "from fastNLP import Trainer\n", | |||
| "from fastNLP import CrossEntropyLoss\n", | |||
| @@ -643,139 +279,9 @@ | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 12, | |||
| "execution_count": null, | |||
| "metadata": {}, | |||
| "outputs": [ | |||
| { | |||
| "name": "stdout", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "loading vocabulary file /home/yh/.fastNLP/embedding/bert-chinese-wwm/vocab.txt\n", | |||
| "Load pre-trained BERT parameters from file /home/yh/.fastNLP/embedding/bert-chinese-wwm/chinese_wwm_pytorch.bin.\n", | |||
| "Start to generating word pieces for word.\n", | |||
| "Found(Or segment into word pieces) 4286 words out of 4409.\n", | |||
| "input fields after batch(if batch size is 2):\n", | |||
| "\ttarget: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n", | |||
| "\tchars: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 106]) \n", | |||
| "\tseq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n", | |||
| "target fields after batch(if batch size is 2):\n", | |||
| "\ttarget: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n", | |||
| "\tseq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n", | |||
| "\n", | |||
| "Evaluate data in 0.05 seconds!\n", | |||
| "training epochs started 2019-09-04-00-02-37\n" | |||
| ] | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/plain": [ | |||
| "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=3600), HTML(value='')), layout=Layout(display…" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/plain": [ | |||
| "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=150), HTML(value='')), layout=Layout(display=…" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "name": "stdout", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "\r", | |||
| "Evaluate data in 15.89 seconds!\n", | |||
| "\r", | |||
| "Evaluation on dev at Epoch 1/3. Step:1200/3600: \n", | |||
| "\r", | |||
| "AccuracyMetric: acc=0.9\n", | |||
| "\n" | |||
| ] | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/plain": [ | |||
| "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=150), HTML(value='')), layout=Layout(display=…" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "name": "stdout", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "\r", | |||
| "Evaluate data in 15.92 seconds!\n", | |||
| "\r", | |||
| "Evaluation on dev at Epoch 2/3. Step:2400/3600: \n", | |||
| "\r", | |||
| "AccuracyMetric: acc=0.904167\n", | |||
| "\n" | |||
| ] | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/plain": [ | |||
| "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=150), HTML(value='')), layout=Layout(display=…" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "name": "stdout", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "\r", | |||
| "Evaluate data in 15.91 seconds!\n", | |||
| "\r", | |||
| "Evaluation on dev at Epoch 3/3. Step:3600/3600: \n", | |||
| "\r", | |||
| "AccuracyMetric: acc=0.918333\n", | |||
| "\n", | |||
| "\r\n", | |||
| "In Epoch:3/Step:3600, got best dev performance:\n", | |||
| "AccuracyMetric: acc=0.918333\n", | |||
| "Reloaded the best model.\n", | |||
| "Performance on test is:\n" | |||
| ] | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/plain": [ | |||
| "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=19), HTML(value='')), layout=Layout(display='…" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "name": "stdout", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "\r", | |||
| "Evaluate data in 29.24 seconds!\n", | |||
| "[tester] \n", | |||
| "AccuracyMetric: acc=0.919167\n" | |||
| ] | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/plain": [ | |||
| "{'AccuracyMetric': {'acc': 0.919167}}" | |||
| ] | |||
| }, | |||
| "execution_count": 12, | |||
| "metadata": {}, | |||
| "output_type": "execute_result" | |||
| } | |||
| ], | |||
| "outputs": [], | |||
| "source": [ | |||
| "# 只需要切换一下Embedding即可\n", | |||
| "from fastNLP.embeddings import BertEmbedding\n", | |||
