Browse Source

Merge branch 'dev0.4.0' of github.com:fastnlp/fastNLP into dev0.4.0

tags/v0.4.10
yh_cc 6 years ago
parent
commit
b80f018c69
64 changed files with 1167 additions and 941 deletions
  1. +0
    -7
      docs/source/fastNLP.models.base_model.rst
  2. +0
    -7
      docs/source/fastNLP.models.bert.rst
  3. +0
    -7
      docs/source/fastNLP.models.enas_controller.rst
  4. +0
    -7
      docs/source/fastNLP.models.enas_model.rst
  5. +0
    -7
      docs/source/fastNLP.models.enas_trainer.rst
  6. +0
    -7
      docs/source/fastNLP.models.enas_utils.rst
  7. +0
    -6
      docs/source/fastNLP.models.rst
  8. +1
    -1
      docs/source/fastNLP.modules.decoder.crf.rst
  9. +1
    -1
      docs/source/fastNLP.modules.decoder.mlp.rst
  10. +2
    -2
      docs/source/fastNLP.modules.decoder.rst
  11. +2
    -2
      fastNLP/__init__.py
  12. +11
    -8
      fastNLP/core/batch.py
  13. +6
    -2
      fastNLP/core/callback.py
  14. +6
    -3
      fastNLP/core/dataset.py
  15. +53
    -45
      fastNLP/core/field.py
  16. +3
    -1
      fastNLP/core/instance.py
  17. +12
    -1
      fastNLP/core/losses.py
  18. +106
    -98
      fastNLP/core/metrics.py
  19. +14
    -6
      fastNLP/core/optimizer.py
  20. +6
    -1
      fastNLP/core/predictor.py
  21. +7
    -3
      fastNLP/core/sampler.py
  22. +16
    -12
      fastNLP/core/tester.py
  23. +7
    -5
      fastNLP/core/trainer.py
  24. +86
    -72
      fastNLP/core/utils.py
  25. +16
    -0
      fastNLP/core/vocabulary.py
  26. +2
    -1
      fastNLP/io/__init__.py
  27. +13
    -6
      fastNLP/io/base_loader.py
  28. +36
    -28
      fastNLP/io/config_io.py
  29. +1
    -0
      fastNLP/io/dataset_loader.py
  30. +30
    -26
      fastNLP/io/embed_loader.py
  31. +10
    -5
      fastNLP/io/model_io.py
  32. +18
    -2
      fastNLP/models/__init__.py
  33. +6
    -6
      fastNLP/models/base_model.py
  34. +87
    -70
      fastNLP/models/biaffine_parser.py
  35. +8
    -7
      fastNLP/models/cnn_text_classification.py
  36. +1
    -0
      fastNLP/models/enas_controller.py
  37. +71
    -68
      fastNLP/models/enas_model.py
  38. +69
    -72
      fastNLP/models/enas_trainer.py
  39. +0
    -3
      fastNLP/models/enas_utils.py
  40. +13
    -5
      fastNLP/models/sequence_labeling.py
  41. +33
    -30
      fastNLP/models/snli.py
  42. +41
    -28
      fastNLP/models/star_transformer.py
  43. +21
    -15
      fastNLP/modules/__init__.py
  44. +7
    -7
      fastNLP/modules/aggregator/__init__.py
  45. +36
    -26
      fastNLP/modules/aggregator/attention.py
  46. +7
    -2
      fastNLP/modules/aggregator/pooling.py
  47. +5
    -5
      fastNLP/modules/decoder/__init__.py
  48. +52
    -47
      fastNLP/modules/decoder/crf.py
  49. +15
    -27
      fastNLP/modules/decoder/mlp.py
  50. +13
    -10
      fastNLP/modules/decoder/utils.py
  51. +4
    -2
      fastNLP/modules/dropout.py
  52. +25
    -8
      fastNLP/modules/encoder/__init__.py
  53. +22
    -9
      fastNLP/modules/encoder/char_encoder.py
  54. +15
    -13
      fastNLP/modules/encoder/conv_maxpool.py
  55. +11
    -7
      fastNLP/modules/encoder/embedding.py
  56. +8
    -2
      fastNLP/modules/encoder/lstm.py
  57. +39
    -32
      fastNLP/modules/encoder/star_transformer.py
  58. +10
    -6
      fastNLP/modules/encoder/transformer.py
  59. +71
    -43
      fastNLP/modules/encoder/variational_rnn.py
  60. +1
    -1
      fastNLP/modules/utils.py
  61. +3
    -3
      reproduction/Chinese_word_segmentation/models/cws_model.py
  62. +2
    -2
      reproduction/Chinese_word_segmentation/models/cws_transformer.py
  63. +1
    -1
      reproduction/LSTM+self_attention_sentiment_analysis/main.py
  64. +5
    -5
      test/modules/decoder/test_CRF.py

+ 0
- 7
docs/source/fastNLP.models.base_model.rst View File

@@ -1,7 +0,0 @@
fastNLP.models.base\_model
==========================

.. automodule:: fastNLP.models.base_model
:members:
:undoc-members:
:show-inheritance:

+ 0
- 7
docs/source/fastNLP.models.bert.rst View File

@@ -1,7 +0,0 @@
fastNLP.models.bert
===================

.. automodule:: fastNLP.models.bert
:members:
:undoc-members:
:show-inheritance:

+ 0
- 7
docs/source/fastNLP.models.enas_controller.rst View File

@@ -1,7 +0,0 @@
fastNLP.models.enas\_controller
===============================

.. automodule:: fastNLP.models.enas_controller
:members:
:undoc-members:
:show-inheritance:

+ 0
- 7
docs/source/fastNLP.models.enas_model.rst View File

@@ -1,7 +0,0 @@
fastNLP.models.enas\_model
==========================

.. automodule:: fastNLP.models.enas_model
:members:
:undoc-members:
:show-inheritance:

+ 0
- 7
docs/source/fastNLP.models.enas_trainer.rst View File

@@ -1,7 +0,0 @@
fastNLP.models.enas\_trainer
============================

.. automodule:: fastNLP.models.enas_trainer
:members:
:undoc-members:
:show-inheritance:

+ 0
- 7
docs/source/fastNLP.models.enas_utils.rst View File

@@ -1,7 +0,0 @@
fastNLP.models.enas\_utils
==========================

.. automodule:: fastNLP.models.enas_utils
:members:
:undoc-members:
:show-inheritance:

+ 0
- 6
docs/source/fastNLP.models.rst View File

@@ -12,14 +12,8 @@ fastNLP.models
.. toctree::
:titlesonly:

fastNLP.models.base_model
fastNLP.models.bert
fastNLP.models.biaffine_parser
fastNLP.models.cnn_text_classification
fastNLP.models.enas_controller
fastNLP.models.enas_model
fastNLP.models.enas_trainer
fastNLP.models.enas_utils
fastNLP.models.sequence_labeling
fastNLP.models.snli
fastNLP.models.star_transformer


docs/source/fastNLP.modules.decoder.CRF.rst → docs/source/fastNLP.modules.decoder.crf.rst View File

@@ -1,7 +1,7 @@
fastNLP.modules.decoder.CRF
===========================

.. automodule:: fastNLP.modules.decoder.CRF
.. automodule:: fastNLP.modules.decoder.crf
:members:
:undoc-members:
:show-inheritance:

docs/source/fastNLP.modules.decoder.MLP.rst → docs/source/fastNLP.modules.decoder.mlp.rst View File

@@ -1,7 +1,7 @@
fastNLP.modules.decoder.MLP
===========================

.. automodule:: fastNLP.modules.decoder.MLP
.. automodule:: fastNLP.modules.decoder.mlp
:members:
:undoc-members:
:show-inheritance:

+ 2
- 2
docs/source/fastNLP.modules.decoder.rst View File

@@ -12,7 +12,7 @@ fastNLP.modules.decoder
.. toctree::
:titlesonly:

fastNLP.modules.decoder.CRF
fastNLP.modules.decoder.MLP
fastNLP.modules.decoder.crf
fastNLP.modules.decoder.mlp
fastNLP.modules.decoder.utils


+ 2
- 2
fastNLP/__init__.py View File

@@ -52,8 +52,8 @@ __all__ = [
"cache_results"
]
__version__ = '0.4.0'

from .core import *
from . import models
from . import modules

__version__ = '0.4.0'

+ 11
- 8
fastNLP/core/batch.py View File

@@ -2,14 +2,18 @@
batch 模块实现了 fastNLP 所需的 Batch 类。

"""
__all__ = ["Batch"]
import numpy as np
import torch
__all__ = [
"Batch"
]

import atexit
from queue import Empty, Full

from .sampler import RandomSampler, Sampler
import numpy as np
import torch
import torch.multiprocessing as mp
from queue import Empty, Full

from .sampler import RandomSampler

_python_is_exit = False

@@ -120,7 +124,7 @@ class Batch(object):
:return list(int) indexes: 下标序列
"""
return self.cur_batch_indices
@staticmethod
def _run_fetch(batch, q):
try:
@@ -145,7 +149,7 @@ class Batch(object):
q.put(e)
finally:
q.join()
@staticmethod
def _run_batch_iter(batch):
q = mp.JoinableQueue(maxsize=10)
@@ -182,4 +186,3 @@ def _to_tensor(batch, dtype):
except:
pass
return batch


+ 6
- 2
fastNLP/core/callback.py View File

@@ -60,16 +60,20 @@ __all__ = [
"CallbackException",
"EarlyStopError"
]

import os

import torch
from ..io.model_io import ModelSaver, ModelLoader

try:
from tensorboardX import SummaryWriter
tensorboardX_flag = True
except:
tensorboardX_flag = False

from ..io.model_io import ModelSaver, ModelLoader


class Callback(object):
"""
@@ -587,7 +591,7 @@ class TensorboardCallback(Callback):
self._summary_writer = SummaryWriter(path)
else:
self._summary_writer = None
def on_batch_begin(self, batch_x, batch_y, indices):
if "model" in self.options and self.graph_added is False:
# tesorboardX 这里有大bug,暂时没法画模型图


+ 6
- 3
fastNLP/core/dataset.py View File

@@ -272,11 +272,14 @@


"""
__all__ = ["DataSet"]
__all__ = [
"DataSet"
]

import _pickle as pickle
import warnings

import numpy as np
import warnings

from .field import AutoPadder
from .field import FieldArray
@@ -863,4 +866,4 @@ class DataSet(object):
with open(path, 'rb') as f:
d = pickle.load(f)
assert isinstance(d, DataSet), "The object is not DataSet, but {}.".format(type(d))
return d
return d

+ 53
- 45
fastNLP/core/field.py View File

@@ -3,10 +3,16 @@ field模块实现了 FieldArray 和若干 Padder。 FieldArray 是 :class:`~fas
原理部分请参考 :doc:`fastNLP.core.dataset`

"""
__all__ = [
"FieldArray",
"Padder",
"AutoPadder",
"EngChar2DPadder"
]

from copy import deepcopy

import numpy as np
from copy import deepcopy


class FieldArray(object):
@@ -24,6 +30,7 @@ class FieldArray(object):
:param bool ignore_type: 是否忽略该field的type,一般如果这个field不需要转为torch.FloatTensor或torch.LongTensor,
就可以设置为True。具体意义请参考 :class:`~fastNLP.DataSet` 。
"""
def __init__(self, name, content, is_target=None, is_input=None, padder=None, ignore_type=False):
self.name = name
if isinstance(content, list):
@@ -41,7 +48,7 @@ class FieldArray(object):
raise TypeError("content in FieldArray can only be list or numpy.ndarray, got {}.".format(type(content)))
if len(content) == 0:
raise RuntimeError("Cannot initialize FieldArray with empty list.")
self.content = content # 1维 或 2维 或 3维 list, 形状可能不对齐
self.content_dim = None # 表示content是多少维的list
if padder is None:
@@ -51,27 +58,27 @@ class FieldArray(object):
padder = deepcopy(padder)
self.set_padder(padder)
self.ignore_type = ignore_type
self.BASIC_TYPES = (int, float, str) # content中可接受的Python基本类型,这里没有np.array
self.pytype = None
self.dtype = None
self._is_input = None
self._is_target = None
if is_input is not None or is_target is not None:
self.is_input = is_input
self.is_target = is_target
def _set_dtype(self):
if self.ignore_type is False:
self.pytype = self._type_detection(self.content)
self.dtype = self._map_to_np_type(self.pytype)
@property
def is_input(self):
return self._is_input
@is_input.setter
def is_input(self, value):
"""
@@ -80,11 +87,11 @@ class FieldArray(object):
if value is True:
self._set_dtype()
self._is_input = value
@property
def is_target(self):
return self._is_target
@is_target.setter
def is_target(self, value):
"""
@@ -93,7 +100,7 @@ class FieldArray(object):
if value is True:
self._set_dtype()
self._is_target = value
def _type_detection(self, content):
"""
当该field被设置为is_input或者is_target时被调用
@@ -101,9 +108,9 @@ class FieldArray(object):
"""
if len(content) == 0:
raise RuntimeError("Empty list in Field {}.".format(self.name))
type_set = set([type(item) for item in content])
if list in type_set:
if len(type_set) > 1:
# list 跟 非list 混在一起
@@ -139,7 +146,7 @@ class FieldArray(object):
self.name, self.BASIC_TYPES, content_type))
self.content_dim = 1
return self._basic_type_detection(type_set)
def _basic_type_detection(self, type_set):
"""
:param type_set: a set of Python types
@@ -158,7 +165,7 @@ class FieldArray(object):
else:
# str, int, float混在一起
raise RuntimeError("Mixed data types in Field {}: {}".format(self.name, list(type_set)))
def _1d_list_check(self, val):
"""如果不是1D list就报错
"""
@@ -168,7 +175,7 @@ class FieldArray(object):
self._basic_type_detection(type_set)
# otherwise: _basic_type_detection will raise error
return True
def _2d_list_check(self, val):
"""如果不是2D list 就报错
"""
@@ -181,15 +188,15 @@ class FieldArray(object):
inner_type_set.add(type(obj))
self._basic_type_detection(inner_type_set)
return True
@staticmethod
def _map_to_np_type(basic_type):
type_mapping = {int: np.int64, float: np.float64, str: np.str, np.ndarray: np.ndarray}
return type_mapping[basic_type]
def __repr__(self):
return "FieldArray {}: {}".format(self.name, self.content.__repr__())
def append(self, val):
"""将val append到这个field的尾部。如果这个field已经被设置为input或者target,则在append之前会检查该类型是否与已有
的内容是匹配的。
@@ -208,7 +215,7 @@ class FieldArray(object):
else:
raise RuntimeError(
"Unexpected data type {}. Should be list, np.array, or {}".format(type(val), self.BASIC_TYPES))
if self.is_input is True or self.is_target is True:
if type(val) == list:
if len(val) == 0:
@@ -231,14 +238,14 @@ class FieldArray(object):
raise RuntimeError(
"Unexpected data type {}. Should be list, np.array, or {}".format(type(val), self.BASIC_TYPES))
self.content.append(val)
def __getitem__(self, indices):
return self.get(indices, pad=False)
def __setitem__(self, idx, val):
assert isinstance(idx, int)
self.content[idx] = val
def get(self, indices, pad=True):
"""
根据给定的indices返回内容
@@ -251,13 +258,13 @@ class FieldArray(object):
return self.content[indices]
if self.is_input is False and self.is_target is False:
raise RuntimeError("Please specify either is_input or is_target is True for {}".format(self.name))
contents = [self.content[i] for i in indices]
if self.padder is None or pad is False:
return np.array(contents)
else:
return self.padder(contents, field_name=self.name, field_ele_dtype=self.dtype)
def set_padder(self, padder):
"""
设置padder,在这个field进行pad的时候用这个padder进行pad,如果为None则不进行pad。
@@ -269,7 +276,7 @@ class FieldArray(object):
self.padder = deepcopy(padder)
else:
self.padder = None
def set_pad_val(self, pad_val):
"""
修改padder的pad_val.
@@ -279,8 +286,7 @@ class FieldArray(object):
if self.padder is not None:
self.padder.set_pad_val(pad_val)
return self


def __len__(self):
"""
Returns the size of FieldArray.
@@ -288,7 +294,7 @@ class FieldArray(object):
:return int length:
"""
return len(self.content)
def to(self, other):
"""
将other的属性复制给本FieldArray(other必须为FieldArray类型).
@@ -298,14 +304,15 @@ class FieldArray(object):
:return: :class:`~fastNLP.FieldArray`
"""
assert isinstance(other, FieldArray), "Only support FieldArray type, not {}.".format(type(other))
self.is_input = other.is_input
self.is_target = other.is_target
self.padder = other.padder
self.ignore_type = other.ignore_type
return self


def _is_iterable(content):
try:
_ = (e for e in content)
@@ -331,13 +338,13 @@ class Padder:
:return: np.array([padded_element])
"""
def __init__(self, pad_val=0, **kwargs):
self.pad_val = pad_val
def set_pad_val(self, pad_val):
self.pad_val = pad_val
def __call__(self, contents, field_name, field_ele_dtype):
"""
传入的是List内容。假设有以下的DataSet。
@@ -396,13 +403,13 @@ class AutoPadder(Padder):
2.2 如果该field的内容为List, 那么会将Batch中的List pad为一样长。若该List下还有里层的List需要padding,请使用其它padder。
即如果Instance中field形如[1, 2, 3, ...],则可以pad;若为[[1,2], [3,4, ...]]则不能进行pad
"""
def __init__(self, pad_val=0):
"""
:param pad_val: int, padding的位置使用该index
"""
super().__init__(pad_val=pad_val)
def _is_two_dimension(self, contents):
"""
判断contents是不是只有两个维度。[[1,2], [3]]是两个维度. [[[1,2], [3, 4, 5]], [[4,5]]]有三个维度
@@ -416,7 +423,7 @@ class AutoPadder(Padder):
return False
return True
return False
def __call__(self, contents, field_name, field_ele_dtype):
if not _is_iterable(contents[0]):
@@ -458,6 +465,7 @@ class EngChar2DPadder(Padder):
dataset.set_padder('chars', padder) # chars这个field的设置为了EnChar2DPadder

"""
def __init__(self, pad_val=0, pad_length=0):
"""
:param pad_val: int, pad的位置使用该index
@@ -465,9 +473,9 @@ class EngChar2DPadder(Padder):
都pad或截取到该长度.
"""
super().__init__(pad_val=pad_val)
self.pad_length = pad_length
def _exactly_three_dims(self, contents, field_name):
"""
检查传入的contents是否刚好是3维,如果不是3维就报错。理论上,第一个维度是batch,第二个维度是word,第三个维度是character
@@ -486,10 +494,10 @@ class EngChar2DPadder(Padder):
value = value[0]
except:
raise ValueError("Field:{} only has two dimensions.".format(field_name))
if _is_iterable(value):
raise ValueError("Field:{} has more than 3 dimension.".format(field_name))
def __call__(self, contents, field_name, field_ele_dtype):
"""
期望输入类似于
@@ -516,12 +524,12 @@ class EngChar2DPadder(Padder):
max_sent_length = max(len(word_lst) for word_lst in contents)
batch_size = len(contents)
dtype = type(contents[0][0][0])
padded_array = np.full((batch_size, max_sent_length, max_char_length), fill_value=self.pad_val,
dtype=dtype)
dtype=dtype)
for b_idx, word_lst in enumerate(contents):
for c_idx, char_lst in enumerate(word_lst):
chars = char_lst[:max_char_length]
padded_array[b_idx, c_idx, :len(chars)] = chars
return padded_array
return padded_array

+ 3
- 1
fastNLP/core/instance.py View File

@@ -3,7 +3,9 @@ instance 模块实现了Instance 类在fastNLP中对应sample。一个sample可
便于理解的例子可以参考文档 :doc:`fastNLP.core.dataset` 中的表格

"""
__all__ = ["Instance"]
__all__ = [
"Instance"
]


class Instance(object):


+ 12
- 1
fastNLP/core/losses.py View File

@@ -2,7 +2,18 @@
losses 模块定义了 fastNLP 中所需的各种损失函数,一般做为 :class:`~fastNLP.Trainer` 的参数使用。

"""
__all__ = ["LossBase", "L1Loss", "LossFunc", "LossInForward", "BCELoss", "CrossEntropyLoss", "NLLLoss"]
__all__ = [
"LossBase",
"LossFunc",
"LossInForward",
"CrossEntropyLoss",
"BCELoss",
"L1Loss",
"NLLLoss"
]

import inspect
from collections import defaultdict



+ 106
- 98
fastNLP/core/metrics.py View File

@@ -2,6 +2,13 @@
metrics 模块实现了 fastNLP 所需的各种常用衡量指标,一般做为 :class:`~fastNLP.Trainer` 的参数使用。

"""
__all__ = [
"MetricBase",
"AccuracyMetric",
"SpanFPreRecMetric",
"SQuADMetric"
]

import inspect
from collections import defaultdict

@@ -106,16 +113,17 @@ class MetricBase(object):
self.get_metric将统计当前的评价指标并返回评价结果, 返回值需要是一个dict, key是指标名称,value是指标的值

"""
def __init__(self):
self.param_map = {} # key is param in function, value is input param.
self._checked = False
def evaluate(self, *args, **kwargs):
raise NotImplementedError
def get_metric(self, reset=True):
raise NotImplemented
def _init_param_map(self, key_map=None, **kwargs):
"""检查key_map和其他参数map,并将这些映射关系添加到self.param_map

@@ -148,7 +156,7 @@ class MetricBase(object):
for value, key_set in value_counter.items():
if len(key_set) > 1:
raise ValueError(f"Several parameters:{key_set} are provided with one output {value}.")
# check consistence between signature and param_map
func_spect = inspect.getfullargspec(self.evaluate)
func_args = [arg for arg in func_spect.args if arg != 'self']
@@ -157,7 +165,7 @@ class MetricBase(object):
raise NameError(
f"Parameter `{func_param}` is not in {_get_func_signature(self.evaluate)}. Please check the "
f"initialization parameters, or change its signature.")
def _fast_param_map(self, pred_dict, target_dict):
"""Only used as inner function. When the pred_dict, target is unequivocal. Don't need users to pass key_map.
such as pred_dict has one element, target_dict has one element
@@ -172,7 +180,7 @@ class MetricBase(object):
fast_param['target'] = list(target_dict.values())[0]
return fast_param
return fast_param
def __call__(self, pred_dict, target_dict):
"""
这个方法会调用self.evaluate 方法.
@@ -187,12 +195,12 @@ class MetricBase(object):
:param target_dict: DataSet.batch_y里的键-值对所组成的dict(即is_target=True的fields的内容)
:return:
"""
fast_param = self._fast_param_map(pred_dict, target_dict)
if fast_param:
self.evaluate(**fast_param)
return
if not self._checked:
if not callable(self.evaluate):
raise TypeError(f"{self.__class__.__name__}.evaluate has to be callable, not {type(self.evaluate)}.")
@@ -202,14 +210,14 @@ class MetricBase(object):
for func_arg, input_arg in self.param_map.items():
if func_arg not in func_args:
raise NameError(f"`{func_arg}` not in {_get_func_signature(self.evaluate)}.")
# 2. only part of the param_map are passed, left are not
for arg in func_args:
if arg not in self.param_map:
self.param_map[arg] = arg # This param does not need mapping.
self._evaluate_args = func_args
self._reverse_param_map = {input_arg: func_arg for func_arg, input_arg in self.param_map.items()}
# need to wrap inputs in dict.
mapped_pred_dict = {}
mapped_target_dict = {}
@@ -229,7 +237,7 @@ class MetricBase(object):
not_duplicate_flag += 1
if not_duplicate_flag == 3:
duplicated.append(input_arg)
# missing
if not self._checked:
check_res = _check_arg_dict_list(self.evaluate, [mapped_pred_dict, mapped_target_dict])
@@ -240,23 +248,23 @@ class MetricBase(object):
for idx, func_arg in enumerate(missing):
# Don't delete `` in this information, nor add ``
replaced_missing[idx] = f"{self.param_map[func_arg]}" + f"(assign to `{func_arg}` " \
f"in `{self.__class__.__name__}`)"
f"in `{self.__class__.__name__}`)"
check_res = _CheckRes(missing=replaced_missing,
unused=check_res.unused,
duplicated=duplicated,
required=check_res.required,
all_needed=check_res.all_needed,
varargs=check_res.varargs)
if check_res.missing or check_res.duplicated:
raise _CheckError(check_res=check_res,
func_signature=_get_func_signature(self.evaluate))
refined_args = _build_args(self.evaluate, **mapped_pred_dict, **mapped_target_dict)
self.evaluate(**refined_args)
self._checked = True
return


