From b8026f786fa38498908414f8a5181cc8be389be2 Mon Sep 17 00:00:00 2001 From: MorningForest <2297662686@qq.com> Date: Mon, 2 May 2022 17:12:45 +0800 Subject: [PATCH] =?UTF-8?q?=E4=BF=AE=E6=94=B9collator?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- fastNLP/core/collators/__init__.py | 3 +- fastNLP/core/collators/collator.py | 905 +++++++++++------- fastNLP/core/collators/padders/get_padder.py | 2 +- .../core/collators/padders/paddle_padder.py | 174 ++++ .../core/dataloaders/jittor_dataloader/fdl.py | 90 +- .../core/dataloaders/paddle_dataloader/fdl.py | 150 +-- .../core/dataloaders/torch_dataloader/fdl.py | 168 ++-- fastNLP/core/dataloaders/utils/__init__.py | 0 fastNLP/core/dataset/dataset.py | 73 +- fastNLP/core/utils/jittor_utils.py | 3 +- .../collators/padders/test_paddle_padder.py | 107 +++ .../dataloaders/jittor_dataloader/test_fdl.py | 12 +- .../dataloaders/paddle_dataloader/test_fdl.py | 20 +- .../dataloaders/torch_dataloader/test_fdl.py | 23 +- 14 files changed, 1069 insertions(+), 661 deletions(-) create mode 100644 fastNLP/core/collators/padders/paddle_padder.py create mode 100644 fastNLP/core/dataloaders/utils/__init__.py create mode 100644 tests/core/collators/padders/test_paddle_padder.py diff --git a/fastNLP/core/collators/__init__.py b/fastNLP/core/collators/__init__.py index c896d08d..17cbb6ae 100644 --- a/fastNLP/core/collators/__init__.py +++ b/fastNLP/core/collators/__init__.py @@ -1,5 +1,4 @@ __all__ = [ - 'AutoCollator', 'Collator' ] -from .collator import AutoCollator, Collator +from .collator import Collator diff --git a/fastNLP/core/collators/collator.py b/fastNLP/core/collators/collator.py index b6b6de14..3bbc6141 100644 --- a/fastNLP/core/collators/collator.py +++ b/fastNLP/core/collators/collator.py @@ -1,386 +1,573 @@ __all__ = [ - 'AutoCollator', 'Collator', ] +from typing import List, Union, Dict, Callable, Sequence, Mapping -from abc import ABCMeta, abstractmethod -from typing import Any, Dict, List, Callable, Union, Tuple -from numbers import Number -import warnings - -import numpy as np - -from fastNLP.envs.imports import _NEED_IMPORT_PADDLE, _NEED_IMPORT_TORCH - -if _NEED_IMPORT_PADDLE: - import paddle - -if _NEED_IMPORT_TORCH: - import torch - - -class ApplyResultException(Exception): - def __init__(self, msg, index=None): - super().__init__(msg) - self.msg = msg - self.index = index # 标示在哪个数据遭遇到问题了 +from fastNLP.core.log import logger +from .padders.get_padder import get_padder +import re -class SetInputOrTargetException(Exception): - def __init__(self, msg, index=None, field_name=None): - super().__init__(msg) - self.msg = msg - self.index = index # 标示在哪个数据遭遇到问题了 - self.field_name = field_name # 标示当前 field 的名称 +from .utils import unpack_batch_mapping, unpack_batch_nested_mapping, pack_batch_nested_mapping, unpack_batch_sequence, \ + pack_batch_sequence +sequence_idx_str = re.compile(r'^_\d+$') # 形如_0, _1 +SUPPORTED_BACKENDS = ['torch', 'jittor', 'paddle', 'numpy', 'raw', None] -def _get_ele_type_and_dim(cell: Any, dim=0) -> Tuple[Any, int]: - r""" - 识别cell的类别与dimension的数量 - - numpy scalar type:https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.scalars.html - :param cell: - :param dim: - :return: - """ - if isinstance(cell, (str, Number, np.bool_)): - if hasattr(cell, 'dtype'): - return cell.dtype.type, dim - return type(cell), dim - - elif isinstance(cell, list): - dim += 1 - res = [_get_ele_type_and_dim(cell_i, dim) for cell_i in cell] - types = set([i for i, j in res]) - dims = set([j for i, j in res]) - if len(types) > 1: - raise SetInputOrTargetException("Mixed types detected: {}.".format(list(types))) - elif len(types) == 0: - raise SetInputOrTargetException("Empty value encountered.") - if len(dims) > 1: - raise SetInputOrTargetException("Mixed dimension detected: {}.".format(list(dims))) - return types.pop(), dims.pop() - - elif isinstance(cell, torch.Tensor): - return cell.dtype, cell.dim() + dim # 如果是 torch.mean 的结果是0 - - elif isinstance(cell, paddle.Tensor): - return cell.dtype, cell.dim() + dim - - elif isinstance(cell, np.ndarray): - if cell.dtype != np.dtype('O'): # 如果不是 object 的话说明是 well-formatted 的了 - return cell.dtype.type, cell.ndim + dim # dtype.type 返回的会是 np.int32, np.float 等 - # 否则需要继续往下 iterate - dim += 1 - res = [_get_ele_type_and_dim(cell_i, dim) for cell_i in cell] - types = set([i for i, j in res]) - dims = set([j for i, j in res]) - if len(types) > 1: - raise SetInputOrTargetException("Mixed types detected: {}.".format(list(types))) - elif len(types) == 0: - raise SetInputOrTargetException("Empty value encountered.") - if len(dims) > 1: - raise SetInputOrTargetException("Mixed dimension detected: {}.".format(list(dims))) - return types.pop(), dims.pop() - - else: # 包含 tuple, set, dict 以及其它的类型 - raise SetInputOrTargetException(f"Cannot process type:{type(cell)}.") - - -def _get_ds_type_dim(ds: dict): - # 获取数据集第一行的 field 内部函数的类型和维度 - field_dtype, field_dim = {}, {} - for field_name, field_content in ds.items(): - type_0, dim_0 = _get_ele_type_and_dim(field_content) - field_dtype[field_name], field_dim[field_name] = type_0, dim_0 - return field_dtype, field_dim - - -class Collator(metaclass=ABCMeta): - r""" - 辅助DataLoader管理collate_fn的类 - - """ - - def __init__(self): - super(Collator, self).