| @@ -840,9 +346,7 @@ | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": null, | |||
| "metadata": { | |||
| "collapsed": true | |||
| }, | |||
| "metadata": {}, | |||
| "outputs": [], | |||
| "source": [ | |||
| "from fastNLP.io import ChnSentiCorpLoader\n", | |||
| @@ -861,9 +365,7 @@ | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": null, | |||
| "metadata": { | |||
| "collapsed": true | |||
| }, | |||
| "metadata": {}, | |||
| "outputs": [], | |||
| "source": [ | |||
| "import os\n", | |||
| @@ -912,15 +414,14 @@ | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": null, | |||
| "metadata": { | |||
| "collapsed": true | |||
| }, | |||
| "metadata": {}, | |||
| "outputs": [], | |||
| "source": [ | |||
| "from fastHan import FastHan\n", | |||
| "from fastNLP import Vocabulary\n", | |||
| "\n", | |||
| "model=FastHan()\n", | |||
| "# model.set_device('cuda')\n", | |||
| "\n", | |||
| "# 定义分词处理操作\n", | |||
| "def word_seg(ins):\n", | |||
| @@ -933,6 +434,8 @@ | |||
| " # apply函数将对内部的instance依次执行word_seg操作,并把其返回值放入到raw_words这个field\n", | |||
| " ds.apply(word_seg, new_field_name='raw_words')\n", | |||
| " # 除了apply函数,fastNLP还支持apply_field, apply_more(可同时创建多个field)等操作\n", | |||
| " # 同时我们增加一个seq_len的field\n", | |||
| " ds.add_seq_len('raw_words')\n", | |||
| "\n", | |||
| "vocab = Vocabulary()\n", | |||
| "\n", | |||
| @@ -961,11 +464,14 @@ | |||
| "# 我们把words和target分别设置为input和target,这样它们才会在训练循环中被取出并自动padding, 有关这部分更多的内容参考\n", | |||
| "# http://www.fastnlp.top/docs/fastNLP/tutorials/tutorial_6_datasetiter.html\n", | |||
| "data_bundle.set_target('target')\n", | |||
| "data_bundle.set_input('words') # DataSet也有这两个接口\n", | |||
| "data_bundle.set_input('words', 'seq_len') # DataSet也有这两个接口\n", | |||
| "# 如果某些field,您希望它被设置为target或者input,但是不希望fastNLP自动padding或需要使用特定的padding方式,请参考\n", | |||
| "# http://www.fastnlp.top/docs/fastNLP/fastNLP.core.dataset.html\n", | |||
| "\n", | |||
| "print(data_bundle.get_dataset('train')[:2]) # 我们可以看一下当前dataset的内容" | |||
| "print(data_bundle.get_dataset('train')[:2]) # 我们可以看一下当前dataset的内容\n", | |||
| "\n", | |||
| "# 由于之后需要使用之前定义的BiLSTMMaxPoolCls模型,所以需要将words这个field修改为chars(因为该模型的forward接受chars参数)\n", | |||
| "data_bundle.rename_field('words', 'chars')" | |||
| ] | |||
| }, | |||
| { | |||
| @@ -985,9 +491,7 @@ | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": null, | |||
| "metadata": { | |||
| "collapsed": true | |||
| }, | |||
| "metadata": {}, | |||
| "outputs": [], | |||
| "source": [ | |||
| "from fastNLP.embeddings import StaticEmbedding\n", | |||
| @@ -999,11 +503,14 @@ | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": null, | |||
| "metadata": { | |||
| "collapsed": true | |||
| }, | |||
| "metadata": {}, | |||
| "outputs": [], | |||
| "source": [ | |||
| "from fastNLP import Trainer\n", | |||
| "from fastNLP import CrossEntropyLoss\n", | |||
| "from torch.optim import Adam\n", | |||
| "from fastNLP import AccuracyMetric\n", | |||
| "\n", | |||
| "# 初始化模型\n", | |||
| "model = BiLSTMMaxPoolCls(word2vec_embed, len(data_bundle.get_vocab('target')))\n", | |||
| "\n", | |||
| @@ -1024,6 +531,13 @@ | |||
| "tester = Tester(data=data_bundle.get_dataset('test'), model=model, metrics=metric, batch_size=64, device=device)\n", | |||
| "tester.test()" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": null, | |||
| "metadata": {}, | |||
| "outputs": [], | |||
| "source": [] | |||
| } | |||
| ], | |||
| "metadata": { | |||
| @@ -1042,7 +556,7 @@ | |||
| "name": "python", | |||
| "nbconvert_exporter": "python", | |||
| "pygments_lexer": "ipython3", | |||
| "version": "3.6.10" | |||
| "version": "3.6.8" | |||
| } | |||
| }, | |||
| "nbformat": 4, | |||
| @@ -447,6 +447,7 @@ PS: 基于词进行文本分类 | |||
| from fastNLP import Vocabulary | |||
| model=FastHan() | |||
| # model.set_device('cuda') # 可以注视掉这一行增加速度 | |||
| # 定义分词处理操作 | |||
| def word_seg(ins): | |||
| @@ -459,6 +460,8 @@ PS: 基于词进行文本分类 | |||