@@ -271,15 +279,16 @@ class AccuracyMetric(MetricBase):
:param target: 参数映射表中 `target` 的映射关系,None表示映射关系为 `target` -> `target`
:param seq_len: 参数映射表中 `seq_len` 的映射关系,None表示映射关系为 `seq_len` -> `seq_len`
"""
def __init__(self, pred=None, target=None, seq_len=None):
super().__init__()
self._init_param_map(pred=pred, target=target, seq_len=seq_len)
self.total = 0
self.acc_count = 0
def evaluate(self, pred, target, seq_len=None):
"""
evaluate函数将针对一个批次的预测结果做评价指标的累计
@@ -299,16 +308,16 @@ class AccuracyMetric(MetricBase):
if not isinstance(target, torch.Tensor):
raise TypeError(f"`target` in {_get_func_signature(self.evaluate)} must be torch.Tensor,"
f"got {type(target)}.")
if seq_len is not None and not isinstance(seq_len, torch.Tensor):
raise TypeError(f"`seq_lens` in {_get_func_signature(self.evaluate)} must be torch.Tensor,"
f"got {type(seq_len)}.")
if seq_len is not None:
masks = seq_len_to_mask(seq_len=seq_len)
else:
masks = None
if pred.size() == target.size():
pass
elif len(pred.size()) == len(target.size()) + 1:
@@ -317,7 +326,7 @@ class AccuracyMetric(MetricBase):
raise RuntimeError(f"In {_get_func_signature(self.evaluate)}, when pred have "
f"size:{pred.size()}, target should have size: {pred.size()} or "
f"{pred.size()[:-1]}, got {target.size()}.")
target = target.to(pred)
if masks is not None:
self.acc_count += torch.sum(torch.eq(pred, target).masked_fill(masks.eq(0), 0)).item()
@@ -325,7 +334,7 @@ class AccuracyMetric(MetricBase):
else:
self.acc_count += torch.sum(torch.eq(pred, target)).item()
self.total += np.prod(list(pred.size()))
def get_metric(self, reset=True):
"""
get_metric函数将根据evaluate函数累计的评价指标统计量来计算最终的评价结果.
@@ -350,7 +359,7 @@ def _bmes_tag_to_spans(tags, ignore_labels=None):
:return: List[Tuple[str, List[int, int]]]. [(label,[start, end])]
"""
ignore_labels = set(ignore_labels) if ignore_labels else set()
spans = []
prev_bmes_tag = None
for idx, tag in enumerate(tags):
@@ -358,14 +367,14 @@ def _bmes_tag_to_spans(tags, ignore_labels=None):
bmes_tag, label = tag[:1], tag[2:]
if bmes_tag in ('b', 's'):
spans.append((label, [idx, idx]))
elif bmes_tag in ('m', 'e') and prev_bmes_tag in ('b', 'm') and label==spans[-1][0]:
elif bmes_tag in ('m', 'e') and prev_bmes_tag in ('b', 'm') and label == spans[-1][0]:
spans[-1][1][1] = idx
else:
spans.append((label, [idx, idx]))
prev_bmes_tag = bmes_tag
return [(span[0], (span[1][0], span[1][1]+1))
for span in spans
if span[0] not in ignore_labels
return [(span[0], (span[1][0], span[1][1] + 1))
for span in spans
if span[0] not in ignore_labels
]


@@ -379,7 +388,7 @@ def _bmeso_tag_to_spans(tags, ignore_labels=None):
:return: List[Tuple[str, List[int, int]]]. [(label,[start, end])]
"""
ignore_labels = set(ignore_labels) if ignore_labels else set()
spans = []
prev_bmes_tag = None
for idx, tag in enumerate(tags):
@@ -387,16 +396,16 @@ def _bmeso_tag_to_spans(tags, ignore_labels=None):
bmes_tag, label = tag[:1], tag[2:]
if bmes_tag in ('b', 's'):
spans.append((label, [idx, idx]))
elif bmes_tag in ('m', 'e') and prev_bmes_tag in ('b', 'm') and label==spans[-1][0]:
elif bmes_tag in ('m', 'e') and prev_bmes_tag in ('b', 'm') and label == spans[-1][0]:
spans[-1][1][1] = idx
elif bmes_tag == 'o':
pass
else:
spans.append((label, [idx, idx]))
prev_bmes_tag = bmes_tag
return [(span[0], (span[1][0], span[1][1]+1))
for span in spans
if span[0] not in ignore_labels
return [(span[0], (span[1][0], span[1][1] + 1))
for span in spans
if span[0] not in ignore_labels
]


@@ -410,7 +419,7 @@ def _bio_tag_to_spans(tags, ignore_labels=None):
:return: List[Tuple[str, List[int, int]]]. [(label,[start, end])]
"""
ignore_labels = set(ignore_labels) if ignore_labels else set()
spans = []
prev_bio_tag = None
for idx, tag in enumerate(tags):
@@ -418,14 +427,14 @@ def _bio_tag_to_spans(tags, ignore_labels=None):
bio_tag, label = tag[:1], tag[2:]
if bio_tag == 'b':
spans.append((label, [idx, idx]))
elif bio_tag == 'i' and prev_bio_tag in ('b', 'i') and label==spans[-1][0]:
elif bio_tag == 'i' and prev_bio_tag in ('b', 'i') and label == spans[-1][0]:
spans[-1][1][1] = idx
elif bio_tag == 'o': # o tag does not count
elif bio_tag == 'o': # o tag does not count
pass
else:
spans.append((label, [idx, idx]))
prev_bio_tag = bio_tag
return [(span[0], (span[1][0], span[1][1]+1)) for span in spans if span[0] not in ignore_labels]
return [(span[0], (span[1][0], span[1][1] + 1)) for span in spans if span[0] not in ignore_labels]


class SpanFPreRecMetric(MetricBase):
@@ -470,16 +479,17 @@ class SpanFPreRecMetric(MetricBase):
:param float beta: f_beta分数,f_beta = (1 + beta^2)*(pre*rec)/(beta^2*pre + rec). 常用为beta=0.5, 1, 2. 若为0.5
则精确率的权重高于召回率;若为1,则两者平等;若为2,则召回率权重高于精确率。
"""
def __init__(self, tag_vocab, pred=None, target=None, seq_len=None, encoding_type='bio', ignore_labels=None,
only_gross=True, f_type='micro', beta=1):
only_gross=True, f_type='micro', beta=1):
encoding_type = encoding_type.lower()
if not isinstance(tag_vocab, Vocabulary):
raise TypeError("tag_vocab can only be fastNLP.Vocabulary, not {}.".format(type(tag_vocab)))
if f_type not in ('micro', 'macro'):
raise ValueError("f_type only supports `micro` or `macro`', got {}.".format(f_type))
self.encoding_type = encoding_type
if self.encoding_type == 'bmes':
self.tag_to_span_func = _bmes_tag_to_spans
@@ -489,22 +499,22 @@ class SpanFPreRecMetric(MetricBase):
self.tag_to_span_func = _bmeso_tag_to_spans
else:
raise ValueError("Only support 'bio', 'bmes', 'bmeso' type.")
self.ignore_labels = ignore_labels
self.f_type = f_type
self.beta = beta
self.beta_square = self.beta**2
self.beta_square = self.beta ** 2
self.only_gross = only_gross
super().__init__()
self._init_param_map(pred=pred, target=target, seq_len=seq_len)
self.tag_vocab = tag_vocab
self._true_positives = defaultdict(int)
self._false_positives = defaultdict(int)
self._false_negatives = defaultdict(int)
def evaluate(self, pred, target, seq_len):
"""evaluate函数将针对一个批次的预测结果做评价指标的累计

@@ -519,11 +529,11 @@ class SpanFPreRecMetric(MetricBase):
if not isinstance(target, torch.Tensor):
raise TypeError(f"`target` in {_get_func_signature(self.evaluate)} must be torch.Tensor,"
f"got {type(target)}.")
if not isinstance(seq_len, torch.Tensor):
raise TypeError(f"`seq_lens` in {_get_func_signature(self.evaluate)} must be torch.Tensor,"
f"got {type(seq_len)}.")
if pred.size() == target.size() and len(target.size()) == 2:
pass
elif len(pred.size()) == len(target.size()) + 1 and len(target.size()) == 2:
@@ -536,20 +546,20 @@ class SpanFPreRecMetric(MetricBase):
raise RuntimeError(f"In {_get_func_signature(self.evaluate)}, when pred have "
f"size:{pred.size()}, target should have size: {pred.size()} or "
f"{pred.size()[:-1]}, got {target.size()}.")
batch_size = pred.size(0)
pred = pred.tolist()
target = target.tolist()
for i in range(batch_size):
pred_tags = pred[i][:int(seq_len[i])]
gold_tags = target[i][:int(seq_len[i])]
pred_str_tags = [self.tag_vocab.to_word(tag) for tag in pred_tags]
gold_str_tags = [self.tag_vocab.to_word(tag) for tag in gold_tags]
pred_spans = self.tag_to_span_func(pred_str_tags, ignore_labels=self.ignore_labels)
gold_spans = self.tag_to_span_func(gold_str_tags, ignore_labels=self.ignore_labels)
for span in pred_spans:
if span in gold_spans:
self._true_positives[span[0]] += 1
@@ -558,7 +568,7 @@ class SpanFPreRecMetric(MetricBase):
self._false_positives[span[0]] += 1
for span in gold_spans:
self._false_negatives[span[0]] += 1
def get_metric(self, reset=True):
"""get_metric函数将根据evaluate函数累计的评价指标统计量来计算最终的评价结果."""
evaluate_result = {}
@@ -577,19 +587,19 @@ class SpanFPreRecMetric(MetricBase):
f_sum += f
pre_sum += pre
rec_sum + rec
if not self.only_gross and tag!='': # tag!=''防止无tag的情况
if not self.only_gross and tag != '': # tag!=''防止无tag的情况
f_key = 'f-{}'.format(tag)
pre_key = 'pre-{}'.format(tag)
rec_key = 'rec-{}'.format(tag)
evaluate_result[f_key] = f
evaluate_result[pre_key] = pre
evaluate_result[rec_key] = rec
if self.f_type == 'macro':
evaluate_result['f'] = f_sum/len(tags)
evaluate_result['pre'] = pre_sum/len(tags)
evaluate_result['rec'] = rec_sum/len(tags)
evaluate_result['f'] = f_sum / len(tags)
evaluate_result['pre'] = pre_sum / len(tags)
evaluate_result['rec'] = rec_sum / len(tags)
if self.f_type == 'micro':
f, pre, rec = self._compute_f_pre_rec(sum(self._true_positives.values()),
sum(self._false_negatives.values()),
@@ -597,17 +607,17 @@ class SpanFPreRecMetric(MetricBase):
evaluate_result['f'] = f
evaluate_result['pre'] = pre
evaluate_result['rec'] = rec
if reset:
self._true_positives = defaultdict(int)
self._false_positives = defaultdict(int)
self._false_negatives = defaultdict(int)
for key, value in evaluate_result.items():
evaluate_result[key] = round(value, 6)
return evaluate_result
def _compute_f_pre_rec(self, tp, fn, fp):
"""

@@ -619,11 +629,10 @@ class SpanFPreRecMetric(MetricBase):
pre = tp / (fp + tp + 1e-13)
rec = tp / (fn + tp + 1e-13)
f = (1 + self.beta_square) * pre * rec / (self.beta_square * pre + rec + 1e-13)
return f, pre, rec



def _prepare_metrics(metrics):
"""

@@ -705,33 +714,33 @@ class SQuADMetric(MetricBase):
:param bool print_predict_stat: True则输出预测答案是否为空与正确答案是否为空的统计信息, False则不输出
"""
def __init__(self, pred1=None, pred2=None, target1=None, target2=None,
beta=1, right_open=True, print_predict_stat=False):
super(SQuADMetric, self).__init__()
self._init_param_map(pred1=pred1, pred2=pred2, target1=target1, target2=target2)
self.print_predict_stat = print_predict_stat
self.no_ans_correct = 0
self.no_ans_wrong = 0
self.has_ans_correct = 0
self.has_ans_wrong = 0
self.has_ans_f = 0.
self.no2no = 0
self.no2yes = 0
self.yes2no = 0
self.yes2yes = 0
self.f_beta = beta
self.right_open = right_open
def evaluate(self, pred1, pred2, target1, target2):
"""evaluate函数将针对一个批次的预测结果做评价指标的累计

@@ -745,7 +754,7 @@ class SQuADMetric(MetricBase):
pred_end = pred2
target_start = target1
target_end = target2
if len(pred_start.size()) == 2:
start_inference = pred_start.max(dim=-1)[1].cpu().tolist()
else:
@@ -754,12 +763,12 @@ class SQuADMetric(MetricBase):
end_inference = pred_end.max(dim=-1)[1].cpu().tolist()
else:
end_inference = pred_end.cpu().tolist()
start, end = [], []
max_len = pred_start.size(1)
t_start = target_start.cpu().tolist()
t_end = target_end.cpu().tolist()
for s, e in zip(start_inference, end_inference):
start.append(min(s, e))
end.append(max(s, e))
@@ -779,7 +788,7 @@ class SQuADMetric(MetricBase):
self.yes2no += 1
else:
self.yes2yes += 1
if s == ts and e == te:
self.has_ans_correct += 1
else:
@@ -787,29 +796,29 @@ class SQuADMetric(MetricBase):
a = [0] * s + [1] * (e - s) + [0] * (max_len - e)
b = [0] * ts + [1] * (te - ts) + [0] * (max_len - te)
a, b = torch.tensor(a), torch.tensor(b)
TP = int(torch.sum(a * b))
pre = TP / int(torch.sum(a)) if int(torch.sum(a)) > 0 else 0
rec = TP / int(torch.sum(b)) if int(torch.sum(b)) > 0 else 0
if pre + rec > 0:
f = (1 + (self.f_beta**2)) * pre * rec / ((self.f_beta**2) * pre + rec)
f = (1 + (self.f_beta ** 2)) * pre * rec / ((self.f_beta ** 2) * pre + rec)
else:
f = 0
self.has_ans_f += f
def get_metric(self, reset=True):
"""get_metric函数将根据evaluate函数累计的评价指标统计量来计算最终的评价结果."""
evaluate_result = {}
if self.no_ans_correct + self.no_ans_wrong + self.has_ans_correct + self.no_ans_wrong <= 0:
return evaluate_result
evaluate_result['EM'] = 0
evaluate_result[f'f_{self.f_beta}'] = 0
flag = 0
if self.no_ans_correct + self.no_ans_wrong > 0:
evaluate_result[f'noAns-f_{self.f_beta}'] = \
round(100 * self.no_ans_correct / (self.no_ans_correct + self.no_ans_wrong), 3)
@@ -818,7 +827,7 @@ class SQuADMetric(MetricBase):
evaluate_result[f'f_{self.f_beta}'] += evaluate_result[f'noAns-f_{self.f_beta}']
evaluate_result['EM'] += evaluate_result['noAns-EM']
flag += 1
if self.has_ans_correct + self.has_ans_wrong > 0:
evaluate_result[f'hasAns-f_{self.f_beta}'] = \
round(100 * self.has_ans_f / (self.has_ans_correct + self.has_ans_wrong), 3)
@@ -827,32 +836,31 @@ class SQuADMetric(MetricBase):
evaluate_result[f'f_{self.f_beta}'] += evaluate_result[f'hasAns-f_{self.f_beta}']
evaluate_result['EM'] += evaluate_result['hasAns-EM']
flag += 1
if self.print_predict_stat:
evaluate_result['no2no'] = self.no2no
evaluate_result['no2yes'] = self.no2yes
evaluate_result['yes2no'] = self.yes2no
evaluate_result['yes2yes'] = self.yes2yes
if flag <= 0:
return evaluate_result
evaluate_result[f'f_{self.f_beta}'] = round(evaluate_result[f'f_{self.f_beta}'] / flag, 3)
evaluate_result['EM'] = round(evaluate_result['EM'] / flag, 3)
if reset:
self.no_ans_correct = 0
self.no_ans_wrong = 0
self.has_ans_correct = 0
self.has_ans_wrong = 0
self.has_ans_f = 0.
self.no2no = 0
self.no2yes = 0
self.yes2no = 0
self.yes2yes = 0
return evaluate_result


+ 14
- 6
fastNLP/core/optimizer.py View File

@@ -2,6 +2,12 @@
optimizer 模块定义了 fastNLP 中所需的各种优化器,一般做为 :class:`~fastNLP.Trainer` 的参数使用。

"""
__all__ = [
"Optimizer",
"SGD",
"Adam"
]

import torch


@@ -12,15 +18,16 @@ class Optimizer(object):
:param model_params: a generator. E.g. ``model.parameters()`` for PyTorch models.
:param kwargs: additional parameters.
"""
def __init__(self, model_params, **kwargs):
if model_params is not None and not hasattr(model_params, "__next__"):
raise RuntimeError("model parameters should be a generator, rather than {}.".format(type(model_params)))
self.model_params = model_params
self.settings = kwargs
def construct_from_pytorch(self, model_params):
raise NotImplementedError
def _get_require_grads_param(self, params):
"""
将params中不需要gradient的删除
@@ -29,6 +36,7 @@ class Optimizer(object):
"""
return [param for param in params if param.requires_grad]


class SGD(Optimizer):
"""
别名::class:`fastNLP.SGD` :class:`fastNLP.core.optimizer.SGD`
@@ -37,12 +45,12 @@ class SGD(Optimizer):
:param float momentum: momentum. Default: 0
:param model_params: a generator. E.g. ``model.parameters()`` for PyTorch models.
"""
def __init__(self, lr=0.001, momentum=0, model_params=None):
if not isinstance(lr, float):
raise TypeError("learning rate has to be float.")
super(SGD, self).__init__(model_params, lr=lr, momentum=momentum)
def construct_from_pytorch(self, model_params):
if self.model_params is None:
# careful! generator cannot be assigned.
@@ -59,13 +67,13 @@ class Adam(Optimizer):
:param float weight_decay:
:param model_params: a generator. E.g. ``model.parameters()`` for PyTorch models.
"""
def __init__(self, lr=0.001, weight_decay=0, betas=(0.9, 0.999), eps=1e-8, amsgrad=False, model_params=None):
if not isinstance(lr, float):
raise TypeError("learning rate has to be float.")
super(Adam, self).__init__(model_params, lr=lr, betas=betas, eps=eps, amsgrad=amsgrad,
weight_decay=weight_decay)
def construct_from_pytorch(self, model_params):
if self.model_params is None:
# careful! generator cannot be assigned.


+ 6
- 1
fastNLP/core/predictor.py View File

@@ -1,3 +1,7 @@
"""
..todo::
检查这个类是否需要
"""
from collections import defaultdict

import torch
@@ -9,7 +13,8 @@ from .utils import _build_args


class Predictor(object):
"""An interface for predicting outputs based on trained models.
"""
An interface for predicting outputs based on trained models.

It does not care about evaluations of the model, which is different from Tester.
This is a high-level model wrapper to be called by FastNLP.


+ 7
- 3
fastNLP/core/sampler.py View File

@@ -1,9 +1,13 @@
"""
sampler 子类实现了 fastNLP 所需的各种采样器。


"""
__all__ = ["Sampler", "BucketSampler", "SequentialSampler", "RandomSampler"]
__all__ = [
"Sampler",
"BucketSampler",
"SequentialSampler",
"RandomSampler"
]

from itertools import chain

import numpy as np


+ 16
- 12
fastNLP/core/tester.py View File

@@ -35,7 +35,7 @@ Tester在验证进行之前会调用model.eval()提示当前进入了evaluation
import warnings

import torch
from torch import nn
import torch.nn as nn

from .batch import Batch
from .dataset import DataSet
@@ -49,6 +49,10 @@ from .utils import _get_func_signature
from .utils import _get_model_device
from .utils import _move_model_to_device

__all__ = [
"Tester"
]


class Tester(object):
"""
@@ -77,29 +81,29 @@ class Tester(object):
如果模型是通过predict()进行预测的话,那么将不能使用多卡(DataParallel)进行验证,只会使用第一张卡上的模型。
:param int verbose: 如果为0不输出任何信息; 如果为1,打印出验证结果。
"""
def __init__(self, data, model, metrics, batch_size=16, device=None, verbose=1):
super(Tester, self).__init__()
if not isinstance(data, DataSet):
raise TypeError(f"The type of data must be `fastNLP.DataSet`, got `{type(data)}`.")
if not isinstance(model, nn.Module):
raise TypeError(f"The type of model must be `torch.nn.Module`, got `{type(model)}`.")
self.metrics = _prepare_metrics(metrics)
self.data = data
self._model = _move_model_to_device(model, device=device)
self.batch_size = batch_size
self.verbose = verbose
# 如果是DataParallel将没有办法使用predict方法
if isinstance(self._model, nn.DataParallel):
if hasattr(self._model.module, 'predict') and not hasattr(self._model, 'predict'):
warnings.warn("Cannot use DataParallel to test your model, because your model offer predict() function,"
" while DataParallel has no predict() function.")
self._model = self._model.module
# check predict
if hasattr(self._model, 'predict'):
self._predict_func = self._model.predict
@@ -109,7 +113,7 @@ class Tester(object):
f"for evaluation, not `{type(self._predict_func)}`.")
else:
self._predict_func = self._model.forward
def test(self):
"""开始进行验证,并返回验证结果。

@@ -144,12 +148,12 @@ class Tester(object):
_check_loss_evaluate(prev_func_signature=prev_func_signature, func_signature=e.func_signature,
check_res=e.check_res, pred_dict=pred_dict, target_dict=batch_y,
dataset=self.data, check_level=0)
if self.verbose >= 1:
print("[tester] \n{}".format(self._format_eval_results(eval_results)))
self._mode(network, is_test=False)
return eval_results
def _mode(self, model, is_test=False):
"""Train mode or Test mode. This is for PyTorch currently.

@@ -161,13 +165,13 @@ class Tester(object):
model.eval()
else:
model.train()
def _data_forward(self, func, x):
"""A forward pass of the model. """
x = _build_args(func, **x)
y = func(**x)
return y
def _format_eval_results(self, results):
"""Override this method to support more print formats.