__init__() - self.collate_fn = [] - - @abstractmethod - def __call__(self, ins_lst: List) -> Any: - raise NotImplementedError - - @abstractmethod - def set_pad_val(self, *field_names: str, value=0): - raise NotImplementedError - - -class _MultiCollator: - """ - 管理所有collator的容器, - 遵循覆盖原则,后加入的collate_fn会覆盖之前处理的数据。 - """ - - def __init__(self, collate_fns: Union[Callable, List[Callable], None]): - - if collate_fns is None: - collate_fns = [] - - if isinstance(collate_fns, Callable): - collate_fns = [collate_fns] - - self._collators: list = collate_fns - - def __call__(self, ins_lst) -> Dict: - out, list_out = {}, [] - for idx, _collate_fn in enumerate(self._collators): - res = _collate_fn(ins_lst) - if isinstance(res, Dict): - out.update(res) - else: - list_out.append(res) - # else: - # raise ValueError(f"the return type of collate_fn {idx} is {type(res)}, but require is dict") - if len(out) > 0 and len(list_out) > 0: - raise ValueError("the return of collate_fns is not the same, must be dict or list") - if len(list_out) == 1: - list_out = list_out[-1] - # print(list_out) - return out if len(out) > 0 else list_out - - def get_collators(self): - return self._collators - - def add_collator(self, collator: Callable): - self._collators.append(collator) - - def set_as_numpy(self, as_numpy: bool): - """ - 存在AutoCollator时,as_numpy控制其返回值的类型 - :param as_numpy: - :return: +class Collator: + def __init__(self, backend='torch'): """ - for collator in self._collators: - if isinstance(collator, AutoCollator): - collator.set_as_numpy(as_numpy) - return self + 用于 pad 数据的对象。会自动将所有能够 pad (由 fastNLP 根据数据判定能否 pad )的数据都进行 pad 操作,默认 pad 的值为 0。 + 可使用 set_pad() 函数调整。如果有些 field 不想输出,可以使用 set_ignore() 函数进行设置。Collator 在第一次进行 pad 的 + 时候自动根据设置以及数据情况,为每个 field 获取一个 padder ,在之后的每次调用中,都将使用对应的 Padder 给对应的 field 。 - def set_pad_val(self, *field_names, val=0): + :param backend: 对于可以 pad 的 field,使用哪种 tensor,支持 ['torch','jittor','paddle','numpy','raw',None]。 + 若为 None ,则不进行 padding 。该参数对本身就不能进行 pad 的数据没用影响,不能 pad 的数据返回一定是 list 。 + """ + self.unpack_batch_func = None + self.pack_batch_func = None + self.ignore_fields = set() + self.padders = {} + self.input_fields = {} + self.batch_data_type = None # 只能是 d ,s ,l 三种,分别对应输入的batch的每个sample为 dict, single,list。 + self.set_backend(backend) + + def __call__(self, batch)->Union[List, Dict]: """ - 存在AutoCollator时,设置field_name的padding值 + batch可能存在三种可能性 + List[Dict], List[List], List[Sample] + + 第一步:使用 unpack_batch_func 将相同 field 的内容打包到一个 list 中。 + 第二步:使用每个 field 各自的 padder 进行 pad 。 + 第三步:根据 batch 中每个 sample 的类型,返回也保证为该类型。 + + 第一次调用会根据当前 batch 数据决定使用哪个 unpack_batch_func ,这个函数的作用是把不同 sample 的同一个 field 的放入到一个 + list 中;同时也会决定 pack_batch_func,这个函数的作用是在返回 pad 好的 batch 之前,将 batch 恢复为 输入时一个 sample + 的类别。 + 第一次调用会根据当前 field 决定对应的 Padder 。 - :param field_names: 数据集的field名 - :param val: padding的值 - :return: """ - flag = True - for collator in self._collators: - if isinstance(collator, AutoCollator): - collator.set_pad_val(*field_names, val=val) - flag = False - if flag: - warnings.warn("AutoCollator is remove, set_padding is unavailable!!") + if self.unpack_batch_func is None: + # 决定使用哪个unpack_batch_func,让它都 return 回 dict 类型 + if self.batch_data_type is None: + if isinstance(batch[0], Mapping): + self.batch_data_type = 'd' + elif isinstance(batch[0], Sequence): # 这里存在误判的风险 + self.batch_data_type = 'l' + else: + self.batch_data_type = 's' + logger.debug(f"Since batch[0] has type:{type(batch[0])}, so the batch_data_type " + f"is `{self.batch_data_type}`.") + if self.batch_data_type == 's': + self.unpack_batch_func = lambda batch, ignore_fields: {'_single': batch} # 不需要做任何调整 + self.pack_batch_func = lambda x: x['_single'] + elif self.batch_data_type == 'l': + self.unpack_batch_func = unpack_batch_sequence + self.pack_batch_func = pack_batch_sequence + elif self.batch_data_type == 'd': + if any([isinstance(v, Mapping) for v in batch[0].values()]): # 可能存在 nested 的dict。{'a': {'b': xx}}->{('a', 'b'): value} + self.unpack_batch_func = unpack_batch_nested_mapping + self.pack_batch_func = pack_batch_nested_mapping + else: + self.unpack_batch_func = unpack_batch_mapping + self.pack_batch_func = lambda x:x + # 在这里用ignore_field过滤掉 + if self.unpack_batch_func is unpack_batch_nested_mapping: # 比较特殊,需要防止继续往下延伸 + unpack_batch: Dict = self.unpack_batch_func(batch, self.ignore_fields, set(self.input_fields.keys())) + else: + unpack_batch:Dict = self.unpack_batch_func(batch, self.ignore_fields) # 将各自 field 组成 batch 形式。 + + pad_batch = {} + if len(self.padders)==0: # 第一次运行,准备 padder + for key in unpack_batch.keys(): + if key not in self.input_fields and key not in self.ignore_fields: + self.input_fields[key] = {'pad_val': 0, 'dtype': None, 'backend': self.backend} + + for field_name, setting in self.input_fields.items(): + pad_fn = setting.get('pad_fn', None) + if callable(pad_fn): + padder = pad_fn + else: + batch_field = unpack_batch.get(field_name) + padder = get_padder(batch_field=batch_field, pad_val=setting['pad_val'], + dtype=setting['dtype'], backend=setting['backend'], + field_name=field_name) + self.padders[field_name] = padder + if self.batch_data_type == 'l': + self.padders = dict(sorted(self.padders.items(), key=lambda x:int(x[0][1:]))) # sort, 这样 _0, _1 能够保持顺序 + + for key, padder in self.padders.items(): + batch = unpack_batch.get(key) + pad_batch[key] = padder(batch) + + return self.pack_batch_func(pad_batch) # 根据情况恢复成与输入一致的类型 + + def set_pad(self, field_name:Union[str, tuple], pad_val:Union[int, float, None]=0, dtype=None, backend=None, + pad_fn:Callable=None) -> "Collator": + """ + 如果需要对某个 field 的内容进行特殊的调整,请使用这个函数。 + + :param field_name: 需要调整的 field 的名称。如果 Dataset 的 __getitem__ 方法返回的是 dict 类型的,则可以直接使用对应的 + field 的 key 来表示,如果是 nested 的 dict,可以使用元组表示多层次的 key,例如 {'a': {'b': 1}} 中的使用 ('a', 'b'); + 如果 __getitem__ 返回的是 Sequence 类型的,则可以使用 '_0', '_1' 表示序列中第 0 或 1 个元素。如果该 field 在数据中没 + 有找到,则报错;如果 __getitem__ 返回的是就是整体内容,请使用 "_single" 。 + :param pad_val: 这个 field 的默认 pad 值。如果设置为 None,则表示该 field 不需要 pad , fastNLP 默认只会对可以 pad 的 + field 进行 pad,所以如果对应 field 本身就不是可以 pad 的形式,可以不需要主动设置为 None 。 + :param dtype: 对于需要 pad 的 field ,该 field 的数据 dtype 应该是什么。 + :param backend: 可选[None, 'numpy', 'torch', 'paddle', 'jittor'],分别代表,输出为 list, numpy.ndarray, torch.Tensor, + paddle.Tensor, jittor.Var 类型。若 pad_val 为 None ,该值只能为 None 或 numpy 。 + :param pad_fn: 指定当前 field 的 pad 函数,传入该函数则 pad_val, dtype, backend 等参数失效。pad_fn 的输入为当前 field 的 + batch 形式。 Collator 将自动 unbatch 数据,然后将各个 field 组成各自的 batch 。pad_func 的输入即为 field 的 batch + 形式,输出将被直接作为结果输出。 + :return: 返回 Collator 自身 + """ + self.padders.clear() # 重新生成 + + if self.batch_data_type is not None: + if self.batch_data_type == 's': + logger.debug("Set as single field mode.") + self.input_fields.clear() + elif self.batch_data_type == 'd': + assert sequence_idx_str.match(field_name) is None, f"Field name:{field_name} will be recognized as list " \ + f"index, but other field is set as dict mode." + elif self.batch_data_type == 'l': + assert sequence_idx_str.match(field_name) is not None, f"Other field is set as list mode. But the new " \ + f"field name is {field_name}." + + if field_name == '_single': + self.batch_data_type = 's' + elif isinstance(field_name, str) and sequence_idx_str.match(field_name): + self.batch_data_type = 'l' + else: + self.batch_data_type = 'd' + + if field_name in self.ignore_fields: + logger.warning(f"Field:{field_name} has been set as ignored before. It will not be ignored afterwards.") + if backend is None: + backend = self.backend + else: + assert backend in SUPPORTED_BACKENDS + + self.input_fields[field_name] = {'pad_val': pad_val, 'dtype': dtype, 'backend': backend, 'pad_fn': pad_fn} + return self - def set_input(self, *field_names): + def set_backend(self, backend:str): """ - 设置AutoCollator需要的field_names,未被设置默认过滤掉 + 设置可以 pad 的 field 默认 pad 为什么类型的 tensor - :param field_names: + :param backend: 对于可以 pad 的 field,使用哪种 tensor,支持 ['torch','jittor','paddle','numpy','raw',None], + 若为 None ,则不进行 padding 。 :return: """ - flag = True - for collator in self._collators: - if isinstance(collator, AutoCollator): - collator.set_input(*field_names) - flag = False - if flag: - warnings.warn("AutoCollator is removed, set_input is unavailable!!") + assert backend in SUPPORTED_BACKENDS + self.padders.clear() + self.backend = backend + + def set_ignore(self, *field_names) -> "Collator": + """ + 如果有的内容不希望输出,可以在此处进行设置,被设置的 field 将在 batch 的输出中被忽略。 + Ex:: + collator.set_ignore('field1', 'field2') + + :param field_names: 需要忽略的 field 的名称。如果 Dataset 的 __getitem__ 方法返回的是 dict 类型的,则可以直接使用对应的 + field 的 key 来表示,如果是 nested 的 dict,可以使用元组来表示,例如 {'a': {'b': 1}} 中的使用 ('a', 'b'); 如果 + __getitem__ 返回的是 Sequence 类型的,则可以使用 '_0', '_1' 表示序列中第 0 或 1 个元素。 + :return: 返回 Collator 自身 + """ + for field_name in field_names: + if field_name in self.input_fields: + self.input_fields.pop(field_name) + logger.warning(f"Field:{field_name} has been set as input before. It will be ignored afterwards.") + self.padders.pop(field_name, None) # 如果有的话,将它的 padder 扔掉。 + self.ignore_fields.add(field_name) + return self -class AutoCollator(Collator): - - def __init__(self, as_numpy: bool): - super(AutoCollator, self).