| # apply函数将对内部的instance依次执行word_seg操作,并把其返回值放入到raw_words这个field | |||
| ds.apply(word_seg, new_field_name='raw_words') | |||
| # 除了apply函数,fastNLP还支持apply_field, apply_more(可同时创建多个field)等操作 | |||
| # 同时我们增加一个seq_len的field | |||
| ds.add_seq_len('raw_words') | |||
| vocab = Vocabulary() | |||
| @@ -500,11 +503,14 @@ PS: 基于词进行文本分类 | |||
| # | 0 | 15.4寸笔记本的键盘... | ['15.4', '寸', '笔... | [71, 72, 73, 74, ... | | |||
| # +--------+-----------------------+-----------------------+----------------------+ | |||
| # 由于之后需要使用之前定义的BiLSTMMaxPoolCls模型,所以需要将words这个field修改为chars | |||
| data_bundle.rename_field('words', 'chars') | |||
| 我们可以打印一下vocab看一下当前的词表内容 | |||
| .. code-block:: python | |||
| print(data_bundle.get_vocab('words')) | |||
| print(data_bundle.get_vocab('chars')) | |||
| # Vocabulary([选择, 珠江, 花园, 的, 原因]...) | |||
| (3) 选择预训练词向量 | |||
| @@ -520,7 +526,7 @@ PS: 基于词进行文本分类 | |||
| from fastNLP.embeddings import StaticEmbedding | |||
| word2vec_embed = StaticEmbedding(data_bundle.get_vocab('words'), model_dir_or_name='/path/to/Tencent_AILab_ChineseEmbedding.txt') | |||
| word2vec_embed = StaticEmbedding(data_bundle.get_vocab('chars'), model_dir_or_name='/path/to/Tencent_AILab_ChineseEmbedding.txt') | |||
| 再之后的模型定义与训练过程与上面是一致的,这里就不再赘述了。 | |||
| @@ -531,11 +531,11 @@ class DataSet(object): | |||
| | pad_value | 0 | | | |||
| +-------------+-------+-------+ | |||
| :param field_names: DataSet中field的名称 | |||
| :param is_input: field是否为input | |||
| :param is_target: field是否为target | |||
| :param ignore_type: 是否忽略该field的type, 一般仅在该field至少为input或target时才有意义 | |||
| :param pad_value: 该field的pad的值,仅在该field为input或target时有意义 | |||
| str field_names: DataSet中field的名称 | |||
| bool is_input: field是否为input | |||
| bool is_target: field是否为target | |||
| bool ignore_type: 是否忽略该field的type, 一般仅在该field至少为input或target时才有意义 | |||
| int pad_value: 该field的pad的值,仅在该field为input或target时有意义 | |||
| :return: | |||
| """ | |||
| if len(self.field_arrays)>0: | |||
| @@ -1146,3 +1146,40 @@ class DataSet(object): | |||
| def _collate_batch(self, ins_list): | |||
| return self.collater.collate_batch(ins_list) | |||
| def concat(self, dataset, inplace=True, field_mapping=None): | |||
| """ | |||
| 将当前dataset与输入的dataset结合成一个更大的dataset,需要保证两个dataset都包含了相同的field。结合后的dataset的input,target | |||
| 以及collate_fn以当前dataset为准。当dataset中包含的field多于当前的dataset,则多余的field会被忽略;若dataset中未包含所有 | |||
| 当前dataset含有field,则会报错。 | |||
| :param DataSet, dataset: 需要和当前dataset concat的dataset | |||
| :param bool, inplace: 是否直接将dataset组合到当前dataset中 | |||
| :param dict, field_mapping: 当dataset中的field名称和当前dataset不一致时,需要通过field_mapping把输入的dataset中的field | |||
| 名称映射到当前field. field_mapping为dict类型,key为dataset中的field名称,value是需要映射成的名称 | |||
| :return: DataSet | |||
| """ | |||
| assert isinstance(dataset, DataSet), "Can only concat two datasets." | |||
| fns_in_this_dataset = set(self.get_field_names()) | |||
| fns_in_other_dataset = dataset.get_field_names() | |||
| reverse_field_mapping = {} | |||
| if field_mapping is not None: | |||
| fns_in_other_dataset = [field_mapping.get(fn, fn) for fn in fns_in_other_dataset] | |||
| reverse_field_mapping = {v:k for k, v in field_mapping.items()} | |||
| fns_in_other_dataset = set(fns_in_other_dataset) | |||
| fn_not_seen = list(fns_in_this_dataset - fns_in_other_dataset) | |||
| if fn_not_seen: | |||
| raise RuntimeError(f"The following fields are not provided in the dataset:{fn_not_seen}") | |||
| if inplace: | |||
| ds = self | |||
| else: | |||
| ds = deepcopy(self) | |||
| for fn in fns_in_this_dataset: | |||
| ds.get_field(fn).content.extend(deepcopy(dataset.get_field(reverse_field_mapping.get(fn, fn)).content)) | |||
| return ds | |||
| @@ -13,6 +13,7 @@ import torch | |||
| from torch import nn as nn | |||
| from .embedding import TokenEmbedding | |||
| from .utils import _check_vocab_has_same_index | |||
| class StackEmbedding(TokenEmbedding): | |||
| @@ -44,8 +45,9 @@ class StackEmbedding(TokenEmbedding): | |||