+ 7
- 5
fastNLP/core/trainer.py View File

@@ -295,15 +295,17 @@ Example2.3
fastNLP已经自带了很多callback函数供使用,可以参考 :doc:`fastNLP.core.callback` 。

"""
__all__ = [
"Trainer"
]

import os
import time
from datetime import datetime
from datetime import timedelta
from datetime import datetime, timedelta

import numpy as np
import torch
from torch import nn
import torch.nn as nn

try:
from tqdm.auto import tqdm
@@ -315,6 +317,7 @@ from .callback import CallbackManager, CallbackException
from .dataset import DataSet
from .losses import _prepare_losser
from .metrics import _prepare_metrics
from .optimizer import Optimizer
from .sampler import Sampler
from .sampler import RandomSampler
from .sampler import SequentialSampler
@@ -326,7 +329,6 @@ from .utils import _check_loss_evaluate
from .utils import _move_dict_value_to_device
from .utils import _get_func_signature
from .utils import _get_model_device
from .optimizer import Optimizer
from .utils import _move_model_to_device


@@ -464,7 +466,7 @@ class Trainer(object):
len(self.train_data) % self.batch_size != 0)) * self.n_epochs
self.model = _move_model_to_device(self.model, device=device)
if isinstance(optimizer, torch.optim.Optimizer):
self.optimizer = optimizer
elif isinstance(optimizer, Optimizer):


+ 86
- 72
fastNLP/core/utils.py View File

@@ -1,20 +1,25 @@
"""
utils模块实现了 fastNLP 内部和外部所需的很多工具。其中用户可以使用的是 :func:`cache_results` 修饰器。
"""
__all__ = ["cache_results", "seq_len_to_mask"]
__all__ = [
"cache_results",
"seq_len_to_mask"
]

import _pickle
import inspect
import os
import warnings
from collections import Counter
from collections import namedtuple
from collections import Counter, namedtuple

import numpy as np
import torch
from torch import nn
import torch.nn as nn


_CheckRes = namedtuple('_CheckRes', ['missing', 'unused', 'duplicated', 'required', 'all_needed',
'varargs'])
'varargs'])


def _prepare_cache_filepath(filepath):
"""
@@ -40,26 +45,28 @@ def cache_results(_cache_fp, _refresh=False, _verbose=1):
import time
import numpy as np
from fastNLP import cache_results
@cache_results('cache.pkl')
def process_data():
# 一些比较耗时的工作,比如读取数据,预处理数据等,这里用time.sleep()代替耗时
time.sleep(1)
return np.random.randint(5, size=(10, 20))
return np.random.randint(10, size=(5,))
start_time = time.time()
process_data()
print("res =",process_data())
print(time.time() - start_time)
start_time = time.time()
process_data()
print("res =",process_data())
print(time.time() - start_time)

# 输出内容如下
# Save cache to cache.pkl.
# 1.0015439987182617
# Read cache from cache.pkl.
# 0.00013065338134765625
# 输出内容如下,可以看到两次结果相同,且第二次几乎没有花费时间
# Save cache to cache.pkl.
# res = [5 4 9 1 8]
# 1.0042750835418701
# Read cache from cache.pkl.
# res = [5 4 9 1 8]
# 0.0040721893310546875

可以看到第二次运行的时候,只用了0.0001s左右,是由于第二次运行将直接从cache.pkl这个文件读取数据,而不会经过再次预处理

@@ -83,11 +90,13 @@ def cache_results(_cache_fp, _refresh=False, _verbose=1):
:param int _verbose: 是否打印cache的信息。
:return:
"""
def wrapper_(func):
signature = inspect.signature(func)
for key, _ in signature.parameters.items():
if key in ('_cache_fp', '_refresh', '_verbose'):
raise RuntimeError("The function decorated by cache_results cannot have keyword `{}`.".format(key))
def wrapper(*args, **kwargs):
if '_cache_fp' in kwargs:
cache_filepath = kwargs.pop('_cache_fp')
@@ -95,7 +104,7 @@ def cache_results(_cache_fp, _refresh=False, _verbose=1):
else:
cache_filepath = _cache_fp
if '_refresh' in kwargs:
refresh = kwargs.pop('_refresh')
refresh = kwargs.pop('_refresh')
assert isinstance(refresh, bool), "_refresh can only be bool."
else:
refresh = _refresh
@@ -105,16 +114,16 @@ def cache_results(_cache_fp, _refresh=False, _verbose=1):
else:
verbose = _verbose
refresh_flag = True
if cache_filepath is not None and refresh is False:
# load data
if os.path.exists(cache_filepath):
with open(cache_filepath, 'rb') as f:
results = _pickle.load(f)
if verbose==1:
if verbose == 1:
print("Read cache from {}.".format(cache_filepath))
refresh_flag = False
if refresh_flag:
results = func(*args, **kwargs)
if cache_filepath is not None:
@@ -124,11 +133,14 @@ def cache_results(_cache_fp, _refresh=False, _verbose=1):
with open(cache_filepath, 'wb') as f:
_pickle.dump(results, f)
print("Save cache to {}.".format(cache_filepath))
return results
return wrapper
return wrapper_


# def save_pickle(obj, pickle_path, file_name):
# """Save an object into a pickle file.
#
@@ -196,7 +208,7 @@ def _move_model_to_device(model, device):
"""
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
raise RuntimeError("model of `torch.nn.parallel.DistributedDataParallel` is not supported right now.")
if device is None:
if isinstance(model, torch.nn.DataParallel):
model.cuda()
@@ -205,34 +217,35 @@ def _move_model_to_device(model, device):
if not torch.cuda.is_available() and (
device != 'cpu' or (isinstance(device, torch.device) and device.type != 'cpu')):
raise ValueError("There is no usable gpu. set `device` as `cpu` or `None`.")
if isinstance(model, torch.nn.DataParallel):
raise RuntimeError("When model is `torch.nn.DataParallel`, the device has to be `None`.")
if isinstance(device, int):
assert device>-1, "device can only be non-negative integer"
assert torch.cuda.device_count()>device, "Only has {} gpus, cannot use device {}.".format(torch.cuda.device_count(),
device)
assert device > -1, "device can only be non-negative integer"
assert torch.cuda.device_count() > device, "Only has {} gpus, cannot use device {}.".format(
torch.cuda.device_count(),
device)
device = torch.device('cuda:{}'.format(device))
elif isinstance(device, str):
device = torch.device(device)
if device.type == 'cuda' and device.index is not None:
assert device.index<torch.cuda.device_count(), "Only has {} gpus, cannot use device cuda:{}.".format(
torch.cuda.device_count(),
device)
assert device.index < torch.cuda.device_count(), "Only has {} gpus, cannot use device cuda:{}.".format(
torch.cuda.device_count(),
device)
elif isinstance(device, torch.device):
if device.type == 'cuda' and device.index is not None:
assert device.index<torch.cuda.device_count(), "Only has {} gpus, cannot use device cuda:{}.".format(
torch.cuda.device_count(),
device)
assert device.index < torch.cuda.device_count(), "Only has {} gpus, cannot use device cuda:{}.".format(
torch.cuda.device_count(),
device)
elif isinstance(device, list):
types = set([type(d) for d in device])
assert len(types)==1, "Mixed type in device, only `int` allowed."
assert len(types) == 1, "Mixed type in device, only `int` allowed."
assert list(types)[0] == int, "Only int supported for multiple devices."
assert len(set(device))==len(device), "Duplicated device id found in device."
assert len(set(device)) == len(device), "Duplicated device id found in device."
for d in device:
assert d>-1, "Only non-negative device id allowed."
if len(device)>1:
assert d > -1, "Only non-negative device id allowed."
if len(device) > 1:
output_device = device[0]
model = nn.DataParallel(model, device_ids=device, output_device=output_device)
device = torch.device(device[0])
@@ -250,9 +263,9 @@ def _get_model_device(model):
:return: torch.device,None 如果返回值为None,说明这个模型没有任何参数。
"""
assert isinstance(model, nn.Module)
parameters = list(model.parameters())
if len(parameters)==0:
if len(parameters) == 0:
return None
else:
return parameters[0].device
@@ -407,7 +420,7 @@ def _move_dict_value_to_device(*args, device: torch.device, non_blocking=False):
if not isinstance(device, torch.device):
raise TypeError(f"device must be `torch.device`, got `{type(device)}`")
for arg in args:
if isinstance(arg, dict):
for key, value in arg.items():
@@ -422,10 +435,10 @@ class _CheckError(Exception):

_CheckError. Used in losses.LossBase, metrics.MetricBase.
"""
def __init__(self, check_res: _CheckRes, func_signature: str):
errs = [f'Problems occurred when calling `{func_signature}`']
if check_res.varargs:
errs.append(f"\tvarargs: {check_res.varargs}(Does not support pass positional arguments, please delete it)")
if check_res.missing:
@@ -434,9 +447,9 @@ class _CheckError(Exception):
errs.append(f"\tduplicated param: {check_res.duplicated}")
if check_res.unused:
errs.append(f"\tunused param: {check_res.unused}")
Exception.__init__(self, '\n'.join(errs))
self.check_res = check_res
self.func_signature = func_signature

@@ -456,7 +469,7 @@ def _check_loss_evaluate(prev_func_signature: str, func_signature: str, check_re
# if check_res.varargs:
# errs.append(f"\tvarargs: *{check_res.varargs}")
# suggestions.append(f"Does not support pass positional arguments, please delete *{check_res.varargs}.")
if check_res.unused:
for _unused in check_res.unused:
if _unused in target_dict:
@@ -466,8 +479,8 @@ def _check_loss_evaluate(prev_func_signature: str, func_signature: str, check_re
if _unused_field:
unuseds.append(f"\tunused field: {_unused_field}")
if _unused_param:
unuseds.append(f"\tunused param: {_unused_param}") # output from predict or forward
unuseds.append(f"\tunused param: {_unused_param}") # output from predict or forward
module_name = func_signature.split('.')[0]
if check_res.missing:
errs.append(f"\tmissing param: {check_res.missing}")
@@ -488,14 +501,14 @@ def _check_loss_evaluate(prev_func_signature: str, func_signature: str, check_re
mapped_missing.append(_miss)
else:
unmapped_missing.append(_miss)
for _miss in mapped_missing + unmapped_missing:
if _miss in dataset:
suggestions.append(f"Set `{_miss}` as target.")
else:
_tmp = ''
if check_res.unused:
_tmp = f"Check key assignment for `{input_func_map.get(_miss, _miss)}` when initialize {module_name}."
_tmp = f"Check key assignment for `{input_func_map.get(_miss,_miss)}` when initialize {module_name}."
if _tmp:
_tmp += f' Or provide `{_miss}` in DataSet or output of {prev_func_signature}.'
else:
@@ -513,25 +526,25 @@ def _check_loss_evaluate(prev_func_signature: str, func_signature: str, check_re
# else:
# _tmp = f'Provide `{_miss}` in output of {prev_func_signature} or DataSet.'
# suggestions.append(_tmp)
if check_res.duplicated:
errs.append(f"\tduplicated param: {check_res.duplicated}.")
suggestions.append(f"Delete {check_res.duplicated} in the output of "
f"{prev_func_signature} or do not set {check_res.duplicated} as targets. ")
if len(errs)>0:
if len(errs) > 0:
errs.extend(unuseds)
elif check_level == STRICT_CHECK_LEVEL:
errs.extend(unuseds)
if len(errs) > 0:
errs.insert(0, f'Problems occurred when calling {func_signature}')
sugg_str = ""
if len(suggestions) > 1:
for idx, sugg in enumerate(suggestions):
if idx>0:
if idx > 0:
sugg_str += '\t\t\t'
sugg_str += f'({idx+1}). {sugg}\n'
sugg_str += f'({idx + 1}). {sugg}\n'
sugg_str = sugg_str[:-1]
else:
sugg_str += suggestions[0]
@@ -546,14 +559,15 @@ def _check_loss_evaluate(prev_func_signature: str, func_signature: str, check_re
_unused_warn = f'{check_res.unused} is not used by {module_name}.'
warnings.warn(message=_unused_warn)


def _check_forward_error(forward_func, batch_x, dataset, check_level):
check_res = _check_arg_dict_list(forward_func, batch_x)
func_signature = _get_func_signature(forward_func)
errs = []
suggestions = []
_unused = []
# if check_res.varargs:
# errs.append(f"\tvarargs: {check_res.varargs}")
# suggestions.append(f"Does not support pass positional arguments, please delete *{check_res.varargs}.")
@@ -574,20 +588,20 @@ def _check_forward_error(forward_func, batch_x, dataset, check_level):
# _tmp += f"Or you might find it in `unused field:`, you can use DataSet.rename_field() to " \
# f"rename the field in `unused field:`."
suggestions.append(_tmp)
if check_res.unused:
_unused = [f"\tunused field: {check_res.unused}"]
if len(errs)>0:
if len(errs) > 0:
errs.extend(_unused)
elif check_level == STRICT_CHECK_LEVEL:
errs.extend(_unused)
if len(errs) > 0:
errs.insert(0, f'Problems occurred when calling {func_signature}')
sugg_str = ""
if len(suggestions) > 1:
for idx, sugg in enumerate(suggestions):
sugg_str += f'({idx+1}). {sugg}'
sugg_str += f'({idx + 1}). {sugg}'
else:
sugg_str += suggestions[0]
err_str = '\n' + '\n'.join(errs) + '\n\tSuggestion: ' + sugg_str
@@ -622,8 +636,8 @@ def seq_len_to_mask(seq_len):
assert len(np.shape(seq_len)) == 1, f"seq_len can only have one dimension, got {len(np.shape(seq_len))}."
max_len = int(seq_len.max())
broad_cast_seq_len = np.tile(np.arange(max_len), (len(seq_len), 1))
mask = broad_cast_seq_len<seq_len.reshape(-1, 1)
mask = broad_cast_seq_len < seq_len.reshape(-1, 1)
elif isinstance(seq_len, torch.Tensor):
assert seq_len.dim() == 1, f"seq_len can only have one dimension, got {seq_len.dim() == 1}."
batch_size = seq_len.size(0)
@@ -632,7 +646,7 @@ def seq_len_to_mask(seq_len):
mask = broad_cast_seq_len.lt(seq_len.unsqueeze(1))
else:
raise TypeError("Only support 1-d numpy.ndarray or 1-d torch.Tensor.")
return mask


@@ -640,24 +654,24 @@ class _pseudo_tqdm:
"""
当无法引入tqdm,或者Trainer中设置use_tqdm为false的时候,用该方法打印数据
"""
def __init__(self, **kwargs):
pass
def write(self, info):
print(info)
def set_postfix_str(self, info):
print(info)
def __getattr__(self, item):
def pass_func(*args, **kwargs):
pass
return pass_func
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
del self

+ 16
- 0
fastNLP/core/vocabulary.py View File

@@ -1,5 +1,10 @@
__all__ = [
"Vocabulary"
]

from functools import wraps
from collections import Counter

from .dataset import DataSet


@@ -318,6 +323,17 @@ class Vocabulary(object):
"""
return self.idx2word[idx]
def clear(self):
"""
删除Vocabulary中的词表数据。相当于重新初始化一下。

:return:
"""
self.word_count.clear()
self.word2idx = None
self.idx2word = None
self.rebuild = True
def __getstate__(self):
"""Use to prepare data for pickle.



+ 2
- 1
fastNLP/io/__init__.py View File

@@ -24,7 +24,8 @@ __all__ = [
'ModelLoader',
'ModelSaver',
]

from .embed_loader import EmbedLoader
from .dataset_loader import DataSetLoader, CSVLoader, JsonLoader, ConllLoader, SNLILoader, SSTLoader, \
PeopleDailyCorpusLoader, Conll2003Loader
from .model_io import ModelLoader as ModelLoader, ModelSaver as ModelSaver
from .model_io import ModelLoader, ModelSaver

+ 13
- 6
fastNLP/io/base_loader.py View File

@@ -1,3 +1,7 @@
__all__ = [
"BaseLoader"
]

import _pickle as pickle
import os

@@ -7,9 +11,10 @@ class BaseLoader(object):
各个 Loader 的基类,提供了 API 的参考。

"""
def __init__(self):
super(BaseLoader, self).__init__()
@staticmethod
def load_lines(data_path):
"""
@@ -20,7 +25,7 @@ class BaseLoader(object):
with open(data_path, "r", encoding="utf=8") as f:
text = f.readlines()
return [line.strip() for line in text]
@classmethod
def load(cls, data_path):
"""
@@ -31,7 +36,7 @@ class BaseLoader(object):
with open(data_path, "r", encoding="utf-8") as f:
text = f.readlines()
return [[word for word in sent.strip()] for sent in text]
@classmethod
def load_with_cache(cls, data_path, cache_path):
"""缓存版的load
@@ -48,16 +53,18 @@ class BaseLoader(object):

class DataLoaderRegister:
_readers = {}
@classmethod
def set_reader(cls, reader_cls, read_fn_name):
# def wrapper(reader_cls):
if read_fn_name in cls._readers:
raise KeyError('duplicate reader: {} and {} for read_func: {}'.format(cls._readers[read_fn_name], reader_cls, read_fn_name))
raise KeyError(
'duplicate reader: {} and {} for read_func: {}'.format(cls._readers[read_fn_name], reader_cls,
read_fn_name))
if hasattr(reader_cls, 'load'):
cls._readers[read_fn_name] = reader_cls().load
return reader_cls
@classmethod
def get_reader(cls, read_fn_name):
if read_fn_name in cls._readers:


+ 36
- 28
fastNLP/io/config_io.py View File

@@ -1,8 +1,14 @@
"""

用于读入和处理和保存 config 文件
.. todo::
这个模块中的类可能被抛弃?
"""
__all__ = ["ConfigLoader","ConfigSection","ConfigSaver"]
__all__ = [
"ConfigLoader",
"ConfigSection",
"ConfigSaver"
]

import configparser
import json
import os
@@ -19,15 +25,16 @@ class ConfigLoader(BaseLoader):
:param str data_path: 配置文件的路径

"""
def __init__(self, data_path=None):
super(ConfigLoader, self).__init__()
if data_path is not None:
self.config = self.parse(super(ConfigLoader, self).load(data_path))
@staticmethod
def parse(string):
raise NotImplementedError
@staticmethod
def load_config(file_path, sections):
"""
@@ -81,10 +88,10 @@ class ConfigSection(object):
ConfigSection是一个存储了一个section中所有键值对的数据结构,推荐使用此类的实例来配合 :meth:`ConfigLoader.load_config` 使用

"""
def __init__(self):
super(ConfigSection, self).__init__()
def __getitem__(self, key):
"""
:param key: str, the name of the attribute
@@ -97,7 +104,7 @@ class ConfigSection(object):
if key in self.__dict__.keys():
return getattr(self, key)
raise AttributeError("do NOT have attribute %s" % key)
def __setitem__(self, key, value):
"""
:param key: str, the name of the attribute
@@ -112,14 +119,14 @@ class ConfigSection(object):
raise AttributeError("attr %s except %s but got %s" %
(key, str(type(getattr(self, key))), str(type(value))))
setattr(self, key, value)
def __contains__(self, item):
"""
:param item: The key of item.
:return: True if the key in self.__dict__.keys() else False.
"""
return item in self.__dict__.keys()
def __eq__(self, other):
"""Overwrite the == operator

@@ -131,15 +138,15 @@ class ConfigSection(object):
return False
if getattr(self, k) != getattr(self, k):
return False
for k in other.__dict__.keys():
if k not in self.__dict__.keys():
return False
if getattr(self, k) != getattr(self, k):
return False
return True
def __ne__(self, other):
"""Overwrite the != operator

@@ -147,7 +154,7 @@ class ConfigSection(object):
:return:
"""
return not self.__eq__(other)
@property
def data(self):
return self.__dict__
@@ -162,11 +169,12 @@ class ConfigSaver(object):
:param str file_path: 配置文件的路径

"""
def __init__(self, file_path):
self.file_path = file_path
if not os.path.exists(self.file_path):
raise FileNotFoundError("file {} NOT found!".__format__(self.file_path))
def _get_section(self, sect_name):
"""
This is the function to get the section with the section name.
@@ -177,7 +185,7 @@ class ConfigSaver(object):
sect = ConfigSection()
ConfigLoader().load_config(self.file_path, {sect_name: sect})
return sect
def _read_section(self):
"""
This is the function to read sections from the config file.
@@ -187,16 +195,16 @@ class ConfigSaver(object):
sect_key_list: A list of names in sect_list.
"""
sect_name = None
sect_list = {}
sect_key_list = []
single_section = {}
single_section_key = []
with open(self.file_path, 'r') as f:
lines = f.readlines()
for line in lines:
if line.startswith('[') and line.endswith(']\n'):
if sect_name is None:
@@ -208,29 +216,29 @@ class ConfigSaver(object):
sect_key_list.append(sect_name)
sect_name = line[1: -2]
continue
if line.startswith('#'):
single_section[line] = '#'
single_section_key.append(line)
continue
if line.startswith('\n'):
single_section_key.append('\n')
continue
if '=' not in line:
raise RuntimeError("can NOT load config file {}".__format__(self.file_path))
key = line.split('=', maxsplit=1)[0].strip()
value = line.split('=', maxsplit=1)[1].strip() + '\n'
single_section[key] = value
single_section_key.append(key)
if sect_name is not None:
sect_list[sect_name] = single_section, single_section_key
sect_key_list.append(sect_name)
return sect_list, sect_key_list
def _write_section(self, sect_list, sect_key_list):
"""
This is the function to write config file with section list and name list.
@@ -252,7 +260,7 @@ class ConfigSaver(object):
continue
f.write(key + ' = ' + single_section[key])
f.write('\n')
def save_config_file(self, section_name, section):
"""
这个方法可以用来修改并保存配置文件中单独的一个 section
@@ -284,11 +292,11 @@ class ConfigSaver(object):
break
if not change_file:
return
sect_list, sect_key_list = self._read_section()
if section_name not in sect_key_list:
raise AttributeError()
sect, sect_key = sect_list[section_name]
for k in section.__dict__.keys():
if k not in sect_key:


+ 1
- 0
fastNLP/io/dataset_loader.py View File

@@ -20,6 +20,7 @@ __all__ = [
'PeopleDailyCorpusLoader',
'Conll2003Loader',
]

from nltk.tree import Tree

from ..core.dataset import DataSet


+ 30
- 26
fastNLP/io/embed_loader.py View File

@@ -1,11 +1,15 @@
__all__ = [
"EmbedLoader"
]

import os
import warnings

import numpy as np

from ..core.vocabulary import Vocabulary
from .base_loader import BaseLoader

import warnings

class EmbedLoader(BaseLoader):
"""
@@ -13,10 +17,10 @@ class EmbedLoader(BaseLoader):

用于读取预训练的embedding, 读取结果可直接载入为模型参数。
"""
def __init__(self):
super(EmbedLoader, self).__init__()
@staticmethod
def load_with_vocab(embed_filepath, vocab, dtype=np.float32, normalize=True, error='ignore'):
"""
@@ -40,11 +44,11 @@ class EmbedLoader(BaseLoader):
line = f.readline().strip()
parts = line.split()
start_idx = 0
if len(parts)==2:
if len(parts) == 2:
dim = int(parts[1])
start_idx += 1
else:
dim = len(parts)-1
dim = len(parts) - 1
f.seek(0)
matrix = np.random.randn(len(vocab), dim).astype(dtype)
for idx, line in enumerate(f, start_idx):
@@ -63,21 +67,21 @@ class EmbedLoader(BaseLoader):
total_hits = sum(hit_flags)
print("Found {} out of {} words in the pre-training embedding.".format(total_hits, len(vocab)))
found_vectors = matrix[hit_flags]
if len(found_vectors)!=0:
if len(found_vectors) != 0:
mean = np.mean(found_vectors, axis=0, keepdims=True)
std = np.std(found_vectors, axis=0, keepdims=True)
unfound_vec_num = len(vocab) - total_hits
r_vecs = np.random.randn(unfound_vec_num, dim).astype(dtype)*std + mean
matrix[hit_flags==False] = r_vecs
r_vecs = np.random.randn(unfound_vec_num, dim).astype(dtype) * std + mean
matrix[hit_flags == False] = r_vecs
if normalize:
matrix /= np.linalg.norm(matrix, axis=1, keepdims=True)
return matrix
@staticmethod
def load_without_vocab(embed_filepath, dtype=np.float32, padding='<pad>', unknown='<unk>', normalize=True,
error='ignore'):
error='ignore'):
"""
从embed_filepath中读取预训练的word vector。根据预训练的词表读取embedding并生成一个对应的Vocabulary。

@@ -96,35 +100,35 @@ class EmbedLoader(BaseLoader):
vec_dict = {}
found_unknown = False
found_pad = False
with open(embed_filepath, 'r', encoding='utf-8') as f:
line = f.readline()
start = 1
dim = -1
if len(line.strip().split())!=2:
if len(line.strip().split()) != 2:
f.seek(0)
start = 0
for idx, line in enumerate(f, start=start):
try:
parts = line.strip().split()
word = parts[0]
if dim==-1:
dim = len(parts)-1
if dim == -1:
dim = len(parts) - 1
vec = np.fromstring(' '.join(parts[1:]), sep=' ', dtype=dtype, count=dim)
vec_dict[word] = vec
vocab.add_word(word)
if unknown is not None and unknown==word:
if unknown is not None and unknown == word:
found_unknown = True
if found_pad is not None and padding==word:
if found_pad is not None and padding == word:
found_pad = True
except Exception as e:
if error=='ignore':
if error == 'ignore':
warnings.warn("Error occurred at the {} line.".format(idx))
pass
else:
print("Error occurred at the {} line.".format(idx))
raise e
if dim==-1:
if dim == -1:
raise RuntimeError("{} is an empty file.".format(embed_filepath))
matrix = np.random.randn(len(vocab), dim).astype(dtype)
if (unknown is not None and not found_unknown) or (padding is not None and not found_pad):
@@ -133,19 +137,19 @@ class EmbedLoader(BaseLoader):
start_idx += 1
if unknown is not None:
start_idx += 1
mean = np.mean(matrix[start_idx:], axis=0, keepdims=True)
std = np.std(matrix[start_idx:], axis=0, keepdims=True)
if (unknown is not None and not found_unknown):
matrix[start_idx-1] = np.random.randn(1, dim).astype(dtype)*std + mean
matrix[start_idx - 1] = np.random.randn(1, dim).astype(dtype) * std + mean
if (padding is not None and not found_pad):
matrix[0] = np.random.randn(1, dim).astype(dtype)*std + mean
matrix[0] = np.random.randn(1, dim).astype(dtype) * std + mean
for key, vec in vec_dict.items():
index = vocab.to_index(key)
matrix[index] = vec
if normalize:
matrix /= np.linalg.norm(matrix, axis=1, keepdims=True)
return matrix, vocab