__init__() - self.pad_field_value = {} # field padding 自定义的 padding 值, 默认为0 - self.need_inputs = set() # 需要的 field name - self.field_dtypes = None # 每列数据单元的 dtype 类型 - self.field_dims = None # 每列数据单元维度 - self.as_numpy = as_numpy - - def __call__(self, ins_lst: List[Dict]) -> dict: - if len(self.need_inputs) == 0: - raise ValueError({"set_inputs is None, you should use set_inputs method first!!"}) - # TODO 这里应该是先 check 有哪些需要 padding,然后check这些是否是可以pad的 - - # 第一种情况,设置了 set_input 的值 - # 第二种情况, 根据数据的类型的判断是否 padding - if self.field_dtypes is None and self.field_dims is None: - field_dtypes, field_dims = {}, {} - for key, value in ins_lst[0].items(): - if key in self.need_inputs and self.pad_field_value.get(key, 0) is not None: - field_dtypes[key], field_dims[key] = _get_ele_type_and_dim(value) - self.field_dtypes = field_dtypes - self.field_dims = field_dims - - pack_ins_lst, pad_ins_lst = {field_name: [] - for field_name in ins_lst[0].keys() if field_name in self.need_inputs}, {} - # 将 list 列表内数据按列名打包 - for per_ins in ins_lst: - for field_name, _field_content in per_ins.items(): - if field_name in self.need_inputs: - pack_ins_lst[field_name].append(_field_content) - - pad_field_kv = {field_name: 0 for field_name in self.need_inputs} - pad_field_kv.update(self.pad_field_value) - self.pad_field_value = pad_field_kv - - if len(self.pad_field_value.keys()) > 0: - # 去掉不需要 pad 的列,如果 set_input 的列不存在则忽略 - non_pad_field_names = [] - for k, v in self.pad_field_value.items(): - if v is None: - non_pad_field_names.append(k) - - # drop_field_names = list(set(list(ins_lst[0].keys())) - set(drop_fields)) - for field_name in non_pad_field_names: - field_array = pack_ins_lst.pop(field_name) - pad_ins_lst[field_name] = np.array(field_array) - - for field_name, field_array in pack_ins_lst.items(): - content = pad_content(field_array, field_name, self.field_dtypes[field_name], - self.field_dims[field_name], - self.pad_field_value[field_name], - as_numpy=self.as_numpy) - pad_ins_lst[field_name] = content - - # else: - # # 取出每列的数据,根据类型判断是否能 pad - # for field_name, field_array in pack_ins_lst.items(): - # pad_field_array = pad_content(field_array, field_name, self.field_dtypes[field_name], - # self.field_dims[field_name], - # pad_val=0, as_numpy=self.as_numpy) - # pad_ins_lst[field_name] = pad_field_array - - return pad_ins_lst - - def set_pad_val(self, *field_names, val=0): - for field_name in field_names: - self.pad_field_value[field_name] = val - def set_as_numpy(self, as_numpy: bool): - self.as_numpy = as_numpy - def set_input(self, *field_names): - for field_name in field_names: - self.need_inputs.add(field_name) - - -def pad_content(content, field_name: str, field_type, field_dim: int, pad_val: int, as_numpy: bool): - - if field_type: - # 不处理, 返回 np.array 类型 - if field_dim > 3: - return np.array(content) - # 元素类型为数值类型 np.int64, np.float64, int, float 等 - if isinstance(field_type, type) and \ - (issubclass(field_type, np.number) or issubclass(field_type, Number)): - if field_dim == 0: - array = np.array(content, dtype=field_type) - elif field_dim == 1: - max_len = max(map(len, content)) - array = np.full((len(content), max_len), pad_val, dtype=field_type) - for i, content_i in enumerate(content): - array[i, :len(content_i)] = content_i - elif field_dim == 2: - max_len = max(map(len, content)) - max_word_len = max([max([len(content_ii) for content_ii in content_i]) for - content_i in content]) - array = np.full((len(content), max_len, max_word_len), pad_val, dtype=field_type) - for i, content_i in enumerate(content): - for j, content_ii in enumerate(content_i): - array[i, j, :len(content_ii)] = content_ii - else: - shape = np.shape(content) - if len(shape) == 4: # 说明各 dimension 是相同的大小 - array = np.array(content, dtype=field_type) - else: - raise RuntimeError( - f"Field:{field_name} has 3 dimensions, every sample should have the same shape.") - if as_numpy is False: - array = torch.tensor(array) - return array - # 元素类型为数值类型 torch.float 等 - elif str(field_type).startswith('torch'): - if field_dim == 0: - tensor = torch.tensor(content).to(field_type) - elif field_dim == 1: - max_len = max(map(len, content)) - tensor = torch.full((len(content), max_len), fill_value=pad_val, dtype=field_type) - for i, content_i in enumerate(content): - tensor[i, :len(content_i)] = content_i.clone().detach() - elif field_dim == 2: - max_len = max(map(len, content)) - max_word_len = max([max([len(content_ii) for content_ii in content_i]) for - content_i in content]) - tensor = torch.full((len(content), max_len, max_word_len), fill_value=pad_val, - dtype=field_type) - for i, content_i in enumerate(content): - for j, content_ii in enumerate(content_i): - tensor[i, j, :len(content_ii)] = content_ii.clone().detach() - else: - shapes = set([np.shape(content_i) for content_i in content]) - if len(shapes) > 1: - raise RuntimeError( - f"Field:{field_name} has 3 dimensions, every sample