| vocabs.append(embed.get_word_vocab()) | |||
| _vocab = vocabs[0] | |||
| for vocab in vocabs[1:]: | |||
| assert vocab == _vocab, "All embeddings in StackEmbedding should use the same word vocabulary." | |||
| if _vocab!=vocab: | |||
| _check_vocab_has_same_index(_vocab, vocab) | |||
| super(StackEmbedding, self).__init__(_vocab, word_dropout=word_dropout, dropout=dropout) | |||
| assert isinstance(embeds, list) | |||
| for embed in embeds: | |||
| @@ -60,6 +62,7 @@ class StackEmbedding(TokenEmbedding): | |||
| :return: | |||
| """ | |||
| assert isinstance(embed, TokenEmbedding) | |||
| _check_vocab_has_same_index(self.get_word_vocab(), embed.get_word_vocab()) | |||
| self._embed_size += embed.embed_size | |||
| self.embeds.append(embed) | |||
| return self | |||
| @@ -81,7 +81,7 @@ class StaticEmbedding(TokenEmbedding): | |||
| init_method=None, lower=False, dropout=0, word_dropout=0, normalize=False, min_freq=1, **kwargs): | |||
| r""" | |||
| :param vocab: Vocabulary. 若该项为None则会读取所有的embedding。 | |||
| :param Vocabulary vocab: 词表. StaticEmbedding只会加载包含在词表中的词的词向量,在预训练向量中没找到的使用随机初始化 | |||
| :param model_dir_or_name: 可以有两种方式调用预训练好的static embedding:第一种是传入embedding文件夹(文件夹下应该只有一个 | |||
| 以.txt作为后缀的文件)或文件路径;第二种是传入embedding的名称,第二种情况将自动查看缓存中是否存在该模型,没有的话将自动下载。 | |||
| 如果输入为None则使用embedding_dim的维度随机初始化一个embedding。 | |||
| @@ -89,3 +89,16 @@ def get_sinusoid_encoding_table(n_position, d_hid, padding_idx=None): | |||
| return torch.FloatTensor(sinusoid_table) | |||
| def _check_vocab_has_same_index(vocab, other_vocab): | |||
| """ | |||
| 检查两个vocabulary是否含有相同的word idx | |||
| :param Vocabulary vocab: | |||
| :param Vocabulary other_vocab: | |||
| :return: | |||
| """ | |||
| if other_vocab != vocab: | |||
| for word, word_ix in vocab: | |||
| other_word_idx = other_vocab.to_index(word) | |||
| assert other_word_idx == word_ix, f"Word {word} has different index in vocabs, {word_ix} Vs. {other_word_idx}." | |||
| @@ -34,56 +34,3 @@ class NaiveClassifier(BaseModel): | |||
| def predict(self, x): | |||
| return {"predict": torch.sigmoid(self.mlp(x)) > 0.5} | |||
| class NaiveClassifier2(BaseModel): | |||
| r""" | |||
| 一个简单的分类器例子,可用于各种测试 | |||
| """ | |||
| def __init__(self, in_feature_dim, out_feature_dim): | |||
| super(NaiveClassifier2, self).__init__() | |||
| self.mlp = MLP([in_feature_dim, in_feature_dim, out_feature_dim]) | |||
| def forward(self, x): | |||
| return {"predict": self.mlp(x)} | |||
| def predict(self, x): | |||
| return {"predict": torch.sigmoid(self.mlp(x)) > 0.5} | |||
| class NaiveClassifier3(BaseModel): | |||
| r""" | |||
| 一个简单的分类器例子,可用于各种测试 | |||
| """ | |||
| def __init__(self, in_feature_dim, out_feature_dim): | |||
| super(NaiveClassifier3, self).__init__() | |||
| self.mlp = MLP([in_feature_dim, in_feature_dim, out_feature_dim]) | |||
| @torch.cuda.amp.autocast() | |||
| def forward(self, x): | |||
| return {"predict": self.mlp(x)} | |||
| @torch.cuda.amp.autocast() | |||
| def predict(self, x): | |||
| return {"predict": torch.sigmoid(self.mlp(x)) > 0.5} | |||
| class NaiveClassifier4(BaseModel): | |||
| r""" | |||
| 一个简单的分类器例子,可用于各种测试 | |||
| """ | |||
| def __init__(self, in_feature_dim, out_feature_dim): | |||
| super(NaiveClassifier4, self).__init__() | |||
| self.mlp = MLP([in_feature_dim, in_feature_dim, out_feature_dim]) | |||
| def forward(self, x): | |||
| with torch.cuda.amp.autocast(): | |||
| return {"predict": self.mlp(x)} | |||
| def predict(self, x): | |||
| with torch.cuda.amp.autocast(): | |||
| return {"predict": torch.sigmoid(self.mlp(x)) > 0.5} | |||
| @@ -464,6 +464,24 @@ class BertModel(nn.Module): | |||
| logger.info('DistilBert has NOT pooler, will use hidden states of [CLS] token as pooled output.') | |||
| self.apply(self.init_bert_weights) | |||
| @property | |||
| def dtype(self): | |||
| """ | |||
| :obj:`torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype). | |||
| """ | |||
| try: | |||
| return next(self.parameters()).dtype | |||