+ 10
- 5
fastNLP/io/model_io.py View File

@@ -1,6 +1,11 @@
"""
用于载入和保存模型
"""
__all__ = [
"ModelLoader",
"ModelSaver"
]

import torch

from .base_loader import BaseLoader
@@ -12,10 +17,10 @@ class ModelLoader(BaseLoader):

用于读取模型
"""
def __init__(self):
super(ModelLoader, self).__init__()
@staticmethod
def load_pytorch(empty_model, model_path):
"""
@@ -25,7 +30,7 @@ class ModelLoader(BaseLoader):
:param str model_path: 模型保存的路径
"""
empty_model.load_state_dict(torch.load(model_path))
@staticmethod
def load_pytorch_model(model_path):
"""
@@ -48,14 +53,14 @@ class ModelSaver(object):
saver.save_pytorch(model)

"""
def __init__(self, save_path):
"""

:param save_path: 模型保存的路径
"""
self.save_path = save_path
def save_pytorch(self, model, param_only=True):
"""
把 PyTorch 模型存入 ".pkl" 文件


+ 18
- 2
fastNLP/models/__init__.py View File

@@ -7,7 +7,23 @@ fastNLP 在 :mod:`~fastNLP.models` 模块中内置了如 :class:`~fastNLP.models


"""
__all__ = ["CNNText", "SeqLabeling", "ESIM", "STSeqLabel", "AdvSeqLabel", "STNLICls", "STSeqCls"]
__all__ = [
"CNNText",
"SeqLabeling",
"AdvSeqLabel",
"ESIM",
"StarTransEnc",
"STSeqLabel",
"STNLICls",
"STSeqCls",
"BiaffineParser",
"GraphParser"
]

from .base_model import BaseModel
from .bert import BertForMultipleChoice, BertForQuestionAnswering, BertForSequenceClassification, \
BertForTokenClassification
@@ -15,4 +31,4 @@ from .biaffine_parser import BiaffineParser, GraphParser
from .cnn_text_classification import CNNText
from .sequence_labeling import SeqLabeling, AdvSeqLabel
from .snli import ESIM
from .star_transformer import STSeqCls, STNLICls, STSeqLabel
from .star_transformer import StarTransEnc, STSeqCls, STNLICls, STSeqLabel

+ 6
- 6
fastNLP/models/base_model.py View File

@@ -1,18 +1,18 @@
import torch

from ..modules.decoder.MLP import MLP
from ..modules.decoder.mlp import MLP


class BaseModel(torch.nn.Module):
"""Base PyTorch model for all models.
"""
def __init__(self):
super(BaseModel, self).__init__()
def fit(self, train_data, dev_data=None, **train_args):
pass
def predict(self, *args, **kwargs):
raise NotImplementedError

@@ -21,9 +21,9 @@ class NaiveClassifier(BaseModel):
def __init__(self, in_feature_dim, out_feature_dim):
super(NaiveClassifier, self).__init__()
self.mlp = MLP([in_feature_dim, in_feature_dim, out_feature_dim])
def forward(self, x):
return {"predict": torch.sigmoid(self.mlp(x))}
def predict(self, x):
return {"predict": torch.sigmoid(self.mlp(x)) > 0.5}

+ 87
- 70
fastNLP/models/biaffine_parser.py View File

@@ -1,11 +1,17 @@
"""Biaffine Dependency Parser 的 Pytorch 实现.
"""
from collections import defaultdict
Biaffine Dependency Parser 的 Pytorch 实现.
"""
__all__ = [
"BiaffineParser",
"GraphParser"
]

import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
import torch.nn as nn
import torch.nn.functional as F

from collections import defaultdict

from ..core.const import Const as C
from ..core.losses import LossFunc
@@ -18,6 +24,7 @@ from ..modules.utils import get_embeddings
from .base_model import BaseModel
from ..core.utils import seq_len_to_mask


def _mst(scores):
"""
with some modification to support parser output for MST decoding
@@ -44,7 +51,7 @@ def _mst(scores):
scores[roots, new_heads] / root_scores)]
heads[roots] = new_heads
heads[new_root] = 0
edges = defaultdict(set)
vertices = set((0,))
for dep, head in enumerate(heads[tokens]):
@@ -73,7 +80,7 @@ def _mst(scores):
heads[changed_cycle] = new_head
edges[new_head].add(changed_cycle)
edges[old_head].remove(changed_cycle)
return heads


@@ -88,7 +95,7 @@ def _find_cycle(vertices, edges):
_lowlinks = {}
_onstack = defaultdict(lambda: False)
_SCCs = []
def _strongconnect(v):
nonlocal _index
_indices[v] = _index
@@ -96,28 +103,28 @@ def _find_cycle(vertices, edges):
_index += 1
_stack.append(v)
_onstack[v] = True
for w in edges[v]:
if w not in _indices:
_strongconnect(w)
_lowlinks[v] = min(_lowlinks[v], _lowlinks[w])
elif _onstack[w]:
_lowlinks[v] = min(_lowlinks[v], _indices[w])
if _lowlinks[v] == _indices[v]:
SCC = set()
while True:
w = _stack.pop()
_onstack[w] = False
SCC.add(w)
if not(w != v):
if not (w != v):
break
_SCCs.append(SCC)
for v in vertices:
if v not in _indices:
_strongconnect(v)
return [SCC for SCC in _SCCs if len(SCC) > 1]


@@ -125,9 +132,10 @@ class GraphParser(BaseModel):
"""
基于图的parser base class, 支持贪婪解码和最大生成树解码
"""
def __init__(self):
super(GraphParser, self).__init__()
@staticmethod
def greedy_decoder(arc_matrix, mask=None):
"""
@@ -146,7 +154,7 @@ class GraphParser(BaseModel):
if mask is not None:
heads *= mask.long()
return heads
@staticmethod
def mst_decoder(arc_matrix, mask=None):
"""
@@ -176,6 +184,7 @@ class ArcBiaffine(nn.Module):
:param hidden_size: 输入的特征维度
:param bias: 是否使用bias. Default: ``True``
"""
def __init__(self, hidden_size, bias=True):
super(ArcBiaffine, self).__init__()
self.U = nn.Parameter(torch.Tensor(hidden_size, hidden_size), requires_grad=True)
@@ -185,7 +194,7 @@ class ArcBiaffine(nn.Module):
else:
self.register_parameter("bias", None)
initial_parameter(self)
def forward(self, head, dep):
"""

@@ -209,11 +218,12 @@ class LabelBilinear(nn.Module):
:param num_label: 边类别的个数
:param bias: 是否使用bias. Default: ``True``
"""
def __init__(self, in1_features, in2_features, num_label, bias=True):
super(LabelBilinear, self).__init__()
self.bilinear = nn.Bilinear(in1_features, in2_features, num_label, bias=bias)
self.lin = nn.Linear(in1_features + in2_features, num_label, bias=False)
def forward(self, x1, x2):
"""

@@ -225,13 +235,13 @@ class LabelBilinear(nn.Module):
output += self.lin(torch.cat([x1, x2], dim=2))
return output


class BiaffineParser(GraphParser):
"""
别名::class:`fastNLP.models.BiaffineParser` :class:`fastNLP.models.baffine_parser.BiaffineParser`

Biaffine Dependency Parser 实现.
论文参考 ` Deep Biaffine Attention for Neural Dependency Parsing (Dozat and Manning, 2016)
<https://arxiv.org/abs/1611.01734>`_ .
论文参考 `Deep Biaffine Attention for Neural Dependency Parsing (Dozat and Manning, 2016) <https://arxiv.org/abs/1611.01734>`_ .

:param init_embed: 单词词典, 可以是 tuple, 包括(num_embedings, embedding_dim), 即
embedding的大小和每个词的维度. 也可以传入 nn.Embedding 对象,
@@ -248,18 +258,19 @@ class BiaffineParser(GraphParser):
:param use_greedy_infer: 是否在inference时使用贪心算法.
若 ``False`` , 使用更加精确但相对缓慢的MST算法. Default: ``False``
"""
def __init__(self,
init_embed,
pos_vocab_size,
pos_emb_dim,
num_label,
rnn_layers=1,
rnn_hidden_size=200,
arc_mlp_size=100,
label_mlp_size=100,
dropout=0.3,
encoder='lstm',
use_greedy_infer=False):
init_embed,
pos_vocab_size,
pos_emb_dim,
num_label,
rnn_layers=1,
rnn_hidden_size=200,
arc_mlp_size=100,
label_mlp_size=100,
dropout=0.3,
encoder='lstm',
use_greedy_infer=False):
super(BiaffineParser, self).__init__()
rnn_out_size = 2 * rnn_hidden_size
word_hid_dim = pos_hid_dim = rnn_hidden_size
@@ -295,20 +306,20 @@ class BiaffineParser(GraphParser):
if (d_k * n_head) != rnn_out_size:
raise ValueError('unsupported rnn_out_size: {} for transformer'.format(rnn_out_size))
self.position_emb = nn.Embedding(num_embeddings=self.max_len,
embedding_dim=rnn_out_size,)
embedding_dim=rnn_out_size, )
self.encoder = TransformerEncoder(num_layers=rnn_layers,
model_size=rnn_out_size,
inner_size=1024,
key_size=d_k,
value_size=d_v,
num_head=n_head,
dropout=dropout,)
dropout=dropout, )
else:
raise ValueError('unsupported encoder type: {}'.format(encoder))
self.mlp = nn.Sequential(nn.Linear(rnn_out_size, arc_mlp_size * 2 + label_mlp_size * 2),
nn.ELU(),
TimestepDropout(p=dropout),)
nn.ELU(),
TimestepDropout(p=dropout), )
self.arc_mlp_size = arc_mlp_size
self.label_mlp_size = label_mlp_size
self.arc_predictor = ArcBiaffine(arc_mlp_size, bias=True)
@@ -316,7 +327,7 @@ class BiaffineParser(GraphParser):
self.use_greedy_infer = use_greedy_infer
self.reset_parameters()
self.dropout = dropout
def reset_parameters(self):
for m in self.modules():
if isinstance(m, nn.Embedding):
@@ -327,7 +338,7 @@ class BiaffineParser(GraphParser):
else:
for p in m.parameters():
nn.init.normal_(p, 0, 0.1)
def forward(self, words1, words2, seq_len, target1=None):
"""模型forward阶段

@@ -337,50 +348,52 @@ class BiaffineParser(GraphParser):
:param target1: [batch_size, seq_len] 输入真实标注的heads, 仅在训练阶段有效,
用于训练label分类器. 若为 ``None`` , 使用预测的heads输入到label分类器
Default: ``None``
:return dict: parsing结果::
:return dict: parsing
结果::

pred1: [batch_size, seq_len, seq_len] 边预测logits
pred2: [batch_size, seq_len, num_label] label预测logits
pred3: [batch_size, seq_len] heads的预测结果, 在 ``target1=None`` 时预测

pred1: [batch_size, seq_len, seq_len] 边预测logits
pred2: [batch_size, seq_len, num_label] label预测logits
pred3: [batch_size, seq_len] heads的预测结果, 在 ``target1=None`` 时预测
"""
# prepare embeddings
batch_size, length = words1.shape
# print('forward {} {}'.format(batch_size, seq_len))
# get sequence mask
mask = seq_len_to_mask(seq_len).long()
word = self.word_embedding(words1) # [N,L] -> [N,L,C_0]
pos = self.pos_embedding(words2) # [N,L] -> [N,L,C_1]
word = self.word_embedding(words1) # [N,L] -> [N,L,C_0]
pos = self.pos_embedding(words2) # [N,L] -> [N,L,C_1]
word, pos = self.word_fc(word), self.pos_fc(pos)
word, pos = self.word_norm(word), self.pos_norm(pos)
x = torch.cat([word, pos], dim=2) # -> [N,L,C]
x = torch.cat([word, pos], dim=2) # -> [N,L,C]
# encoder, extract features
if self.encoder_name.endswith('lstm'):
sort_lens, sort_idx = torch.sort(seq_len, dim=0, descending=True)
x = x[sort_idx]
x = nn.utils.rnn.pack_padded_sequence(x, sort_lens, batch_first=True)
feat, _ = self.encoder(x) # -> [N,L,C]
feat, _ = self.encoder(x) # -> [N,L,C]
feat, _ = nn.utils.rnn.pad_packed_sequence(feat, batch_first=True)
_, unsort_idx = torch.sort(sort_idx, dim=0, descending=False)
feat = feat[unsort_idx]
else:
seq_range = torch.arange(length, dtype=torch.long, device=x.device)[None,:]
seq_range = torch.arange(length, dtype=torch.long, device=x.device)[None, :]
x = x + self.position_emb(seq_range)
feat = self.encoder(x, mask.float())
# for arc biaffine
# mlp, reduce dim
feat = self.mlp(feat)
arc_sz, label_sz = self.arc_mlp_size, self.label_mlp_size
arc_dep, arc_head = feat[:,:,:arc_sz], feat[:,:,arc_sz:2*arc_sz]
label_dep, label_head = feat[:,:,2*arc_sz:2*arc_sz+label_sz], feat[:,:,2*arc_sz+label_sz:]
arc_dep, arc_head = feat[:, :, :arc_sz], feat[:, :, arc_sz:2 * arc_sz]
label_dep, label_head = feat[:, :, 2 * arc_sz:2 * arc_sz + label_sz], feat[:, :, 2 * arc_sz + label_sz:]
# biaffine arc classifier
arc_pred = self.arc_predictor(arc_head, arc_dep) # [N, L, L]
arc_pred = self.arc_predictor(arc_head, arc_dep) # [N, L, L]
# use gold or predicted arc to predict label
if target1 is None or not self.training:
# use greedy decoding in training
@@ -390,22 +403,22 @@ class BiaffineParser(GraphParser):
heads = self.mst_decoder(arc_pred, mask)
head_pred = heads
else:
assert self.training # must be training mode
assert self.training # must be training mode
if target1 is None:
heads = self.greedy_decoder(arc_pred, mask)
head_pred = heads
else:
head_pred = None
heads = target1
batch_range = torch.arange(start=0, end=batch_size, dtype=torch.long, device=words1.device).unsqueeze(1)
label_head = label_head[batch_range, heads].contiguous()
label_pred = self.label_predictor(label_head, label_dep) # [N, L, num_label]
label_pred = self.label_predictor(label_head, label_dep) # [N, L, num_label]
res_dict = {C.OUTPUTS(0): arc_pred, C.OUTPUTS(1): label_pred}
if head_pred is not None:
res_dict[C.OUTPUTS(2)] = head_pred
return res_dict
@staticmethod
def loss(pred1, pred2, target1, target2, seq_len):
"""
@@ -418,7 +431,7 @@ class BiaffineParser(GraphParser):
:param seq_len: [batch_size, seq_len] 真实目标的长度
:return loss: scalar
"""
batch_size, length, _ = pred1.shape
mask = seq_len_to_mask(seq_len)
flip_mask = (mask == 0)
@@ -430,24 +443,26 @@ class BiaffineParser(GraphParser):
child_index = torch.arange(length, device=arc_logits.device, dtype=torch.long).unsqueeze(0)
arc_loss = arc_logits[batch_index, child_index, target1]
label_loss = label_logits[batch_index, child_index, target2]
byte_mask = flip_mask.byte()
arc_loss.masked_fill_(byte_mask, 0)
label_loss.masked_fill_(byte_mask, 0)
arc_nll = -arc_loss.mean()
label_nll = -label_loss.mean()
return arc_nll + label_nll
def predict(self, words1, words2, seq_len):
"""模型预测API

:param words1: [batch_size, seq_len] 输入word序列
:param words2: [batch_size, seq_len] 输入pos序列
:param seq_len: [batch_size, seq_len] 输入序列长度
:return dict: parsing结果::
:return dict: parsing
结果::

pred1: [batch_size, seq_len] heads的预测结果
pred2: [batch_size, seq_len, num_label] label预测logits

pred1: [batch_size, seq_len] heads的预测结果
pred2: [batch_size, seq_len, num_label] label预测logits
"""
res = self(words1, words2, seq_len)
output = {}
@@ -470,6 +485,7 @@ class ParserLoss(LossFunc):
:param seq_len: [batch_size, seq_len] 真实目标的长度
:return loss: scalar
"""
def __init__(self, pred1=None, pred2=None,
target1=None, target2=None,
seq_len=None):
@@ -497,9 +513,10 @@ class ParserMetric(MetricBase):
UAS: 不带label时, 边预测的准确率
LAS: 同时预测边和label的准确率
"""
def __init__(self, pred1=None, pred2=None,
target1=None, target2=None, seq_len=None):
super().__init__()
self._init_param_map(pred1=pred1, pred2=pred2,
target1=target1, target2=target2,
@@ -507,13 +524,13 @@ class ParserMetric(MetricBase):
self.num_arc = 0
self.num_label = 0
self.num_sample = 0
def get_metric(self, reset=True):
res = {'UAS': self.num_arc*1.0 / self.num_sample, 'LAS': self.num_label*1.0 / self.num_sample}
res = {'UAS': self.num_arc * 1.0 / self.num_sample, 'LAS': self.num_label * 1.0 / self.num_sample}
if reset:
self.num_sample = self.num_label = self.num_arc = 0
return res
def evaluate(self, pred1, pred2, target1, target2, seq_len=None):
"""Evaluate the performance of prediction.
"""
@@ -522,7 +539,7 @@ class ParserMetric(MetricBase):
else:
seq_mask = seq_len_to_mask(seq_len.long()).long()
# mask out <root> tag
seq_mask[:,0] = 0
seq_mask[:, 0] = 0
head_pred_correct = (pred1 == target1).long() * seq_mask
label_pred_correct = (pred2 == target2).long() * head_pred_correct
self.num_arc += head_pred_correct.sum().item()


+ 8
- 7
fastNLP/models/cnn_text_classification.py View File

@@ -1,10 +1,11 @@
# python: 3.6
# encoding: utf-8
__all__ = [
"CNNText"
]

import torch
import torch.nn as nn
from ..core.const import Const as C

from ..core.const import Const as C
from ..modules import encoder


@@ -23,7 +24,7 @@ class CNNText(torch.nn.Module):
:param int padding: 对句子前后的pad的大小, 用0填充。
:param float dropout: Dropout的大小
"""
def __init__(self, init_embed,
num_classes,
kernel_nums=(3, 4, 5),
@@ -31,7 +32,7 @@ class CNNText(torch.nn.Module):
padding=0,
dropout=0.5):
super(CNNText, self).__init__()
# no support for pre-trained embedding currently
self.embed = encoder.Embedding(init_embed)
self.conv_pool = encoder.ConvMaxpool(
@@ -41,7 +42,7 @@ class CNNText(torch.nn.Module):
padding=padding)
self.dropout = nn.Dropout(dropout)
self.fc = nn.Linear(sum(kernel_nums), num_classes)
def forward(self, words, seq_len=None):
"""

@@ -54,7 +55,7 @@ class CNNText(torch.nn.Module):
x = self.dropout(x)
x = self.fc(x) # [N,C] -> [N, N_class]
return {C.OUTPUT: x}
def predict(self, words, seq_len=None):
"""
:param torch.LongTensor words: [batch_size, seq_len],句子中word的index


+ 1
- 0
fastNLP/models/enas_controller.py View File

@@ -5,6 +5,7 @@ import os

import torch
import torch.nn.functional as F

from . import enas_utils as utils
from .enas_utils import Node



+ 71
- 68
fastNLP/models/enas_model.py View File

@@ -1,17 +1,19 @@
# Code Modified from https://github.com/carpedm20/ENAS-pytorch
"""Module containing the shared RNN model."""
import numpy as np
"""
Module containing the shared RNN model.
Code Modified from https://github.com/carpedm20/ENAS-pytorch
"""
import collections

import numpy as np
import torch
from torch import nn
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable

from . import enas_utils as utils
from .base_model import BaseModel


def _get_dropped_weights(w_raw, dropout_p, is_training):
"""Drops out weights to implement DropConnect.