should have the same shape.") - shape = shapes.pop() - if len(shape) == 3: - tensor = torch.full([len(content)] + list(shape), fill_value=pad_val, - dtype=field_type) - for i, content_i in enumerate(content): - tensor[i] = content_i.clone().detach().to(field_type) - else: - raise RuntimeError( - f"Field:{field_name} has 3 dimensions, every sample should have the same shape.") - return tensor - # TODO 增加jittor/paddle? - elif str(field_type).startswith('paddle'): - if field_dim == 0: - tensor = paddle.Tensor(content).to(field_type) - elif field_dim == 1: - max_len = max(map(len, content)) - tensor = paddle.full((len(content), max_len), fill_value=pad_val, dtype=field_type) - for i, content_i in enumerate(content): - tensor[i, :len(content_i)] = content_i.clone().detach() - elif field_dim == 2: - max_len = max(map(len, content)) - max_word_len = max([max([len(content_ii) for content_ii in content_i]) for - content_i in content]) - tensor = paddle.full((len(content), max_len, max_word_len), fill_value=pad_val, - dtype=field_type) - for i, content_i in enumerate(content): - for j, content_ii in enumerate(content_i): - tensor[i, j, :len(content_ii)] = content_ii.clone().detach() - else: - shapes = set([np.shape(content_i) for content_i in content]) - if len(shapes) > 1: - raise RuntimeError( - f"Field:{field_name} has 3 dimensions, every sample should have the same shape.") - shape = shapes.pop() - if len(shape) == 3: - tensor = paddle.full([len(content)] + list(shape), fill_value=pad_val, - dtype=field_type) - for i, content_i in enumerate(content): - tensor[i] = content_i.clone().detach().to(field_type) - else: - raise RuntimeError( - f"Field:{field_name} has 3 dimensions, every sample should have the same shape.") - return tensor - else: - return np.array(content) # 不进行任何操作 - else: - return np.array(content) +# +# from abc import ABCMeta, abstractmethod +# from typing import Any, Dict, List, Callable, Union, Tuple +# from numbers import Number +# import warnings +# +# import numpy as np +# +# from fastNLP.envs.imports import _NEED_IMPORT_PADDLE, _NEED_IMPORT_TORCH +# +# if _NEED_IMPORT_PADDLE: +# import paddle +# +# if _NEED_IMPORT_TORCH: +# import torch +# +# +# class ApplyResultException(Exception): +# def __init__(self, msg, index=None): +# super().__init__(msg) +# self.msg = msg +# self.index = index # 标示在哪个数据遭遇到问题了 +# +# +# class SetInputOrTargetException(Exception): +# def __init__(self, msg, index=None, field_name=None): +# super().__init__(msg) +# self.msg = msg +# self.index = index # 标示在哪个数据遭遇到问题了 +# self.field_name = field_name # 标示当前 field 的名称 +# +# +# def _get_ele_type_and_dim(cell: Any, dim=0) -> Tuple[Any, int]: +# r""" +# 识别cell的类别与dimension的数量 +# +# numpy scalar type:https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.scalars.html +# :param cell: +# :param dim: +# :return: +# """ +# if isinstance(cell, (str, Number, np.bool_)): +# if hasattr(cell, 'dtype'): +# return cell.dtype.type, dim +# return type(cell), dim +# +# elif isinstance(cell, list): +# dim += 1 +# res = [_get_ele_type_and_dim(cell_i, dim) for cell_i in cell] +# types = set([i for i, j in res]) +# dims = set([j for i, j in res]) +# if len(types) > 1: +# raise SetInputOrTargetException("Mixed types detected: {}.".format(list(types))) +# elif len(types) == 0: +# raise SetInputOrTargetException("Empty value encountered.") +# if len(dims) > 1: +# raise SetInputOrTargetException("Mixed dimension detected: {}.".format(list(dims))) +# return types.pop(), dims.pop() +# +# elif isinstance(cell, torch.Tensor): +# return cell.dtype, cell.dim() + dim # 如果是 torch.mean 的结果是0 +# +# elif isinstance(cell, paddle.Tensor): +# return cell.dtype, cell.dim() + dim +# +# elif isinstance(cell, np.ndarray): +# if cell.dtype != np.dtype('O'): # 如果不是 object 的话说明是 well-formatted 的了 +# return cell.dtype.type, cell.ndim + dim # dtype.type 返回的会是 np.int32, np.float 等 +# # 否则需要继续往下 iterate +# dim += 1 +# res = [_get_ele_type_and_dim(cell_i, dim) for cell_i in cell] +# types = set([i for i, j in res]) +# dims = set([j for i, j in res]) +# if len(types) > 1: +# raise SetInputOrTargetException("Mixed types detected: {}.".format(list(types))) +# elif len(types) == 0: +# raise SetInputOrTargetException("Empty value encountered.") +# if len(dims) > 1: +# raise SetInputOrTargetException("Mixed dimension detected: {}.".format(list(dims))) +# return types.pop(), dims.pop() +# +# else: # 包含 tuple, set, dict 以及其它的类型 +# raise SetInputOrTargetException(f"Cannot process type:{type(cell)}.") +# +# +# def _get_ds_type_dim(ds: dict): +# # 获取数据集第一行的 field 内部函数的类型和维度 +# field_dtype, field_dim = {}, {} +# for field_name, field_content in ds.items(): +# type_0, dim_0 = _get_ele_type_and_dim(field_content) +# field_dtype[field_name], field_dim[field_name] = type_0, dim_0 +# return field_dtype, field_dim +# +# +# class Collator(metaclass=ABCMeta): +# r""" +# 辅助DataLoader管理collate_fn的类 +# +# """ +# +# def __init__(self): +# super(Collator, self).