| except StopIteration: | |||
| # For nn.DataParallel compatibility in PyTorch 1.5 | |||
| def find_tensor_attributes(module: nn.Module): | |||
| tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)] | |||
| return tuples | |||
| gen = self._named_members(get_members_fn=find_tensor_attributes) | |||
| first_tuple = next(gen) | |||
| return first_tuple[1].dtype | |||
| def init_bert_weights(self, module): | |||
| r""" Initialize the weights. | |||
| """ | |||
| @@ -477,7 +495,8 @@ class BertModel(nn.Module): | |||
| if isinstance(module, nn.Linear) and module.bias is not None: | |||
| module.bias.data.zero_() | |||
| def forward(self, input_ids, token_type_ids=None, attention_mask=None, output_all_encoded_layers=True): | |||
| def forward(self, input_ids, token_type_ids=None, attention_mask=None, output_all_encoded_layers=True, | |||
| position_ids=None): | |||
| """ | |||
| :param torch.LongTensor input_ids: bsz x max_len的输入id | |||
| @@ -485,6 +504,7 @@ class BertModel(nn.Module): | |||
| :param attention_mask: 需要attend的为1,不需要为0 | |||
| :param bool output_all_encoded_layers: 是否输出所有层,默认输出token embedding(包含bpe, position以及type embedding) | |||
| 及每一层的hidden states。如果为False,只输出最后一层的结果 | |||
| :param torch.LongTensor position_ids: bsz x max_len, position的id | |||
| :return: encode_layers: 如果output_all_encoded_layers为True,返回list(共num_layers+1个元素),每个元素为 | |||
| bsz x max_len x hidden_size否则返回bsz x max_len x hidden_size的tensor; | |||
| pooled_output: bsz x hidden_size为cls的表示,可以用于句子的分类 | |||
| @@ -506,10 +526,12 @@ class BertModel(nn.Module): | |||
| # positions we want to attend and -10000.0 for masked positions. | |||
| # Since we are adding it to the raw scores before the softmax, this is | |||
| # effectively the same as removing these entirely. | |||
| extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility | |||
| # this will case an issue when DataParallel: https://github.com/pytorch/pytorch/issues/40457#issuecomment-648396469 | |||
| # extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility | |||
| extended_attention_mask = extended_attention_mask.to(self.dtype) | |||
| extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 | |||
| embedding_output = self.embeddings(input_ids, token_type_ids) | |||
| embedding_output = self.embeddings(input_ids, token_type_ids=token_type_ids, position_ids=position_ids) | |||
| encoded_layers = self.encoder(embedding_output, | |||
| extended_attention_mask, | |||
| output_all_encoded_layers=output_all_encoded_layers) | |||
| @@ -787,6 +787,24 @@ class GPT2Model(GPT2PreTrainedModel): | |||
| for layer, heads in heads_to_prune.items(): | |||
| self.h[layer].attn.prune_heads(heads) | |||
| @property | |||
| def dtype(self): | |||
| """ | |||
| :obj:`torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype). | |||
| """ | |||
| try: | |||
| return next(self.parameters()).dtype | |||
| except StopIteration: | |||
| # For nn.DataParallel compatibility in PyTorch 1.5 | |||
| def find_tensor_attributes(module: nn.Module): | |||
| tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)] | |||
| return tuples | |||
| gen = self._named_members(get_members_fn=find_tensor_attributes) | |||
| first_tuple = next(gen) | |||
| return first_tuple[1].dtype | |||
| def forward(self, input_ids, state=None, attention_mask=None, token_type_ids=None, position_ids=None, | |||
| head_mask=None, output_attentions=True): | |||
| """ | |||
| @@ -834,7 +852,9 @@ class GPT2Model(GPT2PreTrainedModel): | |||
| # positions we want to attend and -10000.0 for masked positions. | |||
| # Since we are adding it to the raw scores before the softmax, this is | |||
| # effectively the same as removing these entirely. | |||
| attention_mask = attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility | |||
| # this will case an issue when DataParallel: https://github.com/pytorch/pytorch/issues/40457#issuecomment-648396469 | |||