@@ -35,12 +37,13 @@ def _get_dropped_weights(w_raw, dropout_p, is_training):
The above TODO is the reason for the hacky check for `torch.nn.Parameter`.
"""
dropped_w = F.dropout(w_raw, p=dropout_p, training=is_training)
if isinstance(dropped_w, torch.nn.Parameter):
dropped_w = dropped_w.clone()
return dropped_w


class EmbeddingDropout(torch.nn.Embedding):
"""Class for dropping out embeddings by zero'ing out parameters in the
embedding matrix.
@@ -53,6 +56,7 @@ class EmbeddingDropout(torch.nn.Embedding):
See 'A Theoretically Grounded Application of Dropout in Recurrent Neural
Networks', (Gal and Ghahramani, 2016).
"""
def __init__(self,
num_embeddings,
embedding_dim,
@@ -83,14 +87,14 @@ class EmbeddingDropout(torch.nn.Embedding):
assert (dropout >= 0.0) and (dropout < 1.0), ('Dropout must be >= 0.0 '
'and < 1.0')
self.scale = scale
def forward(self, inputs): # pylint:disable=arguments-differ
"""Embeds `inputs` with the dropped out embedding weight matrix."""
if self.training:
dropout = self.dropout
else:
dropout = 0
if dropout:
mask = self.weight.data.new(self.weight.size(0), 1)
mask.bernoulli_(1 - dropout)
@@ -101,7 +105,7 @@ class EmbeddingDropout(torch.nn.Embedding):
masked_weight = self.weight
if self.scale and self.scale != 1:
masked_weight = masked_weight * self.scale
return F.embedding(inputs,
masked_weight,
max_norm=self.max_norm,
@@ -114,7 +118,7 @@ class LockedDropout(nn.Module):
# code from https://github.com/salesforce/awd-lstm-lm/blob/master/locked_dropout.py
def __init__(self):
super().__init__()
def forward(self, x, dropout=0.5):
if not self.training or not dropout:
return x
@@ -126,11 +130,12 @@ class LockedDropout(nn.Module):

class ENASModel(BaseModel):
"""Shared RNN model."""
def __init__(self, embed_num, num_classes, num_blocks=4, cuda=False, shared_hid=1000, shared_embed=1000):
super(ENASModel, self).__init__()
self.use_cuda = cuda
self.shared_hid = shared_hid
self.num_blocks = num_blocks
self.decoder = nn.Linear(self.shared_hid, num_classes)
@@ -139,16 +144,16 @@ class ENASModel(BaseModel):
dropout=0.1)
self.lockdrop = LockedDropout()
self.dag = None
# Tie weights
# self.decoder.weight = self.encoder.weight
# Since W^{x, c} and W^{h, c} are always summed, there
# is no point duplicating their bias offset parameter. Likewise for
# W^{x, h} and W^{h, h}.
self.w_xc = nn.Linear(shared_embed, self.shared_hid)
self.w_xh = nn.Linear(shared_embed, self.shared_hid)
# The raw weights are stored here because the hidden-to-hidden weights
# are weight dropped on the forward pass.
self.w_hc_raw = torch.nn.Parameter(
@@ -157,10 +162,10 @@ class ENASModel(BaseModel):
torch.Tensor(self.shared_hid, self.shared_hid))
self.w_hc = None
self.w_hh = None
self.w_h = collections.defaultdict(dict)
self.w_c = collections.defaultdict(dict)
for idx in range(self.num_blocks):
for jdx in range(idx + 1, self.num_blocks):
self.w_h[idx][jdx] = nn.Linear(self.shared_hid,
@@ -169,48 +174,47 @@ class ENASModel(BaseModel):
self.w_c[idx][jdx] = nn.Linear(self.shared_hid,
self.shared_hid,
bias=False)
self._w_h = nn.ModuleList([self.w_h[idx][jdx]
for idx in self.w_h
for jdx in self.w_h[idx]])
self._w_c = nn.ModuleList([self.w_c[idx][jdx]
for idx in self.w_c
for jdx in self.w_c[idx]])
self.batch_norm = None
# if args.mode == 'train':
# self.batch_norm = nn.BatchNorm1d(self.shared_hid)
# else:
# self.batch_norm = None
self.reset_parameters()
self.static_init_hidden = utils.keydefaultdict(self.init_hidden)
def setDAG(self, dag):
if self.dag is None:
self.dag = dag
def forward(self, word_seq, hidden=None):
inputs = torch.transpose(word_seq, 0, 1)
time_steps = inputs.size(0)
batch_size = inputs.size(1)


self.w_hh = _get_dropped_weights(self.w_hh_raw,
0.5,
self.training)
self.w_hc = _get_dropped_weights(self.w_hc_raw,
0.5,
self.training)
# hidden = self.static_init_hidden[batch_size] if hidden is None else hidden
hidden = self.static_init_hidden[batch_size]
embed = self.encoder(inputs)
embed = self.lockdrop(embed, 0.65 if self.training else 0)
# The norm of hidden states are clipped here because
# otherwise ENAS is especially prone to exploding activations on the
# forward pass. This could probably be fixed in a more elegant way, but
@@ -226,7 +230,7 @@ class ENASModel(BaseModel):
for step in range(time_steps):
x_t = embed[step]
logit, hidden = self.cell(x_t, hidden, self.dag)
hidden_norms = hidden.norm(dim=-1)
max_norm = 25.0
if hidden_norms.data.max() > max_norm:
@@ -237,60 +241,60 @@ class ENASModel(BaseModel):
# because the PyTorch slicing and slice assignment is too
# flaky.
hidden_norms = hidden_norms.data.cpu().numpy()
clipped_num += 1
if hidden_norms.max() > max_clipped_norm:
max_clipped_norm = hidden_norms.max()
clip_select = hidden_norms > max_norm
clip_norms = hidden_norms[clip_select]
mask = np.ones(hidden.size())
normalizer = max_norm/clip_norms
normalizer = max_norm / clip_norms
normalizer = normalizer[:, np.newaxis]
mask[clip_select] = normalizer
if self.use_cuda:
hidden *= torch.autograd.Variable(
torch.FloatTensor(mask).cuda(), requires_grad=False)
else:
hidden *= torch.autograd.Variable(
torch.FloatTensor(mask), requires_grad=False)
torch.FloatTensor(mask), requires_grad=False)
logits.append(logit)
h1tohT.append(hidden)
h1tohT = torch.stack(h1tohT)
output = torch.stack(logits)
raw_output = output
output = self.lockdrop(output, 0.4 if self.training else 0)
#Pooling
# Pooling
output = torch.mean(output, 0)
decoded = self.decoder(output)
extra_out = {'dropped': decoded,
'hiddens': h1tohT,
'raw': raw_output}
return {'pred': decoded, 'hidden': hidden, 'extra_out': extra_out}
def cell(self, x, h_prev, dag):
"""Computes a single pass through the discovered RNN cell."""
c = {}
h = {}
f = {}
f[0] = self.get_f(dag[-1][0].name)
c[0] = torch.sigmoid(self.w_xc(x) + F.linear(h_prev, self.w_hc, None))
h[0] = (c[0]*f[0](self.w_xh(x) + F.linear(h_prev, self.w_hh, None)) +
(1 - c[0])*h_prev)
h[0] = (c[0] * f[0](self.w_xh(x) + F.linear(h_prev, self.w_hh, None)) +
(1 - c[0]) * h_prev)
leaf_node_ids = []
q = collections.deque()
q.append(0)
# Computes connections from the parent nodes `node_id`
# to their child nodes `next_id` recursively, skipping leaf nodes. A
# leaf node is a node whose id == `self.num_blocks`.
@@ -306,10 +310,10 @@ class ENASModel(BaseModel):
while True:
if len(q) == 0:
break
node_id = q.popleft()
nodes = dag[node_id]
for next_node in nodes:
next_id = next_node.id
if next_id == self.num_blocks:
@@ -317,38 +321,38 @@ class ENASModel(BaseModel):
assert len(nodes) == 1, ('parent of leaf node should have '
'only one child')
continue
w_h = self.w_h[node_id][next_id]
w_c = self.w_c[node_id][next_id]
f[next_id] = self.get_f(next_node.name)
c[next_id] = torch.sigmoid(w_c(h[node_id]))
h[next_id] = (c[next_id]*f[next_id](w_h(h[node_id])) +
(1 - c[next_id])*h[node_id])
h[next_id] = (c[next_id] * f[next_id](w_h(h[node_id])) +
(1 - c[next_id]) * h[node_id])
q.append(next_id)
# Instead of averaging loose ends, perhaps there should
# be a set of separate unshared weights for each "loose" connection
# between each node in a cell and the output.
#
# As it stands, all weights W^h_{ij} are doing double duty by
# connecting both from i to j, as well as from i to the output.
# average all the loose ends
leaf_nodes = [h[node_id] for node_id in leaf_node_ids]
output = torch.mean(torch.stack(leaf_nodes, 2), -1)
# stabilizing the Updates of omega
if self.batch_norm is not None:
output = self.batch_norm(output)
return output, h[self.num_blocks - 1]
def init_hidden(self, batch_size):
zeros = torch.zeros(batch_size, self.shared_hid)
return utils.get_variable(zeros, self.use_cuda, requires_grad=False)
def get_f(self, name):
name = name.lower()
if name == 'relu':
@@ -360,22 +364,21 @@ class ENASModel(BaseModel):
elif name == 'sigmoid':
f = torch.sigmoid
return f

@property
def num_parameters(self):
def size(p):
return np.prod(p.size())
return sum([size(param) for param in self.parameters()])


def reset_parameters(self):
init_range = 0.025
# init_range = 0.025 if self.args.mode == 'train' else 0.04
for param in self.parameters():
param.data.uniform_(-init_range, init_range)
self.decoder.bias.data.fill_(0)
def predict(self, word_seq):
"""



+ 69
- 72
fastNLP/models/enas_trainer.py View File

@@ -1,12 +1,12 @@
# Code Modified from https://github.com/carpedm20/ENAS-pytorch

import time
from datetime import datetime
from datetime import timedelta

import math
import numpy as np
import time
import torch
import math

from datetime import datetime, timedelta

from torch.optim import Adam

try:
from tqdm.auto import tqdm
@@ -21,8 +21,6 @@ from ..core.utils import _move_dict_value_to_device
from . import enas_utils as utils
from ..core.utils import _build_args

from torch.optim import Adam


def _get_no_grad_ctx_mgr():
"""Returns a the `torch.no_grad` context manager for PyTorch version >=
@@ -33,6 +31,7 @@ def _get_no_grad_ctx_mgr():

class ENASTrainer(Trainer):
"""A class to wrap training code."""
def __init__(self, train_data, model, controller, **kwargs):
"""Constructor for training algorithm.
:param DataSet train_data: the training data
@@ -45,19 +44,19 @@ class ENASTrainer(Trainer):
self.controller_step = 0
self.shared_step = 0
self.max_length = 35
self.shared = model
self.controller = controller
self.shared_optim = Adam(
self.shared.parameters(),
lr=20.0,
weight_decay=1e-7)
self.controller_optim = Adam(
self.controller.parameters(),
lr=3.5e-4)
def train(self, load_best_model=True):
"""
:param bool load_best_model: 该参数只有在初始化提供了dev_data的情况下有效,如果True, trainer将在返回之前重新加载dev表现
@@ -82,21 +81,22 @@ class ENASTrainer(Trainer):
self.model = self.model.cuda()
self._model_device = self.model.parameters().__next__().device
self._mode(self.model, is_test=False)
self.start_time = str(datetime.now().strftime('%Y-%m-%d-%H-%M-%S'))
start_time = time.time()
print("training epochs started " + self.start_time, flush=True)
try:
self.callback_manager.on_train_begin()
self._train()
self.callback_manager.on_train_end()
except (CallbackException, KeyboardInterrupt) as e:
self.callback_manager.on_exception(e)
if self.dev_data is not None:
print("\nIn Epoch:{}/Step:{}, got best dev performance:".format(self.best_dev_epoch, self.best_dev_step) +
self.tester._format_eval_results(self.best_dev_perf),)
print(
"\nIn Epoch:{}/Step:{}, got best dev performance:".format(self.best_dev_epoch, self.best_dev_step) +
self.tester._format_eval_results(self.best_dev_perf), )
results['best_eval'] = self.best_dev_perf
results['best_epoch'] = self.best_dev_epoch
results['best_step'] = self.best_dev_step
@@ -110,9 +110,9 @@ class ENASTrainer(Trainer):
finally:
pass
results['seconds'] = round(time.time() - start_time, 2)
return results
def _train(self):
if not self.use_tqdm:
from fastNLP.core.utils import _pseudo_tqdm as inner_tqdm
@@ -126,21 +126,21 @@ class ENASTrainer(Trainer):
avg_loss = 0
data_iterator = Batch(self.train_data, batch_size=self.batch_size, sampler=self.sampler, as_numpy=False,
prefetch=self.prefetch)
for epoch in range(1, self.n_epochs+1):
for epoch in range(1, self.n_epochs + 1):
pbar.set_description_str(desc="Epoch {}/{}".format(epoch, self.n_epochs))
last_stage = (epoch > self.n_epochs + 1 - self.final_epochs)
if epoch == self.n_epochs + 1 - self.final_epochs:
print('Entering the final stage. (Only train the selected structure)')
# early stopping
self.callback_manager.on_epoch_begin()
# 1. Training the shared parameters omega of the child models
self.train_shared(pbar)
# 2. Training the controller parameters theta
if not last_stage:
self.train_controller()
if ((self.validate_every > 0 and self.step % self.validate_every == 0) or
(self.validate_every < 0 and self.step % len(data_iterator) == 0)) \
and self.dev_data is not None:
@@ -149,16 +149,15 @@ class ENASTrainer(Trainer):
eval_res = self._do_validation(epoch=epoch, step=self.step)
eval_str = "Evaluation at Epoch {}/{}. Step:{}/{}. ".format(epoch, self.n_epochs, self.step,
total_steps) + \
self.tester._format_eval_results(eval_res)
self.tester._format_eval_results(eval_res)
pbar.write(eval_str)
# lr decay; early stopping
self.callback_manager.on_epoch_end()
# =============== epochs end =================== #
pbar.close()
# ============ tqdm end ============== #


def get_loss(self, inputs, targets, hidden, dags):
"""Computes the loss for the same batch for M models.

@@ -167,7 +166,7 @@ class ENASTrainer(Trainer):
"""
if not isinstance(dags, list):
dags = [dags]
loss = 0
for dag in dags:
self.shared.setDAG(dag)
@@ -175,14 +174,14 @@ class ENASTrainer(Trainer):
inputs['hidden'] = hidden
result = self.shared(**inputs)
output, hidden, extra_out = result['pred'], result['hidden'], result['extra_out']
self.callback_manager.on_loss_begin(targets, result)
sample_loss = self._compute_loss(result, targets)
loss += sample_loss
assert len(dags) == 1, 'there are multiple `hidden` for multple `dags`'
return loss, hidden, extra_out
def train_shared(self, pbar=None, max_step=None, dag=None):
"""Train the language model for 400 steps of minibatches of 64
examples.
@@ -200,9 +199,9 @@ class ENASTrainer(Trainer):
model = self.shared
model.train()
self.controller.eval()
hidden = self.shared.init_hidden(self.batch_size)
abs_max_grad = 0
abs_max_hidden_norm = 0
step = 0
@@ -211,15 +210,15 @@ class ENASTrainer(Trainer):
train_idx = 0
avg_loss = 0
data_iterator = Batch(self.train_data, batch_size=self.batch_size, sampler=self.sampler, as_numpy=False,
prefetch=self.prefetch)
prefetch=self.prefetch)
for batch_x, batch_y in data_iterator:
_move_dict_value_to_device(batch_x, batch_y, device=self._model_device)
indices = data_iterator.get_batch_indices()
# negative sampling; replace unknown; re-weight batch_y
self.callback_manager.on_batch_begin(batch_x, batch_y, indices)
# prediction = self._data_forward(self.model, batch_x)
dags = self.controller.sample(1)
inputs, targets = batch_x, batch_y
# self.callback_manager.on_loss_begin(batch_y, prediction)
@@ -228,18 +227,18 @@ class ENASTrainer(Trainer):
hidden,
dags)
hidden.detach_()
avg_loss += loss.item()
# Is loss NaN or inf? requires_grad = False
self.callback_manager.on_backward_begin(loss)
self._grad_backward(loss)
self.callback_manager.on_backward_end()
self._update()
self.callback_manager.on_step_end()
if (self.step+1) % self.print_every == 0:
if (self.step + 1) % self.print_every == 0:
if self.use_tqdm:
print_output = "loss:{0:<6.5f}".format(avg_loss / self.print_every)
pbar.update(self.print_every)
@@ -255,30 +254,29 @@ class ENASTrainer(Trainer):
self.shared_step += 1
self.callback_manager.on_batch_end()
# ================= mini-batch end ==================== #


def get_reward(self, dag, entropies, hidden, valid_idx=0):
"""Computes the perplexity of a single sampled model on a minibatch of
validation data.
"""
if not isinstance(entropies, np.ndarray):
entropies = entropies.data.cpu().numpy()
data_iterator = Batch(self.dev_data, batch_size=self.batch_size, sampler=self.sampler, as_numpy=False,
prefetch=self.prefetch)
prefetch=self.prefetch)
for inputs, targets in data_iterator:
valid_loss, hidden, _ = self.get_loss(inputs, targets, hidden, dag)
valid_loss = utils.to_item(valid_loss.data)
valid_ppl = math.exp(valid_loss)
R = 80 / valid_ppl
rewards = R + 1e-4 * entropies
return rewards, hidden
def train_controller(self):
"""Fixes the shared parameters and updates the controller parameters.

@@ -296,13 +294,13 @@ class ENASTrainer(Trainer):
# Why can't we call shared.eval() here? Leads to loss
# being uniformly zero for the controller.
# self.shared.eval()
avg_reward_base = None
baseline = None
adv_history = []
entropy_history = []
reward_history = []
hidden = self.shared.init_hidden(self.batch_size)
total_loss = 0
valid_idx = 0
@@ -310,7 +308,7 @@ class ENASTrainer(Trainer):
# sample models
dags, log_probs, entropies = self.controller.sample(
with_details=True)
# calculate reward
np_entropies = entropies.data.cpu().numpy()
# No gradients should be backpropagated to the
@@ -320,40 +318,39 @@ class ENASTrainer(Trainer):
np_entropies,
hidden,
valid_idx)


reward_history.extend(rewards)
entropy_history.extend(np_entropies)
# moving average baseline
if baseline is None:
baseline = rewards
else:
decay = 0.95
baseline = decay * baseline + (1 - decay) * rewards
adv = rewards - baseline
adv_history.extend(adv)
# policy loss
loss = -log_probs*utils.get_variable(adv,
'cuda' in self.device,
requires_grad=False)
loss = -log_probs * utils.get_variable(adv,
'cuda' in self.device,
requires_grad=False)
loss = loss.sum() # or loss.mean()
# update
self.controller_optim.zero_grad()
loss.backward()
self.controller_optim.step()
total_loss += utils.to_item(loss.data)
if ((step % 50) == 0) and (step > 0):
reward_history, adv_history, entropy_history = [], [], []
total_loss = 0
self.controller_step += 1
# prev_valid_idx = valid_idx
# valid_idx = ((valid_idx + self.max_length) %
@@ -362,16 +359,16 @@ class ENASTrainer(Trainer):
# # validation data, we reset the hidden states.
# if prev_valid_idx > valid_idx:
# hidden = self.shared.init_hidden(self.batch_size)
def derive(self, sample_num=10, valid_idx=0):
"""We are always deriving based on the very first batch
of validation data? This seems wrong...
"""
hidden = self.shared.init_hidden(self.batch_size)
dags, _, entropies = self.controller.sample(sample_num,
with_details=True)
max_R = 0
best_dag = None
for dag in dags:
@@ -379,5 +376,5 @@ class ENASTrainer(Trainer):
if R.max() > max_R:
max_R = R.max()
best_dag = dag
self.model.setDAG(best_dag)

+ 0
- 3
fastNLP/models/enas_utils.py View File

@@ -1,12 +1,9 @@
# Code Modified from https://github.com/carpedm20/ENAS-pytorch

from __future__ import print_function

from collections import defaultdict
import collections

import numpy as np

import torch
from torch.autograd import Variable



+ 13
- 5
fastNLP/models/sequence_labeling.py View File

@@ -1,11 +1,19 @@
"""
本模块实现了两种序列标注模型
"""
__all__ = [
"SeqLabeling",
"AdvSeqLabel"
]

import torch
import torch.nn as nn

from .base_model import BaseModel
from ..modules import decoder, encoder
from ..modules.decoder.CRF import allowed_transitions
from ..modules.decoder.crf import allowed_transitions
from ..core.utils import seq_len_to_mask
from ..core.const import Const as C
from torch import nn


class SeqLabeling(BaseModel):
@@ -27,7 +35,7 @@ class SeqLabeling(BaseModel):
self.Embedding = encoder.embedding.Embedding(init_embed)
self.Rnn = encoder.lstm.LSTM(self.Embedding.embedding_dim, hidden_size)
self.Linear = nn.Linear(hidden_size, num_classes)
self.Crf = decoder.CRF.ConditionalRandomField(num_classes)
self.Crf = decoder.crf.ConditionalRandomField(num_classes)
self.mask = None
def forward(self, words, seq_len, target):
@@ -133,9 +141,9 @@ class AdvSeqLabel(nn.Module):
self.Linear2 = nn.Linear(hidden_size * 2 // 3, num_classes)
if id2words is None:
self.Crf = decoder.CRF.ConditionalRandomField(num_classes, include_start_end_trans=False)
self.Crf = decoder.crf.ConditionalRandomField(num_classes, include_start_end_trans=False)
else:
self.Crf = decoder.CRF.ConditionalRandomField(num_classes, include_start_end_trans=False,
self.Crf = decoder.crf.ConditionalRandomField(num_classes, include_start_end_trans=False,
allowed_transitions=allowed_transitions(id2words,
encoding_type=encoding_type))


+ 33
- 30
fastNLP/models/snli.py View File

@@ -1,3 +1,7 @@
__all__ = [
"ESIM"
]

import torch
import torch.nn as nn

@@ -8,7 +12,6 @@ from ..modules import encoder as Encoder
from ..modules import aggregator as Aggregator
from ..core.utils import seq_len_to_mask


my_inf = 10e12


@@ -26,7 +29,7 @@ class ESIM(BaseModel):
:param int num_classes: 标签数目,默认为3
:param numpy.array init_embedding: 初始词嵌入矩阵,形状为(vocab_size, embed_dim),默认为None,即随机初始化词嵌入矩阵
"""
def __init__(self, vocab_size, embed_dim, hidden_size, dropout=0.0, num_classes=3, init_embedding=None):
super(ESIM, self).__init__()
@@ -35,35 +38,36 @@ class ESIM(BaseModel):
self.hidden_size = hidden_size
self.dropout = dropout
self.n_labels = num_classes
self.drop = nn.Dropout(self.dropout)
self.embedding = Encoder.Embedding(
(self.vocab_size, self.embed_dim), dropout=self.dropout,
)
self.embedding_layer = nn.Linear(self.embed_dim, self.hidden_size)
self.encoder = Encoder.LSTM(
input_size=self.embed_dim, hidden_size=self.hidden_size, num_layers=1, bias=True,
batch_first=True, bidirectional=True
)
self.bi_attention = Aggregator.BiAttention()
self.mean_pooling = Aggregator.AvgPoolWithMask()
self.max_pooling = Aggregator.MaxPoolWithMask()
self.inference_layer = nn.Linear(self.hidden_size * 4, self.hidden_size)
self.decoder = Encoder.LSTM(
input_size=self.hidden_size, hidden_size=self.hidden_size, num_layers=1, bias=True,
batch_first=True, bidirectional=True
)
self.output = Decoder.MLP([4 * self.hidden_size, self.hidden_size, self.n_labels], 'tanh', dropout=self.dropout)
def forward(self, words1, words2, seq_len1=None, seq_len2=None, target=None):
""" Forward function
:param torch.Tensor words1: [batch size(B), premise seq len(PL)] premise的token表示
:param torch.Tensor words2: [B, hypothesis seq len(HL)] hypothesis的token表示
:param torch.LongTensor seq_len1: [B] premise的长度
@@ -71,10 +75,10 @@ class ESIM(BaseModel):
:param torch.LongTensor target: [B] 真实目标值
:return: dict prediction: [B, n_labels(N)] 预测结果
"""
premise0 = self.embedding_layer(self.embedding(words1))
hypothesis0 = self.embedding_layer(self.embedding(words2))
if seq_len1 is not None:
seq_len1 = seq_len_to_mask(seq_len1)
else:
@@ -85,55 +89,55 @@ class ESIM(BaseModel):
else:
seq_len2 = torch.ones(hypothesis0.size(0), hypothesis0.size(1))
seq_len2 = (seq_len2.long()).to(device=hypothesis0.device)
_BP, _PSL, _HP = premise0.size()
_BH, _HSL, _HH = hypothesis0.size()
_BPL, _PLL = seq_len1.size()
_HPL, _HLL = seq_len2.size()
assert _BP == _BH and _BPL == _HPL and _BP == _BPL
assert _HP == _HH
assert _PSL == _PLL and _HSL == _HLL
B, PL, H = premise0.size()
B, HL, H = hypothesis0.size()
a0 = self.encoder(self.drop(premise0)) # a0: [B, PL, H * 2]
b0 = self.encoder(self.drop(hypothesis0)) # b0: [B, HL, H * 2]
a = torch.mean(a0.view(B, PL, -1, H), dim=2) # a: [B, PL, H]
b = torch.mean(b0.view(B, HL, -1, H), dim=2) # b: [B, HL, H]
ai, bi = self.bi_attention(a, b, seq_len1, seq_len2)
ma = torch.cat((a, ai, a - ai, a * ai), dim=2) # ma: [B, PL, 4 * H]
mb = torch.cat((b, bi, b - bi, b * bi), dim=2) # mb: [B, HL, 4 * H]
f_ma = self.inference_layer(ma)
f_mb = self.inference_layer(mb)
vat = self.decoder(self.drop(f_ma))
vbt = self.decoder(self.drop(f_mb))
va = torch.mean(vat.view(B, PL, -1, H), dim=2) # va: [B, PL, H]
vb = torch.mean(vbt.view(B, HL, -1, H), dim=2) # vb: [B, HL, H]
va_ave = self.mean_pooling(va, seq_len1, dim=1) # va_ave: [B, H]
va_max, va_arg_max = self.max_pooling(va, seq_len1, dim=1) # va_max: [B, H]
vb_ave = self.mean_pooling(vb, seq_len2, dim=1) # vb_ave: [B, H]
vb_max, vb_arg_max = self.max_pooling(vb, seq_len2, dim=1) # vb_max: [B, H]
v = torch.cat((va_ave, va_max, vb_ave, vb_max), dim=1) # v: [B, 4 * H]
prediction = torch.tanh(self.output(v)) # prediction: [B, N]
if target is not None:
func = nn.CrossEntropyLoss()
loss = func(prediction, target)
return {Const.OUTPUT: prediction, Const.LOSS: loss}
return {Const.OUTPUT: prediction}
def predict(self, words1, words2, seq_len1=None, seq_len2=None, target=None):
""" Predict function

@@ -146,4 +150,3 @@ class ESIM(BaseModel):
"""
prediction = self.forward(words1, words2, seq_len1, seq_len2)[Const.OUTPUT]
return {Const.OUTPUT: torch.argmax(prediction, dim=-1)}


