|
|
@@ -498,7 +498,7 @@ class TestClassfiyFPreRecMetric(unittest.TestCase): |
|
|
|
metric = ClassifyFPreRecMetric(f_type='micro') |
|
|
|
metric.evaluate(pred, target) |
|
|
|
result_dict = metric.get_metric(reset=True) |
|
|
|
ground_truth = {'f': 0.85022, 'pre': 0.853982, 'rec': 0.846491} |
|
|
|
ground_truth = {'f': 0.84375, 'pre': 0.84375, 'rec': 0.84375} |
|
|
|
for keys in ['f', 'pre', 'rec']: |
|
|
|
self.assertAlmostEqual(result_dict[keys], ground_truth[keys], delta=0.0001) |
|
|
|
|
|
|
@@ -507,8 +507,8 @@ class TestClassfiyFPreRecMetric(unittest.TestCase): |
|
|
|
result_dict = metric.get_metric(reset=True) |
|
|
|
ground_truth = {'f-0': 0.857143, 'pre-0': 0.75, 'rec-0': 1.0, 'f-1': 0.875, 'pre-1': 0.777778, 'rec-1': 1.0, |
|
|
|
'f-2': 0.75, 'pre-2': 0.75, 'rec-2': 0.75, 'f-3': 0.857143, 'pre-3': 0.857143, |
|
|
|
'rec-3': 0.857143, 'f-4': 0.842105, 'pre-4': 1.0, 'rec-4': 0.727273, 'f': 0.85022, |
|
|
|
'pre': 0.853982, 'rec': 0.846491} |
|
|
|
'rec-3': 0.857143, 'f-4': 0.842105, 'pre-4': 1.0, 'rec-4': 0.727273, 'f': 0.84375, |
|
|
|
'pre': 0.84375, 'rec': 0.84375} |
|
|
|
for keys in ground_truth.keys(): |
|
|
|
self.assertAlmostEqual(result_dict[keys], ground_truth[keys], delta=0.0001) |
|
|
|
|