| # attention_mask = attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility | |||
| attention_mask = attention_mask.to(self.dtype) | |||
| attention_mask = (1.0 - attention_mask) * -10000.0 | |||
| # attention_mask = attention_mask.masked_fill(attention_mask.eq(0), -10000.0) | |||
| @@ -39,7 +39,7 @@ class RobertaEmbeddings(BertEmbeddings): | |||
| config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx | |||
| ) | |||
| def forward(self, input_ids, token_type_ids, words_embeddings=None): | |||
| def forward(self, input_ids, token_type_ids, words_embeddings=None, **kwargs): | |||
| position_ids = self.create_position_ids_from_input_ids(input_ids) | |||
| return super().forward( | |||
| @@ -3,6 +3,5 @@ torch>=1.0.0 | |||
| tqdm>=4.28.1 | |||
| prettytable>=0.7.2 | |||
| requests | |||
| spacy | |||
| prettytable>=0.7.2 | |||
| regex!=2019.12.17 | |||
| @@ -268,6 +268,57 @@ class TestDataSetMethods(unittest.TestCase): | |||
| with self.assertRaises(RuntimeError) as RE: | |||
| ds.add_field('test', []) | |||
| def test_concat(self): | |||
| """ | |||
| 测试两个dataset能否正确concat | |||
| """ | |||
| ds1 = DataSet({"x": [[1, 2, 3, 4] for i in range(10)], "y": [[5, 6] for i in range(10)]}) | |||
| ds2 = DataSet({"x": [[4,3,2,1] for i in range(10)], "y": [[6,5] for i in range(10)]}) | |||
| ds3 = ds1.concat(ds2) | |||
| self.assertEqual(len(ds3), 20) | |||
| self.assertListEqual(ds1[9]['x'], [1, 2, 3, 4]) | |||
| self.assertListEqual(ds1[10]['x'], [4,3,2,1]) | |||
| ds2[0]['x'][0] = 100 | |||
| self.assertEqual(ds3[10]['x'][0], 4) # 不改变copy后的field了 | |||
| ds3[10]['x'][0] = -100 | |||
| self.assertEqual(ds2[0]['x'][0], 100) # 不改变copy前的field了 | |||
| # 测试inplace | |||
| ds1 = DataSet({"x": [[1, 2, 3, 4] for i in range(10)], "y": [[5, 6] for i in range(10)]}) | |||
| ds2 = DataSet({"x": [[4, 3, 2, 1] for i in range(10)], "y": [[6, 5] for i in range(10)]}) | |||
| ds3 = ds1.concat(ds2, inplace=True) | |||
| ds2[0]['x'][0] = 100 | |||
| self.assertEqual(ds3[10]['x'][0], 4) # 不改变copy后的field了 | |||
| ds3[10]['x'][0] = -100 | |||
| self.assertEqual(ds2[0]['x'][0], 100) # 不改变copy前的field了 | |||
| ds3[0]['x'][0] = 100 | |||
| self.assertEqual(ds1[0]['x'][0], 100) # 改变copy前的field了 | |||
| # 测试mapping | |||
| ds1 = DataSet({"x": [[1, 2, 3, 4] for i in range(10)], "y": [[5, 6] for i in range(10)]}) | |||
| ds2 = DataSet({"X": [[4, 3, 2, 1] for i in range(10)], "Y": [[6, 5] for i in range(10)]}) | |||
| ds3 = ds1.concat(ds2, field_mapping={'X':'x', 'Y':'y'}) | |||
| self.assertEqual(len(ds3), 20) | |||
| # 测试忽略掉多余的 | |||
| ds1 = DataSet({"x": [[1, 2, 3, 4] for i in range(10)], "y": [[5, 6] for i in range(10)]}) | |||
| ds2 = DataSet({"X": [[4, 3, 2, 1] for i in range(10)], "Y": [[6, 5] for i in range(10)], 'Z':[0]*10}) | |||
| ds3 = ds1.concat(ds2, field_mapping={'X':'x', 'Y':'y'}) | |||
| # 测试报错 | |||
| ds1 = DataSet({"x": [[1, 2, 3, 4] for i in range(10)], "y": [[5, 6] for i in range(10)]}) | |||
| ds2 = DataSet({"X": [[4, 3, 2, 1] for i in range(10)]}) | |||
| with self.assertRaises(RuntimeError): | |||
| ds3 = ds1.concat(ds2, field_mapping={'X':'x'}) | |||
| class TestDataSetIter(unittest.TestCase): | |||
| def test__repr__(self): | |||
| @@ -14,8 +14,12 @@ from fastNLP import CrossEntropyLoss | |||
| from fastNLP import AccuracyMetric | |||
| from fastNLP import SGD | |||
| from fastNLP import Trainer | |||
| from fastNLP.models.base_model import NaiveClassifier, NaiveClassifier2, NaiveClassifier3, NaiveClassifier4 | |||
| from fastNLP.models.base_model import NaiveClassifier | |||
| from fastNLP import TorchLoaderIter | |||
| from fastNLP.models import BaseModel | |||
| from fastNLP.modules import MLP | |||
| from pkg_resources import parse_version | |||
| def prepare_fake_dataset(): | |||
| @@ -577,6 +581,22 @@ class TrainerTestGround(unittest.TestCase): | |||
| """ | |||
| class NaiveClassifier2(BaseModel): | |||
| r""" | |||
| 一个简单的分类器例子,可用于各种测试 | |||
| """ | |||
| def __init__(self, in_feature_dim, out_feature_dim): | |||