+ 41
- 28
fastNLP/models/star_transformer.py View File

@@ -1,17 +1,25 @@
"""Star-Transformer 的 一个 Pytorch 实现.
"""
Star-Transformer 的 Pytorch 实现。
"""
__all__ = [
"StarTransEnc",
"STNLICls",
"STSeqCls",
"STSeqLabel",
]

import torch
from torch import nn

from ..modules.encoder.star_transformer import StarTransformer
from ..core.utils import seq_len_to_mask
from ..modules.utils import get_embeddings
from ..core.const import Const

import torch
from torch import nn


class StarTransEnc(nn.Module):
"""
别名::class:`fastNLP.models.StarTransEnc` :class:`fastNLP.models.start_transformer.StarTransEnc`
别名::class:`fastNLP.models.StarTransEnc` :class:`fastNLP.models.star_transformer.StarTransEnc`

带word embedding的Star-Transformer Encoder

@@ -28,6 +36,7 @@ class StarTransEnc(nn.Module):
:param emb_dropout: 词嵌入的dropout概率.
:param dropout: 模型除词嵌入外的dropout概率.
"""
def __init__(self, init_embed,
hidden_size,
num_layers,
@@ -47,7 +56,7 @@ class StarTransEnc(nn.Module):
head_dim=head_dim,
dropout=dropout,
max_len=max_len)
def forward(self, x, mask):
"""
:param FloatTensor data: [batch, length, hidden] 输入的序列
@@ -72,7 +81,7 @@ class _Cls(nn.Module):
nn.Dropout(dropout),
nn.Linear(hid_dim, num_cls),
)
def forward(self, x):
h = self.fc(x)
return h
@@ -83,20 +92,21 @@ class _NLICls(nn.Module):
super(_NLICls, self).__init__()
self.fc = nn.Sequential(
nn.Dropout(dropout),
nn.Linear(in_dim*4, hid_dim), #4
nn.Linear(in_dim * 4, hid_dim), # 4
nn.LeakyReLU(),
nn.Dropout(dropout),
nn.Linear(hid_dim, num_cls),
)
def forward(self, x1, x2):
x = torch.cat([x1, x2, torch.abs(x1-x2), x1*x2], 1)
x = torch.cat([x1, x2, torch.abs(x1 - x2), x1 * x2], 1)
h = self.fc(x)
return h


class STSeqLabel(nn.Module):
"""
别名::class:`fastNLP.models.STSeqLabel` :class:`fastNLP.models.start_transformer.STSeqLabel`
别名::class:`fastNLP.models.STSeqLabel` :class:`fastNLP.models.star_transformer.STSeqLabel`

用于序列标注的Star-Transformer模型

@@ -112,6 +122,7 @@ class STSeqLabel(nn.Module):
:param emb_dropout: 词嵌入的dropout概率. Default: 0.1
:param dropout: 模型除词嵌入外的dropout概率. Default: 0.1
"""
def __init__(self, init_embed, num_cls,
hidden_size=300,
num_layers=4,
@@ -120,7 +131,7 @@ class STSeqLabel(nn.Module):
max_len=512,
cls_hidden_size=600,
emb_dropout=0.1,
dropout=0.1,):
dropout=0.1, ):
super(STSeqLabel, self).__init__()
self.enc = StarTransEnc(init_embed=init_embed,
hidden_size=hidden_size,
@@ -131,7 +142,7 @@ class STSeqLabel(nn.Module):
emb_dropout=emb_dropout,
dropout=dropout)
self.cls = _Cls(hidden_size, num_cls, cls_hidden_size)
def forward(self, words, seq_len):
"""

@@ -142,9 +153,9 @@ class STSeqLabel(nn.Module):
mask = seq_len_to_mask(seq_len)
nodes, _ = self.enc(words, mask)
output = self.cls(nodes)
output = output.transpose(1,2) # make hidden to be dim 1
return {Const.OUTPUT: output} # [bsz, n_cls, seq_len]
output = output.transpose(1, 2) # make hidden to be dim 1
return {Const.OUTPUT: output} # [bsz, n_cls, seq_len]
def predict(self, words, seq_len):
"""

@@ -159,7 +170,7 @@ class STSeqLabel(nn.Module):

class STSeqCls(nn.Module):
"""
别名::class:`fastNLP.models.STSeqCls` :class:`fastNLP.models.start_transformer.STSeqCls`
别名::class:`fastNLP.models.STSeqCls` :class:`fastNLP.models.star_transformer.STSeqCls`

用于分类任务的Star-Transformer

@@ -175,7 +186,7 @@ class STSeqCls(nn.Module):
:param emb_dropout: 词嵌入的dropout概率. Default: 0.1
:param dropout: 模型除词嵌入外的dropout概率. Default: 0.1
"""
def __init__(self, init_embed, num_cls,
hidden_size=300,
num_layers=4,
@@ -184,7 +195,7 @@ class STSeqCls(nn.Module):
max_len=512,
cls_hidden_size=600,
emb_dropout=0.1,
dropout=0.1,):
dropout=0.1, ):
super(STSeqCls, self).__init__()
self.enc = StarTransEnc(init_embed=init_embed,
hidden_size=hidden_size,
@@ -195,7 +206,7 @@ class STSeqCls(nn.Module):
emb_dropout=emb_dropout,
dropout=dropout)
self.cls = _Cls(hidden_size, num_cls, cls_hidden_size)
def forward(self, words, seq_len):
"""

@@ -206,9 +217,9 @@ class STSeqCls(nn.Module):
mask = seq_len_to_mask(seq_len)
nodes, relay = self.enc(words, mask)
y = 0.5 * (relay + nodes.max(1)[0])
output = self.cls(y) # [bsz, n_cls]
output = self.cls(y) # [bsz, n_cls]
return {Const.OUTPUT: output}
def predict(self, words, seq_len):
"""

@@ -223,7 +234,7 @@ class STSeqCls(nn.Module):

class STNLICls(nn.Module):
"""
别名::class:`fastNLP.models.STNLICls` :class:`fastNLP.models.start_transformer.STNLICls`
别名::class:`fastNLP.models.STNLICls` :class:`fastNLP.models.star_transformer.STNLICls`
用于自然语言推断(NLI)的Star-Transformer

@@ -239,7 +250,7 @@ class STNLICls(nn.Module):
:param emb_dropout: 词嵌入的dropout概率. Default: 0.1
:param dropout: 模型除词嵌入外的dropout概率. Default: 0.1
"""
def __init__(self, init_embed, num_cls,
hidden_size=300,
num_layers=4,
@@ -248,7 +259,7 @@ class STNLICls(nn.Module):
max_len=512,
cls_hidden_size=600,
emb_dropout=0.1,
dropout=0.1,):
dropout=0.1, ):
super(STNLICls, self).__init__()
self.enc = StarTransEnc(init_embed=init_embed,
hidden_size=hidden_size,
@@ -259,7 +270,7 @@ class STNLICls(nn.Module):
emb_dropout=emb_dropout,
dropout=dropout)
self.cls = _NLICls(hidden_size, num_cls, cls_hidden_size)
def forward(self, words1, words2, seq_len1, seq_len2):
"""

@@ -271,14 +282,16 @@ class STNLICls(nn.Module):
"""
mask1 = seq_len_to_mask(seq_len1)
mask2 = seq_len_to_mask(seq_len2)
def enc(seq, mask):
nodes, relay = self.enc(seq, mask)
return 0.5 * (relay + nodes.max(1)[0])
y1 = enc(words1, mask1)
y2 = enc(words2, mask2)
output = self.cls(y1, y2) # [bsz, n_cls]
output = self.cls(y1, y2) # [bsz, n_cls]
return {Const.OUTPUT: output}
def predict(self, words1, words2, seq_len1, seq_len2):
"""



+ 21
- 15
fastNLP/modules/__init__.py View File

@@ -22,29 +22,35 @@
+-----------------------+-----------------------+-----------------------+

"""
from . import aggregator
from . import decoder
from . import encoder
from .aggregator import *
from .decoder import *
from .dropout import TimestepDropout
from .encoder import *
from .utils import get_embeddings

__all__ = [
"LSTM",
"Embedding",
# "BertModel",
"ConvolutionCharEncoder",
"LSTMCharEncoder",
"ConvMaxpool",
"BertModel",
"Embedding",
"LSTM",
"StarTransformer",
"TransformerEncoder",
"VarRNN",
"VarLSTM",
"VarGRU",
"MaxPool",
"MaxPoolWithMask",
"AvgPool",
"MultiHeadAttention",
"BiAttention",

"MLP",
"ConditionalRandomField",
"viterbi_decode",
"allowed_transitions",
]
]

from . import aggregator
from . import decoder
from . import encoder
from .aggregator import *
from .decoder import *
from .dropout import TimestepDropout
from .encoder import *
from .utils import get_embeddings

+ 7
- 7
fastNLP/modules/aggregator/__init__.py View File

@@ -1,14 +1,14 @@
from .pooling import MaxPool
from .pooling import MaxPoolWithMask
from .pooling import AvgPool
from .pooling import AvgPoolWithMask

from .attention import MultiHeadAttention, BiAttention
__all__ = [
"MaxPool",
"MaxPoolWithMask",
"AvgPool",
"MultiHeadAttention",
"BiAttention"
]

from .pooling import MaxPool
from .pooling import MaxPoolWithMask
from .pooling import AvgPool
from .pooling import AvgPoolWithMask

from .attention import MultiHeadAttention

+ 36
- 26
fastNLP/modules/aggregator/attention.py View File

@@ -1,4 +1,7 @@
__all__ =["MultiHeadAttention"]
__all__ = [
"MultiHeadAttention"
]

import math

import torch
@@ -15,6 +18,7 @@ class DotAttention(nn.Module):
.. todo::
补上文档
"""
def __init__(self, key_size, value_size, dropout=0):
super(DotAttention, self).__init__()
self.key_size = key_size
@@ -22,7 +26,7 @@ class DotAttention(nn.Module):
self.scale = math.sqrt(key_size)
self.drop = nn.Dropout(dropout)
self.softmax = nn.Softmax(dim=2)
def forward(self, Q, K, V, mask_out=None):
"""

@@ -41,6 +45,8 @@ class DotAttention(nn.Module):

class MultiHeadAttention(nn.Module):
"""
别名::class:`fastNLP.modules.MultiHeadAttention` :class:`fastNLP.modules.aggregator.attention.MultiHeadAttention`


:param input_size: int, 输入维度的大小。同时也是输出维度的大小。
:param key_size: int, 每个head的维度大小。
@@ -48,13 +54,14 @@ class MultiHeadAttention(nn.Module):
:param num_head: int,head的数量。
:param dropout: float。
"""
def __init__(self, input_size, key_size, value_size, num_head, dropout=0.1):
super(MultiHeadAttention, self).__init__()
self.input_size = input_size
self.key_size = key_size
self.value_size = value_size
self.num_head = num_head
in_size = key_size * num_head
self.q_in = nn.Linear(input_size, in_size)
self.k_in = nn.Linear(input_size, in_size)
@@ -64,14 +71,14 @@ class MultiHeadAttention(nn.Module):
self.out = nn.Linear(value_size * num_head, input_size)
self.drop = TimestepDropout(dropout)
self.reset_parameters()
def reset_parameters(self):
sqrt = math.sqrt
nn.init.normal_(self.q_in.weight, mean=0, std=sqrt(2.0 / (self.input_size + self.key_size)))
nn.init.normal_(self.k_in.weight, mean=0, std=sqrt(2.0 / (self.input_size + self.key_size)))
nn.init.normal_(self.v_in.weight, mean=0, std=sqrt(2.0 / (self.input_size + self.value_size)))
nn.init.xavier_normal_(self.out.weight)
def forward(self, Q, K, V, atte_mask_out=None):
"""

@@ -87,7 +94,7 @@ class MultiHeadAttention(nn.Module):
q = self.q_in(Q).view(batch, sq, n_head, d_k)
k = self.k_in(K).view(batch, sk, n_head, d_k)
v = self.v_in(V).view(batch, sk, n_head, d_v)
# transpose q, k and v to do batch attention
q = q.permute(2, 0, 1, 3).contiguous().view(-1, sq, d_k)
k = k.permute(2, 0, 1, 3).contiguous().view(-1, sk, d_k)
@@ -95,7 +102,7 @@ class MultiHeadAttention(nn.Module):
if atte_mask_out is not None:
atte_mask_out = atte_mask_out.repeat(n_head, 1, 1)
atte = self.attention(q, k, v, atte_mask_out).view(n_head, batch, sq, d_v)
# concat all heads, do output linear
atte = atte.permute(1, 2, 0, 3).contiguous().view(batch, sq, -1)
output = self.drop(self.out(atte))
@@ -104,6 +111,10 @@ class MultiHeadAttention(nn.Module):

class BiAttention(nn.Module):
r"""Bi Attention module
.. todo::
这个模块的负责人来继续完善一下
Calculate Bi Attention matrix `e`
.. math::
@@ -115,11 +126,11 @@ class BiAttention(nn.Module):
\end{array}
"""
def __init__(self):
super(BiAttention, self).__init__()
self.inf = 10e12
def forward(self, in_x1, in_x2, x1_len, x2_len):
"""
:param torch.Tensor in_x1: [batch_size, x1_seq_len, hidden_size] 第一句的特征表示
@@ -130,36 +141,36 @@ class BiAttention(nn.Module):
torch.Tensor out_x2: [batch_size, x2_seq_len, hidden_size] 第一句attend到的特征表示
"""
assert in_x1.size()[0] == in_x2.size()[0]
assert in_x1.size()[2] == in_x2.size()[2]
# The batch size and hidden size must be equal.
assert in_x1.size()[1] == x1_len.size()[1] and in_x2.size()[1] == x2_len.size()[1]
# The seq len in in_x and x_len must be equal.
assert in_x1.size()[0] == x1_len.size()[0] and x1_len.size()[0] == x2_len.size()[0]
batch_size = in_x1.size()[0]
x1_max_len = in_x1.size()[1]
x2_max_len = in_x2.size()[1]
in_x2_t = torch.transpose(in_x2, 1, 2) # [batch_size, hidden_size, x2_seq_len]
attention_matrix = torch.bmm(in_x1, in_x2_t) # [batch_size, x1_seq_len, x2_seq_len]
a_mask = x1_len.le(0.5).float() * -self.inf # [batch_size, x1_seq_len]
a_mask = a_mask.view(batch_size, x1_max_len, -1)
a_mask = a_mask.expand(-1, -1, x2_max_len) # [batch_size, x1_seq_len, x2_seq_len]
b_mask = x2_len.le(0.5).float() * -self.inf
b_mask = b_mask.view(batch_size, -1, x2_max_len)
b_mask = b_mask.expand(-1, x1_max_len, -1) # [batch_size, x1_seq_len, x2_seq_len]
attention_a = F.softmax(attention_matrix + a_mask, dim=2) # [batch_size, x1_seq_len, x2_seq_len]
attention_b = F.softmax(attention_matrix + b_mask, dim=1) # [batch_size, x1_seq_len, x2_seq_len]
out_x1 = torch.bmm(attention_a, in_x2) # [batch_size, x1_seq_len, hidden_size]
attention_b_t = torch.transpose(attention_b, 1, 2)
out_x2 = torch.bmm(attention_b_t, in_x1) # [batch_size, x2_seq_len, hidden_size]
return out_x1, out_x2


@@ -173,10 +184,10 @@ class SelfAttention(nn.Module):
:param float drop: dropout概率,默认值为0.5
:param str initial_method: 初始化参数方法
"""
def __init__(self, input_size, attention_unit=300, attention_hops=10, drop=0.5, initial_method=None,):
def __init__(self, input_size, attention_unit=300, attention_hops=10, drop=0.5, initial_method=None, ):
super(SelfAttention, self).__init__()
self.attention_hops = attention_hops
self.ws1 = nn.Linear(input_size, attention_unit, bias=False)
self.ws2 = nn.Linear(attention_unit, attention_hops, bias=False)
@@ -185,7 +196,7 @@ class SelfAttention(nn.Module):
self.drop = nn.Dropout(drop)
self.tanh = nn.Tanh()
initial_parameter(self, initial_method)
def _penalization(self, attention):
"""
compute the penalization term for attention module
@@ -199,7 +210,7 @@ class SelfAttention(nn.Module):
mat = torch.bmm(attention, attention_t) - self.I[:attention.size(0)]
ret = (torch.sum(torch.sum((mat ** 2), 2), 1).squeeze() + 1e-10) ** 0.5
return torch.sum(ret) / size[0]
def forward(self, input, input_origin):
"""
:param torch.Tensor input: [baz, senLen, h_dim] 要做attention的矩阵
@@ -209,15 +220,14 @@ class SelfAttention(nn.Module):
"""
input = input.contiguous()
size = input.size() # [bsz, len, nhid]
input_origin = input_origin.expand(self.attention_hops, -1, -1) # [hops,baz, len]
input_origin = input_origin.transpose(0, 1).contiguous() # [baz, hops,len]
y1 = self.tanh(self.ws1(self.drop(input))) # [baz,len,dim] -->[bsz,len, attention-unit]
attention = self.ws2(y1).transpose(1, 2).contiguous()
# [bsz,len, attention-unit]--> [bsz, len, hop]--> [baz,hop,len]
attention = attention + (-999999 * (input_origin == 0).float()) # remove the weight on padding token.
attention = F.softmax(attention, 2) # [baz ,hop, len]
return torch.bmm(attention, input), self._penalization(attention) # output1 --> [baz ,hop ,nhid]


+ 7
- 2
fastNLP/modules/aggregator/pooling.py View File

@@ -1,4 +1,8 @@
__all__ = ["MaxPool", "MaxPoolWithMask", "AvgPool"]
__all__ = [
"MaxPool",
"MaxPoolWithMask",
"AvgPool"
]
import torch
import torch.nn as nn

@@ -16,6 +20,7 @@ class MaxPool(nn.Module):
:param kernel_size: max pooling的窗口大小,默认为tensor最后k维,其中k为dimension
:param ceil_mode:
"""
def __init__(self, stride=None, padding=0, dilation=1, dimension=1, kernel_size=None, ceil_mode=False):
super(MaxPool, self).__init__()
@@ -125,7 +130,7 @@ class AvgPoolWithMask(nn.Module):
给定形如[batch_size, max_len, hidden_size]的输入,在最后一维进行avg pooling. 输出为[batch_size, hidden_size], pooling
的时候只会考虑mask为1的位置
"""
def __init__(self):
super(AvgPoolWithMask, self).__init__()
self.inf = 10e12


+ 5
- 5
fastNLP/modules/decoder/__init__.py View File

@@ -1,11 +1,11 @@
from .CRF import ConditionalRandomField
from .MLP import MLP
from .utils import viterbi_decode
from .CRF import allowed_transitions

__all__ = [
"MLP",
"ConditionalRandomField",
"viterbi_decode",
"allowed_transitions"
]

from .crf import ConditionalRandomField
from .mlp import MLP
from .utils import viterbi_decode
from .crf import allowed_transitions

fastNLP/modules/decoder/CRF.py → fastNLP/modules/decoder/crf.py View File

@@ -1,3 +1,8 @@
__all__ = [
"ConditionalRandomField",
"allowed_transitions"
]

import torch
from torch import nn

@@ -6,7 +11,7 @@ from ..utils import initial_parameter

def allowed_transitions(id2target, encoding_type='bio', include_start_end=True):
"""
别名::class:`fastNLP.modules.allowed_transitions` :class:`fastNLP.modules.decoder.CRF.allowed_transitions`
别名::class:`fastNLP.modules.allowed_transitions` :class:`fastNLP.modules.decoder.crf.allowed_transitions`

给定一个id到label的映射表,返回所有可以跳转的(from_tag_id, to_tag_id)列表。

@@ -15,8 +20,7 @@ def allowed_transitions(id2target, encoding_type='bio', include_start_end=True):
:param str encoding_type: 支持"bio", "bmes", "bmeso"。
:param bool include_start_end: 是否包含开始与结尾的转换。比如在bio中,b/o可以在开头,但是i不能在开头;
为True,返回的结果中会包含(start_idx, b_idx), (start_idx, o_idx), 但是不包含(start_idx, i_idx);
start_idx=len(id2label), end_idx=len(id2label)+1。
为False, 返回的结果中不含与开始结尾相关的内容
start_idx=len(id2label), end_idx=len(id2label)+1。为False, 返回的结果中不含与开始结尾相关的内容
:return: List[Tuple(int, int)]], 内部的Tuple是可以进行跳转的(from_tag_id, to_tag_id)。
"""
num_tags = len(id2target)
@@ -27,6 +31,7 @@ def allowed_transitions(id2target, encoding_type='bio', include_start_end=True):
id_label_lst = list(id2target.items())
if include_start_end:
id_label_lst += [(start_idx, 'start'), (end_idx, 'end')]
def split_tag_label(from_label):
from_label = from_label.lower()
if from_label in ['start', 'end']:
@@ -36,7 +41,7 @@ def allowed_transitions(id2target, encoding_type='bio', include_start_end=True):
from_tag = from_label[:1]
from_label = from_label[2:]
return from_tag, from_label
for from_id, from_label in id_label_lst:
if from_label in ['<pad>', '<unk>']:
continue
@@ -60,7 +65,7 @@ def _is_transition_allowed(encoding_type, from_tag, from_label, to_tag, to_label
:param str to_label: 比如"PER", "LOC"等label
:return: bool,能否跃迁
"""
if to_tag=='start' or from_tag=='end':
if to_tag == 'start' or from_tag == 'end':
return False
encoding_type = encoding_type.lower()
if encoding_type == 'bio':
@@ -83,12 +88,12 @@ def _is_transition_allowed(encoding_type, from_tag, from_label, to_tag, to_label
if from_tag == 'start':
return to_tag in ('b', 'o')
elif from_tag in ['b', 'i']:
return any([to_tag in ['end', 'b', 'o'], to_tag=='i' and from_label==to_label])
return any([to_tag in ['end', 'b', 'o'], to_tag == 'i' and from_label == to_label])
elif from_tag == 'o':
return to_tag in ['end', 'b', 'o']
else:
raise ValueError("Unexpect tag {}. Expect only 'B', 'I', 'O'.".format(from_tag))
elif encoding_type == 'bmes':
"""
第一行是to_tag, 第一列是from_tag,y任意条件下可转,-只有在label相同时可转,n不可转
@@ -111,9 +116,9 @@ def _is_transition_allowed(encoding_type, from_tag, from_label, to_tag, to_label
if from_tag == 'start':
return to_tag in ['b', 's']
elif from_tag == 'b':
return to_tag in ['m', 'e'] and from_label==to_label
return to_tag in ['m', 'e'] and from_label == to_label
elif from_tag == 'm':
return to_tag in ['m', 'e'] and from_label==to_label
return to_tag in ['m', 'e'] and from_label == to_label
elif from_tag in ['e', 's']:
return to_tag in ['b', 's', 'end']
else:
@@ -122,21 +127,21 @@ def _is_transition_allowed(encoding_type, from_tag, from_label, to_tag, to_label
if from_tag == 'start':
return to_tag in ['b', 's', 'o']
elif from_tag == 'b':
return to_tag in ['m', 'e'] and from_label==to_label
return to_tag in ['m', 'e'] and from_label == to_label
elif from_tag == 'm':
return to_tag in ['m', 'e'] and from_label==to_label
return to_tag in ['m', 'e'] and from_label == to_label
elif from_tag in ['e', 's', 'o']:
return to_tag in ['b', 's', 'end', 'o']
else:
raise ValueError("Unexpect tag type {}. Expect only 'B', 'M', 'E', 'S', 'O'.".format(from_tag))
else:
raise ValueError("Only support BIO, BMES, BMESO encoding type, got {}.".format(encoding_type))


class ConditionalRandomField(nn.Module):
"""
别名::class:`fastNLP.modules.ConditionalRandomField` :class:`fastNLP.modules.decoder.CRF.ConditionalRandomField`
别名::class:`fastNLP.modules.ConditionalRandomField` :class:`fastNLP.modules.decoder.crf.ConditionalRandomField`

