diff --git a/reproduction/matching/matching.py b/reproduction/matching/matching.py deleted file mode 100644 index 8251b3bc..00000000 --- a/reproduction/matching/matching.py +++ /dev/null @@ -1,44 +0,0 @@ -import os - -import torch - -from fastNLP.core import Trainer, Tester, Adam, AccuracyMetric, Const - -from fastNLP.io.dataset_loader import MatchingLoader - -from reproduction.matching.model.bert import BertForNLI -from reproduction.matching.model.esim import ESIMModel - - -bert_dirs = 'path/to/bert/dir' - -# load data set -# data_info = MatchingLoader(data_format='snli', for_model='bert', bert_dir=bert_dirs).process(... -data_info = MatchingLoader(data_format='snli', for_model='esim').process( - {'train': './data/snli/snli_1.0_train.jsonl', - 'dev': './data/snli/snli_1.0_dev.jsonl', - 'test': './data/snli/snli_1.0_test.jsonl'}, - input_field=[Const.TARGET] -) - -# model = BertForNLI(bert_dir=bert_dirs) -model = ESIMModel(data_info.embeddings['elmo'],) - -trainer = Trainer(train_data=data_info.datasets['train'], model=model, - optimizer=Adam(lr=1e-4, model_params=model.parameters()), - batch_size=torch.cuda.device_count() * 24, n_epochs=20, print_every=-1, - dev_data=data_info.datasets['dev'], - metrics=AccuracyMetric(), metric_key='acc', device=[i for i in range(torch.cuda.device_count())], - check_code_level=-1) -trainer.train(load_best_model=True) - -tester = Tester( - data=data_info.datasets['test'], - model=model, - metrics=AccuracyMetric(), - batch_size=torch.cuda.device_count() * 12, - device=[i for i in range(torch.cuda.device_count())], -) -tester.test() - -