| super(NaiveClassifier2, self).__init__() | |||
| self.mlp = MLP([in_feature_dim, in_feature_dim, out_feature_dim]) | |||
| def forward(self, x): | |||
| return {"predict": self.mlp(x)} | |||
| def predict(self, x): | |||
| return {"predict": torch.sigmoid(self.mlp(x)) > 0.5} | |||
| class Fp16TrainerTest(unittest.TestCase): | |||
| def test_raise_error(self): | |||
| data_set = prepare_fake_dataset() | |||
| @@ -605,7 +625,7 @@ class Fp16TrainerTest(unittest.TestCase): | |||
| metrics=AccuracyMetric(pred="predict", target="y"), validate_every=-1, save_path=None, | |||
| use_tqdm=True, check_code_level=2, fp16=True, device=torch.device('cpu')) | |||
| @unittest.skipIf(torch.cuda.is_available()==False, "Skip when no cuda device detch") | |||
| @unittest.skipIf(torch.cuda.is_available()==False or parse_version(torch.__version__) < parse_version('1.6'), "Skip when no cuda device detch") | |||
| def test_run_fp16(self): | |||
| data_set = prepare_fake_dataset() | |||
| data_set.set_input("x", flag=True) | |||
| @@ -627,7 +647,7 @@ class Fp16TrainerTest(unittest.TestCase): | |||
| use_tqdm=True, check_code_level=2, fp16=True, device=0, test_use_fp16=False) | |||
| trainer.train(load_best_model=False) | |||
| @unittest.skipIf(torch.cuda.device_count()<2, "Skip when lower than 1 gpus.") | |||
| @unittest.skipIf(torch.cuda.device_count()<2 or parse_version(torch.__version__) < parse_version('1.6'), "Skip when lower than 1 gpus.") | |||
| def test_run_data_parallel(self): | |||
| data_set = prepare_fake_dataset() | |||
| data_set.set_input("x", flag=True) | |||
| @@ -635,6 +655,21 @@ class Fp16TrainerTest(unittest.TestCase): | |||
| train_set, dev_set = data_set.split(0.3) | |||
| class NaiveClassifier2(BaseModel): | |||
| r""" | |||
| 一个简单的分类器例子,可用于各种测试 | |||
| """ | |||
| def __init__(self, in_feature_dim, out_feature_dim): | |||
| super(NaiveClassifier2, self).__init__() | |||
| self.mlp = MLP([in_feature_dim, in_feature_dim, out_feature_dim]) | |||
| def forward(self, x): | |||
| return {"predict": self.mlp(x)} | |||
| def predict(self, x): | |||
| return {"predict": torch.sigmoid(self.mlp(x)) > 0.5} | |||
| model = NaiveClassifier2(2, 1) | |||
| with self.assertRaises(RuntimeError): | |||
| trainer = Trainer(train_set, model, optimizer=SGD(lr=0.1), loss=BCEWithLogits(pred="predict", target="y"), | |||
| @@ -643,12 +678,46 @@ class Fp16TrainerTest(unittest.TestCase): | |||
| use_tqdm=True, check_code_level=2, fp16=True, device=[0, 1]) | |||
| with self.assertRaises(RuntimeError): | |||
| class NaiveClassifier3(BaseModel): | |||
| r""" | |||
| 一个简单的分类器例子,可用于各种测试 | |||
| """ | |||
| def __init__(self, in_feature_dim, out_feature_dim): | |||
| super(NaiveClassifier3, self).__init__() | |||
| self.mlp = MLP([in_feature_dim, in_feature_dim, out_feature_dim]) | |||
| @torch.cuda.amp.autocast() | |||
| def forward(self, x): | |||
| return {"predict": self.mlp(x)} | |||
| @torch.cuda.amp.autocast() | |||
| def predict(self, x): | |||
| return {"predict": torch.sigmoid(self.mlp(x)) > 0.5} | |||
| model = NaiveClassifier3(2, 1) | |||
| trainer = Trainer(train_set, model, optimizer=SGD(lr=0.1), loss=BCEWithLogits(pred="predict", target="y"), | |||
| batch_size=32, n_epochs=10, print_every=50, dev_data=dev_set, | |||
| metrics=AccuracyMetric(pred="predict", target="y"), validate_every=-1, save_path=None, | |||
| use_tqdm=True, check_code_level=2, fp16=True, device=[0, 1], test_use_fp16=True) | |||
| class NaiveClassifier4(BaseModel): | |||
| r""" | |||
| 一个简单的分类器例子,可用于各种测试 | |||
| """ | |||
| def __init__(self, in_feature_dim, out_feature_dim): | |||
| super(NaiveClassifier4, self).__init__() | |||
| self.mlp = MLP([in_feature_dim, in_feature_dim, out_feature_dim]) | |||
| def forward(self, x): | |||
| with torch.cuda.amp.autocast(): | |||
| return {"predict": self.mlp(x)} | |||
| def predict(self, x): | |||
| with torch.cuda.amp.autocast(): | |||