条件随机场。
提供forward()以及viterbi_decode()两个方法,分别用于训练与inference。
@@ -148,30 +153,31 @@ class ConditionalRandomField(nn.Module):
allowed_transitions()函数得到;如果为None,则所有跃迁均为合法
:param str initial_method: 初始化方法。见initial_parameter
"""
def __init__(self, num_tags, include_start_end_trans=False, allowed_transitions=None,
initial_method=None):
super(ConditionalRandomField, self).__init__()
self.include_start_end_trans = include_start_end_trans
self.num_tags = num_tags
# the meaning of entry in this matrix is (from_tag_id, to_tag_id) score
self.trans_m = nn.Parameter(torch.randn(num_tags, num_tags))
if self.include_start_end_trans:
self.start_scores = nn.Parameter(torch.randn(num_tags))
self.end_scores = nn.Parameter(torch.randn(num_tags))
if allowed_transitions is None:
constrain = torch.zeros(num_tags + 2, num_tags + 2)
else:
constrain = torch.full((num_tags+2, num_tags+2), fill_value=-10000.0, dtype=torch.float)
constrain = torch.full((num_tags + 2, num_tags + 2), fill_value=-10000.0, dtype=torch.float)
for from_tag_id, to_tag_id in allowed_transitions:
constrain[from_tag_id, to_tag_id] = 0
self._constrain = nn.Parameter(constrain, requires_grad=False)
initial_parameter(self, initial_method)
def _normalizer_likelihood(self, logits, mask):
"""Computes the (batch_size,) denominator term for the log-likelihood, which is the
sum of the likelihoods across all possible state sequences.
@@ -184,21 +190,21 @@ class ConditionalRandomField(nn.Module):
alpha = logits[0]
if self.include_start_end_trans:
alpha = alpha + self.start_scores.view(1, -1)
flip_mask = mask.eq(0)
for i in range(1, seq_len):
emit_score = logits[i].view(batch_size, 1, n_tags)
trans_score = self.trans_m.view(1, n_tags, n_tags)
tmp = alpha.view(batch_size, n_tags, 1) + emit_score + trans_score
alpha = torch.logsumexp(tmp, 1).masked_fill(flip_mask[i].view(batch_size, 1), 0) + \
alpha.masked_fill(mask[i].byte().view(batch_size, 1), 0)
if self.include_start_end_trans:
alpha = alpha + self.end_scores.view(1, -1)
return torch.logsumexp(alpha, 1)
def _gold_score(self, logits, tags, mask):
"""
Compute the score for the gold path.
@@ -210,15 +216,15 @@ class ConditionalRandomField(nn.Module):
seq_len, batch_size, _ = logits.size()
batch_idx = torch.arange(batch_size, dtype=torch.long, device=logits.device)
seq_idx = torch.arange(seq_len, dtype=torch.long, device=logits.device)
# trans_socre [L-1, B]
mask = mask.byte()
flip_mask = mask.eq(0)
trans_score = self.trans_m[tags[:seq_len-1], tags[1:]].masked_fill(flip_mask[1:, :], 0)
trans_score = self.trans_m[tags[:seq_len - 1], tags[1:]].masked_fill(flip_mask[1:, :], 0)
# emit_score [L, B]
emit_score = logits[seq_idx.view(-1,1), batch_idx.view(1,-1), tags].masked_fill(flip_mask, 0)
emit_score = logits[seq_idx.view(-1, 1), batch_idx.view(1, -1), tags].masked_fill(flip_mask, 0)
# score [L-1, B]
score = trans_score + emit_score[:seq_len-1, :]
score = trans_score + emit_score[:seq_len - 1, :]
score = score.sum(0) + emit_score[-1].masked_fill(flip_mask[-1], 0)
if self.include_start_end_trans:
st_scores = self.start_scores.view(1, -1).repeat(batch_size, 1)[batch_idx, tags[0]]
@@ -227,24 +233,24 @@ class ConditionalRandomField(nn.Module):
score = score + st_scores + ed_scores
# return [B,]
return score
def forward(self, feats, tags, mask):
"""
用于计算CRF的前向loss,返回值为一个batch_size的FloatTensor,可能需要mean()求得loss。

:param torch.FloatTensor feats:batch_size x max_len x num_tags,特征矩阵。
:param torch.FloatTensor feats: batch_size x max_len x num_tags,特征矩阵。
:param torch.LongTensor tags: batch_size x max_len,标签矩阵。
:param torch.ByteTensor mask: batch_size x max_len,为0的位置认为是padding。
:return:torch.FloatTensor, (batch_size,)
:return: torch.FloatTensor, (batch_size,)
"""
feats = feats.transpose(0, 1)
tags = tags.transpose(0, 1).long()
mask = mask.transpose(0, 1).float()
all_path_score = self._normalizer_likelihood(feats, mask)
gold_path_score = self._gold_score(feats, tags, mask)
return all_path_score - gold_path_score
def viterbi_decode(self, logits, mask, unpad=False):
"""给定一个特征矩阵以及转移分数矩阵,计算出最佳的路径以及对应的分数

@@ -259,9 +265,9 @@ class ConditionalRandomField(nn.Module):

"""
batch_size, seq_len, n_tags = logits.size()
logits = logits.transpose(0, 1).data # L, B, H
mask = mask.transpose(0, 1).data.byte() # L, B
logits = logits.transpose(0, 1).data # L, B, H
mask = mask.transpose(0, 1).data.byte() # L, B
# dp
vpath = logits.new_zeros((seq_len, batch_size, n_tags), dtype=torch.long)
vscore = logits[0]
@@ -269,8 +275,8 @@ class ConditionalRandomField(nn.Module):
transitions[:n_tags, :n_tags] += self.trans_m.data
if self.include_start_end_trans:
transitions[n_tags, :n_tags] += self.start_scores.data
transitions[:n_tags, n_tags+1] += self.end_scores.data
transitions[:n_tags, n_tags + 1] += self.end_scores.data
vscore += transitions[n_tags, :n_tags]
trans_score = transitions[:n_tags, :n_tags].view(1, n_tags, n_tags).data
for i in range(1, seq_len):
@@ -280,30 +286,29 @@ class ConditionalRandomField(nn.Module):
best_score, best_dst = score.max(1)
vpath[i] = best_dst
vscore = best_score.masked_fill(mask[i].eq(0).view(batch_size, 1), 0) + \
vscore.masked_fill(mask[i].view(batch_size, 1), 0)
vscore.masked_fill(mask[i].view(batch_size, 1), 0)
if self.include_start_end_trans:
vscore += transitions[:n_tags, n_tags+1].view(1, -1)
vscore += transitions[:n_tags, n_tags + 1].view(1, -1)
# backtrace
batch_idx = torch.arange(batch_size, dtype=torch.long, device=logits.device)
seq_idx = torch.arange(seq_len, dtype=torch.long, device=logits.device)
lens = (mask.long().sum(0) - 1)
# idxes [L, B], batched idx from seq_len-1 to 0
idxes = (lens.view(1,-1) - seq_idx.view(-1,1)) % seq_len
idxes = (lens.view(1, -1) - seq_idx.view(-1, 1)) % seq_len
ans = logits.new_empty((seq_len, batch_size), dtype=torch.long)
ans_score, last_tags = vscore.max(1)
ans[idxes[0], batch_idx] = last_tags
for i in range(seq_len - 1):
last_tags = vpath[idxes[i], batch_idx, last_tags]
ans[idxes[i+1], batch_idx] = last_tags
ans[idxes[i + 1], batch_idx] = last_tags
ans = ans.transpose(0, 1)
if unpad:
paths = []
for idx, seq_len in enumerate(lens):
paths.append(ans[idx, :seq_len+1].tolist())
paths.append(ans[idx, :seq_len + 1].tolist())
else:
paths = ans
return paths, ans_score


fastNLP/modules/decoder/MLP.py → fastNLP/modules/decoder/mlp.py View File

@@ -1,3 +1,7 @@
__all__ = [
"MLP"
]

import torch
import torch.nn as nn

@@ -6,17 +10,16 @@ from ..utils import initial_parameter

class MLP(nn.Module):
"""
别名::class:`fastNLP.modules.MLP` :class:`fastNLP.modules.decoder.MLP.MLP`
别名::class:`fastNLP.modules.MLP` :class:`fastNLP.modules.decoder.mlp.MLP`

多层感知器

:param list size_layer: 一个int的列表,用来定义MLP的层数,列表中的数字为每一层是hidden数目。MLP的层数为 len(size_layer) - 1
:param str or list activation:
一个字符串或者函数或者字符串跟函数的列表,用来定义每一个隐层的激活函数,字符串包括relu,tanh和sigmoid,默认值为relu
:param str or function output_activation : 字符串或者函数,用来定义输出层的激活函数,默认值为None,表示输出层没有激活函数
:param List[int] size_layer: 一个int的列表,用来定义MLP的层数,列表中的数字为每一层是hidden数目。MLP的层数为 len(size_layer) - 1
:param Union[str,func,List[str]] activation: 一个字符串或者函数的列表,用来定义每一个隐层的激活函数,字符串包括relu,tanh和sigmoid,默认值为relu
:param Union[str,func] output_activation: 字符串或者函数,用来定义输出层的激活函数,默认值为None,表示输出层没有激活函数
:param str initial_method: 参数初始化方式
:param float dropout: dropout概率,默认值为0
.. note::
隐藏层的激活函数通过activation定义。一个str/function或者一个str/function的list可以被传入activation。
如果只传入了一个str/function,那么所有隐藏层的激活函数都由这个str/function定义;
@@ -35,10 +38,8 @@ class MLP(nn.Module):
>>> y = net(x)
>>> print(x)
>>> print(y)
>>>

"""
def __init__(self, size_layer, activation='relu', output_activation=None, initial_method=None, dropout=0.0):
super(MLP, self).__init__()
self.hiddens = nn.ModuleList()
@@ -46,12 +47,12 @@ class MLP(nn.Module):
self.output_activation = output_activation
for i in range(1, len(size_layer)):
if i + 1 == len(size_layer):
self.output = nn.Linear(size_layer[i-1], size_layer[i])
self.output = nn.Linear(size_layer[i - 1], size_layer[i])
else:
self.hiddens.append(nn.Linear(size_layer[i-1], size_layer[i]))
self.hiddens.append(nn.Linear(size_layer[i - 1], size_layer[i]))
self.dropout = nn.Dropout(p=dropout)
actives = {
'relu': nn.ReLU(),
'tanh': nn.Tanh(),
@@ -80,7 +81,7 @@ class MLP(nn.Module):
else:
raise ValueError("should set activation correctly: {}".format(activation))
initial_parameter(self, initial_method)
def forward(self, x):
"""
:param torch.Tensor x: MLP接受的输入
@@ -93,16 +94,3 @@ class MLP(nn.Module):
x = self.output_activation(x)
x = self.dropout(x)
return x


if __name__ == '__main__':
net1 = MLP([5, 10, 5])
net2 = MLP([5, 10, 5], 'tanh')
net3 = MLP([5, 6, 7, 8, 5], 'tanh')
net4 = MLP([5, 6, 7, 8, 5], 'relu', output_activation='tanh')
net5 = MLP([5, 6, 7, 8, 5], ['tanh', 'relu', 'tanh'], 'tanh')
for net in [net1, net2, net3, net4, net5]:
x = torch.randn(5, 5)
y = net(x)
print(x)
print(y)

+ 13
- 10
fastNLP/modules/decoder/utils.py View File

@@ -1,10 +1,12 @@
__all__ = ["viterbi_decode"]
__all__ = [
"viterbi_decode"
]
import torch


def viterbi_decode(logits, transitions, mask=None, unpad=False):
"""
别名::class:`fastNLP.modules.viterbi_decode` :class:`fastNLP.modules.decoder.utils.viterbi_decode
r"""
别名::class:`fastNLP.modules.viterbi_decode` :class:`fastNLP.modules.decoder.utils.viterbi_decode`

给定一个特征矩阵以及转移分数矩阵,计算出最佳的路径以及对应的分数

@@ -20,18 +22,19 @@ def viterbi_decode(logits, transitions, mask=None, unpad=False):

"""
batch_size, seq_len, n_tags = logits.size()
assert n_tags==transitions.size(0) and n_tags==transitions.size(1), "The shapes of transitions and feats are not " \
"compatible."
assert n_tags == transitions.size(0) and n_tags == transitions.size(
1), "The shapes of transitions and feats are not " \
"compatible."
logits = logits.transpose(0, 1).data # L, B, H
if mask is not None:
mask = mask.transpose(0, 1).data.byte() # L, B
else:
mask = logits.new_ones((seq_len, batch_size), dtype=torch.uint8)
# dp
vpath = logits.new_zeros((seq_len, batch_size, n_tags), dtype=torch.long)
vscore = logits[0]
trans_score = transitions.view(1, n_tags, n_tags).data
for i in range(1, seq_len):
prev_score = vscore.view(batch_size, n_tags, 1)
@@ -41,14 +44,14 @@ def viterbi_decode(logits, transitions, mask=None, unpad=False):
vpath[i] = best_dst
vscore = best_score.masked_fill(mask[i].eq(0).view(batch_size, 1), 0) + \
vscore.masked_fill(mask[i].view(batch_size, 1), 0)
# backtrace
batch_idx = torch.arange(batch_size, dtype=torch.long, device=logits.device)
seq_idx = torch.arange(seq_len, dtype=torch.long, device=logits.device)
lens = (mask.long().sum(0) - 1)
# idxes [L, B], batched idx from seq_len-1 to 0
idxes = (lens.view(1, -1) - seq_idx.view(-1, 1)) % seq_len
ans = logits.new_empty((seq_len, batch_size), dtype=torch.long)
ans_score, last_tags = vscore.max(1)
ans[idxes[0], batch_idx] = last_tags
@@ -62,4 +65,4 @@ def viterbi_decode(logits, transitions, mask=None, unpad=False):
paths.append(ans[idx, :seq_len + 1].tolist())
else:
paths = ans
return paths, ans_score
return paths, ans_score

+ 4
- 2
fastNLP/modules/dropout.py View File

@@ -1,6 +1,8 @@
import torch
__all__ = []

import torch


class TimestepDropout(torch.nn.Dropout):
"""
别名::class:`fastNLP.modules.TimestepDropout`
@@ -8,7 +10,7 @@ class TimestepDropout(torch.nn.Dropout):
接受的参数shape为``[batch_size, num_timesteps, embedding_dim)]`` 使用同一个mask(shape为``(batch_size, embedding_dim)``)
在每个timestamp上做dropout。
"""
def forward(self, x):
dropout_mask = x.new_ones(x.shape[0], x.shape[-1])
torch.nn.functional.dropout(dropout_mask, self.p, self.training, inplace=True)


+ 25
- 8
fastNLP/modules/encoder/__init__.py View File

@@ -1,11 +1,28 @@
from .conv_maxpool import ConvMaxpool
from .embedding import Embedding
from .lstm import LSTM
from .bert import BertModel

__all__ = [
"LSTM",
"Embedding",
# "BertModel",
"ConvolutionCharEncoder",
"LSTMCharEncoder",
"ConvMaxpool",
"BertModel"
"Embedding",
"LSTM",
"StarTransformer",
"TransformerEncoder",
"VarRNN",
"VarLSTM",
"VarGRU"
]
from .bert import BertModel
from .char_encoder import ConvolutionCharEncoder, LSTMCharEncoder
from .conv_maxpool import ConvMaxpool
from .embedding import Embedding
from .lstm import LSTM
from .star_transformer import StarTransformer
from .transformer import TransformerEncoder
from .variational_rnn import VarRNN, VarLSTM, VarGRU

+ 22
- 9
fastNLP/modules/encoder/char_encoder.py View File

@@ -1,5 +1,9 @@
__all__ = [
"ConvolutionCharEncoder",
"LSTMCharEncoder"
]
import torch
from torch import nn
import torch.nn as nn

from ..utils import initial_parameter

@@ -10,20 +14,22 @@ class ConvolutionCharEncoder(nn.Module):
别名::class:`fastNLP.modules.ConvolutionCharEncoder` :class:`fastNLP.modules.encoder.char_encoder.ConvolutionCharEncoder`

char级别的卷积编码器.
:param int char_emb_size: char级别embedding的维度. Default: 50
例: 有26个字符, 每一个的embedding是一个50维的向量, 所以输入的向量维度为50.
:例: 有26个字符, 每一个的embedding是一个50维的向量, 所以输入的向量维度为50.
:param tuple feature_maps: 一个由int组成的tuple. tuple的长度是char级别卷积操作的数目, 第`i`个int表示第`i`个卷积操作的filter.
:param tuple kernels: 一个由int组成的tuple. tuple的长度是char级别卷积操作的数目, 第`i`个int表示第`i`个卷积操作的卷积核.
:param initial_method: 初始化参数的方式, 默认为`xavier normal`
"""
def __init__(self, char_emb_size=50, feature_maps=(40, 30, 30), kernels=(3, 4, 5), initial_method=None):
super(ConvolutionCharEncoder, self).__init__()
self.convs = nn.ModuleList([
nn.Conv2d(1, feature_maps[i], kernel_size=(char_emb_size, kernels[i]), bias=True, padding=(0, 4))
for i in range(len(kernels))])
initial_parameter(self, initial_method)
def forward(self, x):
"""
:param torch.Tensor x: ``[batch_size * sent_length, word_length, char_emb_size]`` 输入字符的embedding
@@ -34,7 +40,7 @@ class ConvolutionCharEncoder(nn.Module):
x = x.transpose(2, 3)
# [batch_size*sent_length, channel, height, width]
return self._convolute(x).unsqueeze(2)
def _convolute(self, x):
feats = []
for conv in self.convs:
@@ -50,7 +56,14 @@ class ConvolutionCharEncoder(nn.Module):


class LSTMCharEncoder(nn.Module):
"""char级别基于LSTM的encoder."""
"""
别名::class:`fastNLP.modules.LSTMCharEncoder` :class:`fastNLP.modules.encoder.char_encoder.LSTMCharEncoder`

char级别基于LSTM的encoder.
"""
def __init__(self, char_emb_size=50, hidden_size=None, initial_method=None):
"""
:param int char_emb_size: char级别embedding的维度. Default: 50
@@ -60,14 +73,14 @@ class LSTMCharEncoder(nn.Module):
"""
super(LSTMCharEncoder, self).__init__()
self.hidden_size = char_emb_size if hidden_size is None else hidden_size
self.lstm = nn.LSTM(input_size=char_emb_size,
hidden_size=self.hidden_size,
num_layers=1,
bias=True,
batch_first=True)
initial_parameter(self, initial_method)
def forward(self, x):
"""
:param torch.Tensor x: ``[ n_batch*n_word, word_length, char_emb_size]`` 输入字符的embedding
@@ -78,6 +91,6 @@ class LSTMCharEncoder(nn.Module):
h0 = nn.init.orthogonal_(h0)
c0 = torch.empty(1, batch_size, self.hidden_size)
c0 = nn.init.orthogonal_(c0)
_, hidden = self.lstm(x, (h0, c0))
return hidden[0].squeeze().unsqueeze(2)

+ 15
- 13
fastNLP/modules/encoder/conv_maxpool.py View File

@@ -1,6 +1,6 @@
# python: 3.6
# encoding: utf-8
__all__ = [
"ConvMaxpool"
]
import torch
import torch.nn as nn
import torch.nn.functional as F
@@ -27,22 +27,24 @@ class ConvMaxpool(nn.Module):
:param str activation: Convolution后的结果将通过该activation后再经过max-pooling。支持relu, sigmoid, tanh
:param str initial_method: str。
"""
def __init__(self, in_channels, out_channels, kernel_sizes,
stride=1, padding=0, dilation=1,
groups=1, bias=True, activation="relu", initial_method=None):
super(ConvMaxpool, self).__init__()
# convolution
if isinstance(kernel_sizes, (list, tuple, int)):
if isinstance(kernel_sizes, int) and isinstance(out_channels, int):
out_channels = [out_channels]
kernel_sizes = [kernel_sizes]
elif isinstance(kernel_sizes, (tuple, list)) and isinstance(out_channels, (tuple, list)):
assert len(out_channels)==len(kernel_sizes), "The number of out_channels should be equal to the number" \
" of kernel_sizes."
assert len(out_channels) == len(
kernel_sizes), "The number of out_channels should be equal to the number" \
" of kernel_sizes."
else:
raise ValueError("The type of out_channels and kernel_sizes should be the same.")
self.convs = nn.ModuleList([nn.Conv1d(
in_channels=in_channels,
out_channels=oc,
@@ -53,11 +55,11 @@ class ConvMaxpool(nn.Module):
groups=groups,
bias=bias)
for oc, ks in zip(out_channels, kernel_sizes)])
else:
raise Exception(
'Incorrect kernel sizes: should be list, tuple or int')
# activation function
if activation == 'relu':
self.activation = F.relu
@@ -68,9 +70,9 @@ class ConvMaxpool(nn.Module):
else:
raise Exception(
"Undefined activation function: choose from: relu, tanh, sigmoid")
initial_parameter(self, initial_method)
def forward(self, x, mask=None):
"""

@@ -83,9 +85,9 @@ class ConvMaxpool(nn.Module):
# convolution
xs = [self.activation(conv(x)) for conv in self.convs] # [[N,C,L], ...]
if mask is not None:
mask = mask.unsqueeze(1) # B x 1 x L
mask = mask.unsqueeze(1) # B x 1 x L
xs = [x.masked_fill_(mask, float('-inf')) for x in xs]
# max-pooling
xs = [F.max_pool1d(input=i, kernel_size=i.size(2)).squeeze(2)
for i in xs] # [[N, C], ...]
return torch.cat(xs, dim=-1) # [N, C]
return torch.cat(xs, dim=-1) # [N, C]

+ 11
- 7
fastNLP/modules/encoder/embedding.py View File

@@ -1,14 +1,18 @@
__all__ = [
"Embedding"
]
import torch.nn as nn
from ..utils import get_embeddings


class Embedding(nn.Embedding):
"""
别名::class:`fastNLP.modules.Embedding` :class:`fastNLP.modules.encoder.embedding.Embedding`

Embedding组件. 可以通过self.num_embeddings获取词表大小; self.embedding_dim获取embedding的维度"""
def __init__(self, init_embed, padding_idx=None, dropout=0.0, sparse=False, max_norm=None, norm_type=2,
scale_grad_by_freq=False):
scale_grad_by_freq=False):
"""

:param tuple(int,int),torch.FloatTensor,nn.Embedding,numpy.ndarray init_embed: Embedding的大小(传入tuple(int, int),
@@ -22,14 +26,14 @@ class Embedding(nn.Embedding):
"""
embed = get_embeddings(init_embed)
num_embeddings, embedding_dim = embed.weight.size()
super().__init__(num_embeddings, embedding_dim, padding_idx=padding_idx,
max_norm=max_norm, norm_type=norm_type, scale_grad_by_freq=scale_grad_by_freq,
sparse=sparse, _weight=embed.weight.data)
max_norm=max_norm, norm_type=norm_type, scale_grad_by_freq=scale_grad_by_freq,
sparse=sparse, _weight=embed.weight.data)
del embed
self.dropout = nn.Dropout(dropout)
def forward(self, x):
"""
:param torch.LongTensor x: [batch, seq_len]


+ 8
- 2
fastNLP/modules/encoder/lstm.py View File

@@ -1,6 +1,11 @@
"""轻量封装的 Pytorch LSTM 模块.
"""
轻量封装的 Pytorch LSTM 模块.
可在 forward 时传入序列的长度, 自动对padding做合适的处理.
"""
__all__ = [
"LSTM"
]

import torch
import torch.nn as nn
import torch.nn.utils.rnn as rnn
@@ -23,6 +28,7 @@ class LSTM(nn.Module):
:(batch, seq, feature). Default: ``False``
:param bias: 如果为 ``False``, 模型将不会使用bias. Default: ``True``
"""
def __init__(self, input_size, hidden_size=100, num_layers=1, dropout=0.0, batch_first=True,
bidirectional=False, bias=True, initial_method=None):
super(LSTM, self).__init__()
@@ -30,7 +36,7 @@ class LSTM(nn.Module):
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, bias=bias, batch_first=batch_first,
dropout=dropout, bidirectional=bidirectional)
initial_parameter(self, initial_method)
def forward(self, x, seq_len=None, h0=None, c0=None):
"""