| return {"predict": torch.sigmoid(self.mlp(x)) > 0.5} | |||
| model = NaiveClassifier4(2, 1) | |||
| trainer = Trainer(train_set, model, optimizer=SGD(lr=0.1), loss=BCEWithLogits(pred="predict", target="y"), | |||
| batch_size=32, n_epochs=10, print_every=50, dev_data=dev_set, | |||
| @@ -31,29 +31,33 @@ class TestDownload(unittest.TestCase): | |||
| class TestBertEmbedding(unittest.TestCase): | |||
| def test_bert_embedding_1(self): | |||
| vocab = Vocabulary().add_word_lst("this is a test . [SEP] NotInBERT".split()) | |||
| embed = BertEmbedding(vocab, model_dir_or_name='tests/data_for_tests/embedding/small_bert', word_dropout=0.1) | |||
| requires_grad = embed.requires_grad | |||
| embed.requires_grad = not requires_grad | |||
| embed.train() | |||
| words = torch.LongTensor([[2, 3, 4, 0]]) | |||
| result = embed(words) | |||
| self.assertEqual(result.size(), (1, 4, 16)) | |||
| embed = BertEmbedding(vocab, model_dir_or_name='tests/data_for_tests/embedding/small_bert', word_dropout=0.1) | |||
| embed.eval() | |||
| words = torch.LongTensor([[2, 3, 4, 0]]) | |||
| result = embed(words) | |||
| self.assertEqual(result.size(), (1, 4, 16)) | |||
| # 自动截断而不报错 | |||
| embed = BertEmbedding(vocab, model_dir_or_name='tests/data_for_tests/embedding/small_bert', word_dropout=0.1, | |||
| auto_truncate=True) | |||
| words = torch.LongTensor([[2, 3, 4, 1]*10, | |||
| [2, 3]+[0]*38]) | |||
| result = embed(words) | |||
| self.assertEqual(result.size(), (2, 40, 16)) | |||
| for pool_method in ['first', 'last', 'max', 'avg']: | |||
| with self.subTest(pool_method=pool_method): | |||
| vocab = Vocabulary().add_word_lst("this is a test . [SEP] NotInBERT".split()) | |||
| embed = BertEmbedding(vocab, model_dir_or_name='tests/data_for_tests/embedding/small_bert', word_dropout=0.1, | |||
| pool_method=pool_method) | |||
| requires_grad = embed.requires_grad | |||
| embed.requires_grad = not requires_grad | |||
| embed.train() | |||
| words = torch.LongTensor([[2, 3, 4, 0]]) | |||
| result = embed(words) | |||
| self.assertEqual(result.size(), (1, 4, 16)) | |||
| embed = BertEmbedding(vocab, model_dir_or_name='tests/data_for_tests/embedding/small_bert', word_dropout=0.1, | |||
| pool_method=pool_method) | |||
| embed.eval() | |||
| words = torch.LongTensor([[2, 3, 4, 0]]) | |||
| result = embed(words) | |||
| self.assertEqual(result.size(), (1, 4, 16)) | |||
| # 自动截断而不报错 | |||
| embed = BertEmbedding(vocab, model_dir_or_name='tests/data_for_tests/embedding/small_bert', word_dropout=0.1, | |||
| auto_truncate=True, pool_method=pool_method) | |||
| words = torch.LongTensor([[2, 3, 4, 1]*10, | |||
| [2, 3]+[0]*38]) | |||
| result = embed(words) | |||
| self.assertEqual(result.size(), (2, 40, 16)) | |||
| def test_save_load(self): | |||
| bert_save_test = 'bert_save_test' | |||
| @@ -18,3 +18,16 @@ class TestCharEmbed(unittest.TestCase): | |||
| y = embed(x) | |||
| self.assertEqual(tuple(y.size()), (2, 3, 130)) | |||
| def test_case_2(self): | |||
| # 测试只需要拥有一样的index就可以concat | |||
| ds = DataSet([Instance(words=['hello', 'world']), Instance(words=['hello', 'Jack'])]) | |||
| vocab1 = Vocabulary().from_dataset(ds, field_name='words') | |||
| vocab2 = Vocabulary().from_dataset(ds, field_name='words') | |||
| self.assertEqual(len(vocab1), 5) | |||
| cnn_embed = CNNCharEmbedding(vocab1, embed_size=60) | |||
| lstm_embed = LSTMCharEmbedding(vocab2, embed_size=70) | |||
| embed = StackEmbedding([cnn_embed, lstm_embed]) | |||
| x = torch.LongTensor([[2, 1, 0], [4, 3, 4]]) | |||
| y = embed(x) | |||
| self.assertEqual(tuple(y.size()), (2, 3, 130)) | |||
| @@ -74,6 +74,7 @@ class TestRunMatchingPipe(unittest.TestCase): | |||
| name, vocabs = y | |||
| self.assertEqual(x + 1 if name == 'words' else x, len(vocabs)) | |||
| @unittest.skipIf('TRAVIS' in os.environ, "Skip in travis") | |||
| def test_spacy(self): | |||
| data_set_dict = { | |||
| 'Quora': ('tests/data_for_tests/io/Quora', QuoraPipe, QuoraBertPipe, (2, 2, 2), (93, 2)), | |||