+ 39
- 32
fastNLP/modules/encoder/star_transformer.py View File

@@ -1,9 +1,14 @@
"""Star-Transformer 的encoder部分的 Pytorch 实现
"""
Star-Transformer 的encoder部分的 Pytorch 实现
"""
__all__ = [
"StarTransformer"
]

import numpy as NP
import torch
from torch import nn
from torch.nn import functional as F
import numpy as NP


class StarTransformer(nn.Module):
@@ -24,10 +29,11 @@ class StarTransformer(nn.Module):
模型会为输入序列加上position embedding。
若为`None`,忽略加上position embedding的步骤. Default: `None`
"""
def __init__(self, hidden_size, num_layers, num_head, head_dim, dropout=0.1, max_len=None):
super(StarTransformer, self).__init__()
self.iters = num_layers
self.norm = nn.ModuleList([nn.LayerNorm(hidden_size) for _ in range(self.iters)])
self.ring_att = nn.ModuleList(
[_MSA1(hidden_size, nhead=num_head, head_dim=head_dim, dropout=dropout)
@@ -35,12 +41,12 @@ class StarTransformer(nn.Module):
self.star_att = nn.ModuleList(
[_MSA2(hidden_size, nhead=num_head, head_dim=head_dim, dropout=dropout)
for _ in range(self.iters)])
if max_len is not None:
self.pos_emb = self.pos_emb = nn.Embedding(max_len, hidden_size)
else:
self.pos_emb = None
def forward(self, data, mask):
"""
:param FloatTensor data: [batch, length, hidden] 输入的序列
@@ -50,20 +56,21 @@ class StarTransformer(nn.Module):

[batch, hidden] 全局 relay 节点, 详见论文
"""
def norm_func(f, x):
# B, H, L, 1
return f(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
B, L, H = data.size()
mask = (mask == 0) # flip the mask for masked_fill_
mask = (mask == 0) # flip the mask for masked_fill_
smask = torch.cat([torch.zeros(B, 1, ).byte().to(mask), mask], 1)
embs = data.permute(0, 2, 1)[:,:,:,None] # B H L 1
embs = data.permute(0, 2, 1)[:, :, :, None] # B H L 1
if self.pos_emb:
P = self.pos_emb(torch.arange(L, dtype=torch.long, device=embs.device)\
.view(1, L)).permute(0, 2, 1).contiguous()[:, :, :, None] # 1 H L 1
P = self.pos_emb(torch.arange(L, dtype=torch.long, device=embs.device) \
.view(1, L)).permute(0, 2, 1).contiguous()[:, :, :, None] # 1 H L 1
embs = embs + P
nodes = embs
relay = embs.mean(2, keepdim=True)
ex_mask = mask[:, None, :, None].expand(B, H, L, 1)
@@ -72,11 +79,11 @@ class StarTransformer(nn.Module):
ax = torch.cat([r_embs, relay.expand(B, H, 1, L)], 2)
nodes = nodes + F.leaky_relu(self.ring_att[i](norm_func(self.norm[i], nodes), ax=ax))
relay = F.leaky_relu(self.star_att[i](relay, torch.cat([relay, nodes], 2), smask))
nodes = nodes.masked_fill_(ex_mask, 0)
nodes = nodes.view(B, H, L).permute(0, 2, 1)
return nodes, relay.view(B, H)


@@ -89,37 +96,37 @@ class _MSA1(nn.Module):
self.WK = nn.Conv2d(nhid, nhead * head_dim, 1)
self.WV = nn.Conv2d(nhid, nhead * head_dim, 1)
self.WO = nn.Conv2d(nhead * head_dim, nhid, 1)
self.drop = nn.Dropout(dropout)
# print('NUM_HEAD', nhead, 'DIM_HEAD', head_dim)
self.nhid, self.nhead, self.head_dim, self.unfold_size = nhid, nhead, head_dim, 3
def forward(self, x, ax=None):
# x: B, H, L, 1, ax : B, H, X, L append features
nhid, nhead, head_dim, unfold_size = self.nhid, self.nhead, self.head_dim, self.unfold_size
B, H, L, _ = x.shape
q, k, v = self.WQ(x), self.WK(x), self.WV(x) # x: (B,H,L,1)
if ax is not None:
aL = ax.shape[2]
ak = self.WK(ax).view(B, nhead, head_dim, aL, L)
av = self.WV(ax).view(B, nhead, head_dim, aL, L)
q = q.view(B, nhead, head_dim, 1, L)
k = F.unfold(k.view(B, nhead * head_dim, L, 1), (unfold_size, 1), padding=(unfold_size // 2, 0))\
.view(B, nhead, head_dim, unfold_size, L)
v = F.unfold(v.view(B, nhead * head_dim, L, 1), (unfold_size, 1), padding=(unfold_size // 2, 0))\
.view(B, nhead, head_dim, unfold_size, L)
k = F.unfold(k.view(B, nhead * head_dim, L, 1), (unfold_size, 1), padding=(unfold_size // 2, 0)) \
.view(B, nhead, head_dim, unfold_size, L)
v = F.unfold(v.view(B, nhead * head_dim, L, 1), (unfold_size, 1), padding=(unfold_size // 2, 0)) \
.view(B, nhead, head_dim, unfold_size, L)
if ax is not None:
k = torch.cat([k, ak], 3)
v = torch.cat([v, av], 3)
alphas = self.drop(F.softmax((q * k).sum(2, keepdim=True) / NP.sqrt(head_dim), 3)) # B N L 1 U
att = (alphas * v).sum(3).view(B, nhead * head_dim, L, 1)
ret = self.WO(att)
return ret


@@ -131,19 +138,19 @@ class _MSA2(nn.Module):
self.WK = nn.Conv2d(nhid, nhead * head_dim, 1)
self.WV = nn.Conv2d(nhid, nhead * head_dim, 1)
self.WO = nn.Conv2d(nhead * head_dim, nhid, 1)
self.drop = nn.Dropout(dropout)
# print('NUM_HEAD', nhead, 'DIM_HEAD', head_dim)
self.nhid, self.nhead, self.head_dim, self.unfold_size = nhid, nhead, head_dim, 3
def forward(self, x, y, mask=None):
# x: B, H, 1, 1, 1 y: B H L 1
nhid, nhead, head_dim, unfold_size = self.nhid, self.nhead, self.head_dim, self.unfold_size
B, H, L, _ = y.shape
q, k, v = self.WQ(x), self.WK(y), self.WV(y)
q = q.view(B, nhead, 1, head_dim) # B, H, 1, 1 -> B, N, 1, h
k = k.view(B, nhead, head_dim, L) # B, H, L, 1 -> B, N, h, L
v = v.view(B, nhead, head_dim, L).permute(0, 1, 3, 2) # B, H, L, 1 -> B, N, L, h


+ 10
- 6
fastNLP/modules/encoder/transformer.py View File

@@ -1,3 +1,6 @@
__all__ = [
"TransformerEncoder"
]
from torch import nn

from ..aggregator.attention import MultiHeadAttention
@@ -19,6 +22,7 @@ class TransformerEncoder(nn.Module):
:param int num_head: head的数量。
:param float dropout: dropout概率. Default: 0.1
"""
class SubLayer(nn.Module):
def __init__(self, model_size, inner_size, key_size, value_size, num_head, dropout=0.1):
super(TransformerEncoder.SubLayer, self).__init__()
@@ -27,9 +31,9 @@ class TransformerEncoder(nn.Module):
self.ffn = nn.Sequential(nn.Linear(model_size, inner_size),
nn.ReLU(),
nn.Linear(inner_size, model_size),
TimestepDropout(dropout),)
TimestepDropout(dropout), )
self.norm2 = nn.LayerNorm(model_size)
def forward(self, input, seq_mask=None, atte_mask_out=None):
"""

@@ -44,11 +48,11 @@ class TransformerEncoder(nn.Module):
output = self.norm2(output + norm_atte)
output *= seq_mask
return output
def __init__(self, num_layers, **kargs):
super(TransformerEncoder, self).__init__()
self.layers = nn.ModuleList([self.SubLayer(**kargs) for _ in range(num_layers)])
def forward(self, x, seq_mask=None):
"""
:param x: [batch, seq_len, model_size] 输入序列
@@ -60,8 +64,8 @@ class TransformerEncoder(nn.Module):
if seq_mask is None:
atte_mask_out = None
else:
atte_mask_out = (seq_mask < 1)[:,None,:]
seq_mask = seq_mask[:,:,None]
atte_mask_out = (seq_mask < 1)[:, None, :]
seq_mask = seq_mask[:, :, None]
for layer in self.layers:
output = layer(output, seq_mask, atte_mask_out)
return output

+ 71
- 43
fastNLP/modules/encoder/variational_rnn.py View File

@@ -1,9 +1,15 @@
"""Variational RNN 的 Pytorch 实现
"""
Variational RNN 的 Pytorch 实现
"""
__all__ = [
"VarRNN",
"VarLSTM",
"VarGRU"
]

import torch
import torch.nn as nn
from torch.nn.utils.rnn import PackedSequence, pack_padded_sequence, pad_packed_sequence
from ..utils import initial_parameter

try:
from torch import flip
@@ -11,21 +17,25 @@ except ImportError:
def flip(x, dims):
indices = [slice(None)] * x.dim()
for dim in dims:
indices[dim] = torch.arange(x.size(dim) - 1, -1, -1, dtype=torch.long, device=x.device)
indices[dim] = torch.arange(
x.size(dim) - 1, -1, -1, dtype=torch.long, device=x.device)
return x[tuple(indices)]

from ..utils import initial_parameter


class VarRnnCellWrapper(nn.Module):
"""Wrapper for normal RNN Cells, make it support variational dropout
"""

Wrapper for normal RNN Cells, make it support variational dropout
"""
def __init__(self, cell, hidden_size, input_p, hidden_p):
super(VarRnnCellWrapper, self).__init__()
self.cell = cell
self.hidden_size = hidden_size
self.input_p = input_p
self.hidden_p = hidden_p
def forward(self, input_x, hidden, mask_x, mask_h, is_reversed=False):
"""
:param PackedSequence input_x: [seq_len, batch_size, input_size]
@@ -37,11 +47,13 @@ class VarRnnCellWrapper(nn.Module):
hidden: for LSTM, tuple of (h_n, c_n), [batch_size, hidden_size]
for other RNN, h_n, [batch_size, hidden_size]
"""
def get_hi(hi, h0, size):
h0_size = size - hi.size(0)
if h0_size > 0:
return torch.cat([hi, h0[:h0_size]], dim=0)
return hi[:size]
is_lstm = isinstance(hidden, tuple)
input, batch_sizes = input_x.data, input_x.batch_sizes
output = []
@@ -52,7 +64,7 @@ class VarRnnCellWrapper(nn.Module):
else:
batch_iter = batch_sizes
idx = 0
if is_lstm:
hn = (hidden[0].clone(), hidden[1].clone())
else:
@@ -60,15 +72,16 @@ class VarRnnCellWrapper(nn.Module):
hi = hidden
for size in batch_iter:
if is_reversed:
input_i = input[idx-size: idx] * mask_x[:size]
input_i = input[idx - size: idx] * mask_x[:size]
idx -= size
else:
input_i = input[idx: idx+size] * mask_x[:size]
input_i = input[idx: idx + size] * mask_x[:size]
idx += size
mask_hi = mask_h[:size]
if is_lstm:
hx, cx = hi
hi = (get_hi(hx, hidden[0], size) * mask_hi, get_hi(cx, hidden[1], size))
hi = (get_hi(hx, hidden[0], size) *
mask_hi, get_hi(cx, hidden[1], size))
hi = cell(input_i, hi)
hn[0][:size] = hi[0]
hn[1][:size] = hi[1]
@@ -78,7 +91,7 @@ class VarRnnCellWrapper(nn.Module):
hi = cell(input_i, hi)
hn[:size] = hi
output.append(hi)
if is_reversed:
output = list(reversed(output))
output = torch.cat(output, dim=0)
@@ -86,7 +99,9 @@ class VarRnnCellWrapper(nn.Module):


class VarRNNBase(nn.Module):
"""Variational Dropout RNN 实现.
"""
Variational Dropout RNN 实现.

论文参考: `A Theoretically Grounded Application of Dropout in Recurrent Neural Networks (Yarin Gal and Zoubin Ghahramani, 2016)
https://arxiv.org/abs/1512.05287`.

@@ -102,7 +117,7 @@ class VarRNNBase(nn.Module):
:param hidden_dropout: 对每个隐状态的dropout概率. Default: 0
:param bidirectional: 若为 ``True``, 使用双向的RNN. Default: ``False``
"""
def __init__(self, mode, Cell, input_size, hidden_size, num_layers=1,
bias=True, batch_first=False,
input_dropout=0, hidden_dropout=0, bidirectional=False):
@@ -122,18 +137,20 @@ class VarRNNBase(nn.Module):
for direction in range(self.num_directions):
input_size = self.input_size if layer == 0 else self.hidden_size * self.num_directions
cell = Cell(input_size, self.hidden_size, bias)
self._all_cells.append(VarRnnCellWrapper(cell, self.hidden_size, input_dropout, hidden_dropout))
self._all_cells.append(VarRnnCellWrapper(
cell, self.hidden_size, input_dropout, hidden_dropout))
initial_parameter(self)
self.is_lstm = (self.mode == "LSTM")
def _forward_one(self, n_layer, n_direction, input, hx, mask_x, mask_h):
is_lstm = self.is_lstm
idx = self.num_directions * n_layer + n_direction
cell = self._all_cells[idx]
hi = (hx[0][idx], hx[1][idx]) if is_lstm else hx[idx]
output_x, hidden_x = cell(input, hi, mask_x, mask_h, is_reversed=(n_direction == 1))
output_x, hidden_x = cell(
input, hi, mask_x, mask_h, is_reversed=(n_direction == 1))
return output_x, hidden_x
def forward(self, x, hx=None):
"""

@@ -147,31 +164,38 @@ class VarRNNBase(nn.Module):
if not is_packed:
seq_len = x.size(1) if self.batch_first else x.size(0)
max_batch_size = x.size(0) if self.batch_first else x.size(1)
seq_lens = torch.LongTensor([seq_len for _ in range(max_batch_size)])
input = pack_padded_sequence(input, seq_lens, batch_first=self.batch_first)
seq_lens = torch.LongTensor(
[seq_len for _ in range(max_batch_size)])
x = pack_padded_sequence(x, seq_lens, batch_first=self.batch_first)
else:
max_batch_size = int(input.batch_sizes[0])
input, batch_sizes = input.data, input.batch_sizes
max_batch_size = int(x.batch_sizes[0])
x, batch_sizes = x.data, x.batch_sizes
if hx is None:
hx = x.new_zeros(self.num_layers * self.num_directions,
max_batch_size, self.hidden_size, requires_grad=True)
if is_lstm:
hx = (hx, hx.new_zeros(hx.size(), requires_grad=True))
mask_x = x.new_ones((max_batch_size, self.input_size))
mask_out = x.new_ones((max_batch_size, self.hidden_size * self.num_directions))
mask_out = x.new_ones(
(max_batch_size, self.hidden_size * self.num_directions))
mask_h_ones = x.new_ones((max_batch_size, self.hidden_size))
nn.functional.dropout(mask_x, p=self.input_dropout, training=self.training, inplace=True)
nn.functional.dropout(mask_out, p=self.hidden_dropout, training=self.training, inplace=True)

hidden = x.new_zeros((self.num_layers * self.num_directions, max_batch_size, self.hidden_size))
nn.functional.dropout(mask_x, p=self.input_dropout,
training=self.training, inplace=True)
nn.functional.dropout(mask_out, p=self.hidden_dropout,
training=self.training, inplace=True)
hidden = x.new_zeros(
(self.num_layers * self.num_directions, max_batch_size, self.hidden_size))
if is_lstm:
cellstate = x.new_zeros((self.num_layers * self.num_directions, max_batch_size, self.hidden_size))
cellstate = x.new_zeros(
(self.num_layers * self.num_directions, max_batch_size, self.hidden_size))
for layer in range(self.num_layers):
output_list = []
input_seq = PackedSequence(x, batch_sizes)
mask_h = nn.functional.dropout(mask_h_ones, p=self.hidden_dropout, training=self.training, inplace=False)
mask_h = nn.functional.dropout(
mask_h_ones, p=self.hidden_dropout, training=self.training, inplace=False)
for direction in range(self.num_directions):
output_x, hidden_x = self._forward_one(layer, direction, input_seq, hx,
mask_x if layer == 0 else mask_out, mask_h)
@@ -183,18 +207,19 @@ class VarRNNBase(nn.Module):
else:
hidden[idx] = hidden_x
x = torch.cat(output_list, dim=-1)
if is_lstm:
hidden = (hidden, cellstate)
if is_packed:
output = PackedSequence(x, batch_sizes)
else:
x = PackedSequence(x, batch_sizes)
output, _ = pad_packed_sequence(x, batch_first=self.batch_first)
return output, hidden


class VarLSTM(VarRNNBase):
"""
别名::class:`fastNLP.modules.VarLSTM` :class:`fastNLP.modules.encoder.variational_rnn.VarLSTM`
@@ -211,10 +236,11 @@ class VarLSTM(VarRNNBase):
:param hidden_dropout: 对每个隐状态的dropout概率. Default: 0
:param bidirectional: 若为 ``True``, 使用双向的LSTM. Default: ``False``
"""
def __init__(self, *args, **kwargs):
super(VarLSTM, self).__init__(mode="LSTM", Cell=nn.LSTMCell, *args, **kwargs)

super(VarLSTM, self).__init__(
mode="LSTM", Cell=nn.LSTMCell, *args, **kwargs)
def forward(self, x, hx=None):
return super(VarLSTM, self).forward(x, hx)

@@ -235,13 +261,15 @@ class VarRNN(VarRNNBase):
:param hidden_dropout: 对每个隐状态的dropout概率. Default: 0
:param bidirectional: 若为 ``True``, 使用双向的RNN. Default: ``False``
"""
def __init__(self, *args, **kwargs):
super(VarRNN, self).__init__(mode="RNN", Cell=nn.RNNCell, *args, **kwargs)

super(VarRNN, self).__init__(
mode="RNN", Cell=nn.RNNCell, *args, **kwargs)
def forward(self, x, hx=None):
return super(VarRNN, self).forward(x, hx)


class VarGRU(VarRNNBase):
"""
别名::class:`fastNLP.modules.VarGRU` :class:`fastNLP.modules.encoder.variational_rnn.VarGRU`
@@ -258,10 +286,10 @@ class VarGRU(VarRNNBase):
:param hidden_dropout: 对每个隐状态的dropout概率. Default: 0
:param bidirectional: 若为 ``True``, 使用双向的GRU. Default: ``False``
"""
def __init__(self, *args, **kwargs):
super(VarGRU, self).__init__(mode="GRU", Cell=nn.GRUCell, *args, **kwargs)

super(VarGRU, self).__init__(
mode="GRU", Cell=nn.GRUCell, *args, **kwargs)
def forward(self, x, hx=None):
return super(VarGRU, self).forward(x, hx)


+ 1
- 1
fastNLP/modules/utils.py View File

@@ -1,5 +1,5 @@
from functools import reduce
from collections import OrderedDict
import numpy as np
import torch
import torch.nn as nn


+ 3
- 3
reproduction/Chinese_word_segmentation/models/cws_model.py View File

@@ -3,7 +3,7 @@ import torch
from torch import nn

from fastNLP.models.base_model import BaseModel
from fastNLP.modules.decoder.MLP import MLP
from fastNLP.modules.decoder.mlp import MLP
from reproduction.Chinese_word_segmentation.utils import seq_lens_to_mask


@@ -120,8 +120,8 @@ class CWSBiLSTMSegApp(BaseModel):
return {'pred_tags': pred_tags}


from fastNLP.modules.decoder.CRF import ConditionalRandomField
from fastNLP.modules.decoder.CRF import allowed_transitions
from fastNLP.modules.decoder.crf import ConditionalRandomField
from fastNLP.modules.decoder.crf import allowed_transitions

class CWSBiLSTMCRF(BaseModel):
def __init__(self, vocab_num, embed_dim=100, bigram_vocab_num=None, bigram_embed_dim=100, num_bigram_per_char=None,


+ 2
- 2
reproduction/Chinese_word_segmentation/models/cws_transformer.py View File

@@ -10,8 +10,8 @@ from torch import nn
import torch
# from fastNLP.modules.encoder.transformer import TransformerEncoder
from reproduction.Chinese_word_segmentation.models.transformer import TransformerEncoder
from fastNLP.modules.decoder.CRF import ConditionalRandomField,seq_len_to_byte_mask
from fastNLP.modules.decoder.CRF import allowed_transitions
from fastNLP.modules.decoder.crf import ConditionalRandomField,seq_len_to_byte_mask
from fastNLP.modules.decoder.crf import allowed_transitions

class TransformerCWS(nn.Module):
def __init__(self, vocab_num, embed_dim=100, bigram_vocab_num=None, bigram_embed_dim=100, num_bigram_per_char=None,


+ 1
- 1
reproduction/LSTM+self_attention_sentiment_analysis/main.py View File

@@ -7,7 +7,7 @@ from fastNLP.io.config_io import ConfigSection
from fastNLP.io.dataset_loader import DummyClassificationReader as Dataset_loader
from fastNLP.models.base_model import BaseModel
from fastNLP.modules.aggregator.self_attention import SelfAttention
from fastNLP.modules.decoder.MLP import MLP
from fastNLP.modules.decoder.mlp import MLP
from fastNLP.modules.encoder.embedding import Embedding as Embedding
from fastNLP.modules.encoder.lstm import LSTM



+ 5
- 5
test/modules/decoder/test_CRF.py View File

@@ -5,7 +5,7 @@ import unittest
class TestCRF(unittest.TestCase):
def test_case1(self):
# 检查allowed_transitions()能否正确使用
from fastNLP.modules.decoder.CRF import allowed_transitions
from fastNLP.modules.decoder.crf import allowed_transitions

id2label = {0: 'B', 1: 'I', 2:'O'}
expected_res = {(0, 0), (0, 1), (0, 2), (0, 4), (1, 0), (1, 1), (1, 2), (1, 4), (2, 0), (2, 2),
@@ -43,7 +43,7 @@ class TestCRF(unittest.TestCase):
# 测试CRF能否避免解码出非法跃迁, 使用allennlp做了验证。
pass
# import torch
# from fastNLP.modules.decoder.CRF import seq_len_to_byte_mask
# from fastNLP.modules.decoder.crf import seq_len_to_byte_mask
#
# labels = ['O']
# for label in ['X', 'Y']:
@@ -63,7 +63,7 @@ class TestCRF(unittest.TestCase):
# mask = seq_len_to_byte_mask(seq_lens)
# allen_res = allen_CRF.viterbi_tags(logits, mask)
#
# from fastNLP.modules.decoder.CRF import ConditionalRandomField, allowed_transitions
# from fastNLP.modules.decoder.crf import ConditionalRandomField, allowed_transitions
# fast_CRF = ConditionalRandomField(num_tags=num_tags, allowed_transitions=allowed_transitions(id2label))
# fast_CRF.trans_m = trans_m
# fast_res = fast_CRF.viterbi_decode(logits, mask, get_score=True, unpad=True)
@@ -91,7 +91,7 @@ class TestCRF(unittest.TestCase):
# mask = seq_len_to_byte_mask(seq_lens)
# allen_res = allen_CRF.viterbi_tags(logits, mask)
#
# from fastNLP.modules.decoder.CRF import ConditionalRandomField, allowed_transitions
# from fastNLP.modules.decoder.crf import ConditionalRandomField, allowed_transitions
# fast_CRF = ConditionalRandomField(num_tags=num_tags, allowed_transitions=allowed_transitions(id2label,
# encoding_type='BMES'))
# fast_CRF.trans_m = trans_m
@@ -104,7 +104,7 @@ class TestCRF(unittest.TestCase):
def test_case3(self):
# 测试crf的loss不会出现负数
import torch
from fastNLP.modules.decoder.CRF import ConditionalRandomField
from fastNLP.modules.decoder.crf import ConditionalRandomField
from fastNLP.core.utils import seq_len_to_mask
from torch import optim
from torch import nn


Loading…
Cancel
Save