__init__() +# self.collate_fn = [] +# +# @abstractmethod +# def __call__(self, ins_lst: List) -> Any: +# raise NotImplementedError +# +# @abstractmethod +# def set_pad_val(self, *field_names: str, value=0): +# raise NotImplementedError +# +# +# class _MultiCollator: +# """ +# 管理所有collator的容器, +# 遵循覆盖原则,后加入的collate_fn会覆盖之前处理的数据。 +# """ +# +# def __init__(self, collate_fns: Union[Callable, List[Callable], None]): +# +# if collate_fns is None: +# collate_fns = [] +# +# if isinstance(collate_fns, Callable): +# collate_fns = [collate_fns] +# +# self._collators: list = collate_fns +# +# def __call__(self, ins_lst) -> Dict: +# out, list_out = {}, [] +# for idx, _collate_fn in enumerate(self._collators): +# res = _collate_fn(ins_lst) +# if isinstance(res, Dict): +# out.update(res) +# else: +# list_out.append(res) +# # else: +# # raise ValueError(f"the return type of collate_fn {idx} is {type(res)}, but require is dict") +# if len(out) > 0 and len(list_out) > 0: +# raise ValueError("the return of collate_fns is not the same, must be dict or list") +# if len(list_out) == 1: +# list_out = list_out[-1] +# # print(list_out) +# return out if len(out) > 0 else list_out +# +# def get_collators(self): +# return self._collators +# +# def add_collator(self, collator: Callable): +# self._collators.append(collator) +# +# def set_as_numpy(self, as_numpy: bool): +# """ +# 存在AutoCollator时,as_numpy控制其返回值的类型 +# +# :param as_numpy: +# :return: +# """ +# for collator in self._collators: +# if isinstance(collator, AutoCollator): +# collator.set_as_numpy(as_numpy) +# return self +# +# def set_pad_val(self, *field_names, val=0): +# """ +# 存在AutoCollator时,设置field_name的padding值 +# +# :param field_names: 数据集的field名 +# :param val: padding的值 +# :return: +# """ +# flag = True +# for collator in self._collators: +# if isinstance(collator, AutoCollator): +# collator.set_pad_val(*field_names, val=val) +# flag = False +# if flag: +# warnings.warn("AutoCollator is remove, set_padding is unavailable!!") +# return self +# +# def set_input(self, *field_names): +# """ +# 设置AutoCollator需要的field_names,未被设置默认过滤掉 +# +# :param field_names: +# :return: +# """ +# flag = True +# for collator in self._collators: +# if isinstance(collator, AutoCollator): +# collator.set_input(*field_names) +# flag = False +# if flag: +# warnings.warn("AutoCollator is removed, set_input is unavailable!!") +# return self +# +# +# class AutoCollator(Collator): +# +# def __init__(self, as_numpy: bool): +# super(AutoCollator, self).__init__() +# self.pad_field_value = {} # field padding 自定义的 padding 值, 默认为0 +# self.need_inputs = set() # 需要的 field name +# self.field_dtypes = None # 每列数据单元的 dtype 类型 +# self.field_dims = None # 每列数据单元维度 +# self.as_numpy = as_numpy +# +# def __call__(self, ins_lst: List[Dict]) -> dict: +# if len(self.need_inputs) == 0: +# raise ValueError({"set_inputs is None, you should use set_inputs method first!!"}) +# # TODO 这里应该是先 check 有哪些需要 padding,然后check这些是否是可以pad的 +# +# # 第一种情况,设置了 set_input 的值 +# # 第二种情况, 根据数据的类型的判断是否 padding +# if self.field_dtypes is None and self.field_dims is None: +# field_dtypes, field_dims = {}, {} +# for key, value in ins_lst[0].items(): +# if key in self.need_inputs and self.pad_field_value.get(key, 0) is not None: +# field_dtypes[key], field_dims[key] = _get_ele_type_and_dim(value) +# self.field_dtypes = field_dtypes +# self.field_dims = field_dims +# +# pack_ins_lst, pad_ins_lst = {field_name: [] +# for field_name in ins_lst[0].keys() if field_name in self.need_inputs}, {} +# # 将 list 列表内数据按列名打包 +# for per_ins in ins_lst: +# for field_name, _field_content in per_ins.items(): +# if field_name in self.need_inputs: +# pack_ins_lst[field_name].append(_field_content) +# +# pad_field_kv = {field_name: 0 for field_name in self.need_inputs} +# pad_field_kv.update(self.pad_field_value) +# self.pad_field_value = pad_field_kv +# +# if len(self.pad_field_value.keys()) > 0: +# # 去掉不需要 pad 的列,如果 set_input 的列不存在则忽略 +# non_pad_field_names = [] +# for k, v in self.pad_field_value.items(): +# if v is None: +# non_pad_field_names.append(k) +# +# # drop_field_names = list(set(list(ins_lst[0].keys())) - set(drop_fields)) +# for field_name in non_pad_field_names: +# field_array = pack_ins_lst.pop(field_name) +# pad_ins_lst[field_name] = np.array(field_array) +# +# for field_name, field_array in pack_ins_lst.items(): +# content = pad_content(field_array, field_name, self.field_dtypes[field_name], +# self.field_dims[field_name], +# self.pad_field_value[field_name], +# as_numpy=self.as_numpy) +# pad_ins_lst[field_name] = content +# +# # else: +# # # 取出每列的数据,根据类型判断是否能 pad +# # for field_name, field_array in pack_ins_lst.items(): +# # pad_field_array = pad_content(field_array, field_name, self.field_dtypes[field_name], +# # self.field_dims[field_name], +# # pad_val=0, as_numpy=self.as_numpy) +# # pad_ins_lst[field_name] = pad_field_array +# +# return pad_ins_lst +# +# def set_pad_val(self, *field_names, val=0): +# for field_name in field_names: +# self.pad_field_value[field_name] = val +# +# def set_as_numpy(self, as_numpy: bool): +# self.as_numpy = as_numpy +# +# def set_input(self, *field_names): +# for field_name in field_names: +# self.need_inputs.add(field_name) +# +# +# def pad_content(content, field_name: str, field_type, field_dim: int, pad_val: int, as_numpy: bool): +# +# if field_type: +# # 不处理, 返回 np.array 类型 +# if field_dim > 3: +# return np.array(content) +# # 元素类型为数值类型 np.int64, np.float64, int, float 等 +# if isinstance(field_type, type) and \ +# (issubclass(field_type, np.number) or issubclass(field_type, Number)): +# if field_dim == 0: +# array = np.array(content, dtype=field_type) +# elif field_dim == 1: +# max_len = max(map(len, content)) +# array = np.full((len(content), max_len), pad_val, dtype=field_type) +# for i, content_i in enumerate(content): +# array[i, :len(content_i)] = content_i +# elif field_dim == 2: +# max_len = max(map(len, content)) +# max_word_len = max([max([len(content_ii) for content_ii in content_i]) for +# content_i in content]) +# array = np.full((len(content), max_len, max_word_len), pad_val, dtype=field_type) +# for i, content_i in enumerate(content): +# for j, content_ii in enumerate(content_i): +# array[i, j, :len(content_ii)] = content_ii +# else: +# shape = np.shape(content) +# if len(shape) == 4: # 说明各 dimension 是相同的大小 +# array = np.array(content, dtype=field_type) +# else: +# raise RuntimeError( +# f"Field:{field_name} has 3 dimensions, every sample should have the same shape.") +# if as_numpy is False: +# array = torch.tensor(array) +# return array +# # 元素类型为数值类型 torch.float 等 +# elif str(field_type).startswith('torch'): +# if field_dim == 0: +# tensor = torch.tensor(content).to(field_type) +# elif field_dim == 1: +# max_len = max(map(len, content)) +# tensor = torch.full((len(content), max_len), fill_value=pad_val, dtype=field_type) +# for i, content_i in enumerate(content): +# tensor[i, :len(content_i)] = content_i.clone().detach() +# elif field_dim == 2: +# max_len = max(map(len, content)) +# max_word_len = max([max([len(content_ii) for content_ii in content_i]) for +# content_i in content]) +# tensor = torch.full((len(content), max_len, max_word_len), fill_value=pad_val, +# dtype=field_type) +# for i, content_i in enumerate(content): +# for j, content_ii in enumerate(content_i): +# tensor[i, j, :len(content_ii)] = content_ii.clone().detach() +# else: +# shapes = set([np.shape(content_i) for content_i in content]) +# if len(shapes) > 1: +# raise RuntimeError( +# f"Field:{field_name} has 3 dimensions, every sample should have the same shape.") +# shape = shapes.pop() +# if len(shape) == 3: +# tensor = torch.full([len(content)] + list(shape), fill_value=pad_val, +# dtype=field_type) +# for i, content_i in enumerate(content): +# tensor[i] = content_i.clone().detach().to(field_type) +# else: +# raise RuntimeError( +# f"Field:{field_name} has 3 dimensions, every sample should have the same shape.") +# return tensor +# # TODO 增加jittor/paddle? +# elif str(field_type).startswith('paddle'): +# if field_dim == 0: +# tensor = paddle.Tensor(content).to(field_type) +# elif field_dim == 1: +# max_len = max(map(len, content)) +# tensor = paddle.full((len(content), max_len), fill_value=pad_val, dtype=field_type) +# for i, content_i in enumerate(content): +# tensor[i, :len(content_i)] = content_i.clone().detach() +# elif field_dim == 2: +# max_len = max(map(len, content)) +# max_word_len = max([max([len(content_ii) for content_ii in content_i]) for +# content_i in content]) +# tensor = paddle.full((len(content), max_len, max_word_len), fill_value=pad_val, +# dtype=field_type) +# for i, content_i in enumerate(content): +# for j, content_ii in enumerate(content_i): +# tensor[i, j, :len(content_ii)] = content_ii.clone().detach() +# else: +# shapes = set([np.shape(content_i) for content_i in content]) +# if len(shapes) > 1: +# raise RuntimeError( +# f"Field:{field_name} has 3 dimensions, every sample should have the same shape.") +# shape = shapes.pop() +# if len(shape) == 3: +# tensor = paddle.full([len(content)] + list(shape), fill_value=pad_val, +# dtype=field_type) +# for i, content_i in enumerate(content): +# tensor[i] = content_i.clone().detach().to(field_type) +# else: +# raise RuntimeError( +# f"Field:{field_name} has 3 dimensions, every sample should have the same shape.") +# return tensor +# +# else: +# return np.array(content) # 不进行任何操作 +# else: +# return np.array(content) diff --git a/fastNLP/core/collators/padders/get_padder.py b/fastNLP/core/collators/padders/get_padder.py index 051a0ffc..d6c7f40c 100644 --- a/fastNLP/core/collators/padders/get_padder.py +++ b/fastNLP/core/collators/padders/get_padder.py @@ -27,7 +27,7 @@ def get_padder(batch_field:Sequence[Any], pad_val, dtype, backend, field_name)-> :param field_name: 方便报错的。 :return: """ - logger.debug(f"The content in the field:`{field_name}` is:\n", str(batch_field)) + logger.debug(f"The content in the field:`{field_name}` is:\n" + str(batch_field)) if pad_val is None: logger.debug(f"The pad_val for field:{field_name} is None, not padding this field.") return NullPadder() diff --git a/fastNLP/core/collators/padders/paddle_padder.py b/fastNLP/core/collators/padders/paddle_padder.py new file mode 100644 index 00000000..83784cfe --- /dev/null +++ b/fastNLP/core/collators/padders/paddle_padder.py @@ -0,0 +1,174 @@ + +from inspect import isclass +import numpy as np + +from fastNLP.envs.imports import _NEED_IMPORT_PADDLE + +if _NEED_IMPORT_PADDLE: + import paddle + numpy_to_paddle_dtype_dict = { + np.bool_: 'bool', + np.uint8: 'uint8', + np.int8: "int8", + np.int16: "int16", + np.int32: "int32", + np.int64: "int64", + np.float16: "float16", + np.float32: 'float32', + np.float64: 'float32', # 这里都统一为到 float32 吧,这是由于 numpy 大部分时候都默认 float64 了 + np.complex64: 'complex64', + np.complex128: "complex128" + } + number_to_paddle_dtype_dict = { + float: 'float32', # 因为 paddle.tensor([1], dtype=float)是paddle.float64 + int: 'int64', + bool: 'bool' + } + +from .padder import Padder +from .utils import is_number_or_numpy_number, is_number, is_numpy_number_dtype, get_shape, is_numpy_generic_class +from .exceptions import * + + +def is_paddle_tensor(dtype): + if not isclass(dtype) and isinstance(dtype, paddle.dtype): + return True + + return False + + +def is_paddle_dtype_str(dtype): + try: + if isinstance(dtype, str) and dtype in {'bool', 'float16', 'uint16', 'float32', 'float64', 'int8', + 'int16', 'int32', 'int64', 'uint8', 'complex64', 'complex128', + u'bool', u'float16', u'uint16', u'float32', u'float64', u'int8', + u'int16', u'int32', u'int64', u'uint8', u'complex64', + u'complex128'}: + return True + except: + pass + return False + + + +def _get_dtype(ele_dtype, dtype, class_name): + if not (is_number_or_numpy_number(ele_dtype) or is_paddle_tensor(ele_dtype) or is_paddle_dtype_str(ele_dtype)): + raise EleDtypeUnsupportedError(f"`{class_name}` only supports padding python numbers " + f"or numpy numbers or paddle.Tensor but get `{ele_dtype}`.") + + if dtype is not None: + if not (is_paddle_tensor(dtype) or is_number(dtype) or is_paddle_dtype_str(dtype)): + raise DtypeUnsupportedError(f"The dtype of `{class_name}` only supports python numbers " + f"or paddle.dtype but get `{dtype}`.") + dtype = number_to_paddle_dtype_dict.get(dtype, dtype) + else: + if (is_number(ele_dtype) or is_paddle_tensor(ele_dtype)): + ele_dtype = number_to_paddle_dtype_dict.get(ele_dtype, ele_dtype) + dtype = ele_dtype + elif is_numpy_number_dtype(ele_dtype): # 存在一个转换的问题了 + dtype = numpy_to_paddle_dtype_dict.get(ele_dtype.type) + elif is_numpy_generic_class(ele_dtype): + dtype = numpy_to_paddle_dtype_dict.get(ele_dtype) + else: + dtype == ele_dtype + + return dtype + + +class paddleNumberPadder(Padder): + def __init__(self, ele_dtype, pad_val=0, dtype=None): + # 仅当 ele_dtype 是 python number/ numpy number 或者 tensor + dtype = _get_dtype(ele_dtype, dtype, class_name=self.__class__.__name__) + super().__init__(pad_val=pad_val, dtype=dtype) + + @staticmethod + def pad(batch_field, pad_val, dtype): + return paddle.to_tensor(batch_field, dtype=dtype) + + +class paddleSequencePadder(Padder): + def __init__(self, ele_dtype, pad_val=0, dtype=None): + dtype = _get_dtype(ele_dtype, dtype, class_name=self.__class__.__name__) + super().__init__(pad_val=pad_val, dtype=dtype) + + @staticmethod + def pad(batch_field, pad_val, dtype): + tensor = get_padded_paddle_tensor(batch_field, dtype=dtype, pad_val=pad_val) + return tensor + + +class paddleTensorPadder(Padder): + def __init__(self, ele_dtype, pad_val=0, dtype=None): + """ + 目前仅支持 [paddle.tensor([3, 2], paddle.tensor([1])] 类似的 + + :param ele_dtype: + :param pad_val: + :param dtype: + """ + dtype = _get_dtype(ele_dtype, dtype, class_name=self.__class__.__name__) + super().__init__(pad_val=pad_val, dtype=dtype) + + @staticmethod + def pad(batch_field, pad_val, dtype): + shapes = [field.shape for field in batch_field] + max_shape = [len(batch_field)] + [max(*_) for _ in zip(*shapes)] + if isinstance(dtype, np.dtype): + print(dtype) + tensor = paddle.full(max_shape, fill_value=pad_val, dtype=dtype) + for i, field in enumerate(batch_field): + slices = (i, ) + tuple(slice(0, s) for s in shapes[i]) + if isinstance(field, np.ndarray): + field = paddle.to_tensor(field) + tensor[slices] = field + return tensor + + +def fill_tensor(batch_field, padded_batch, dtype): + """ + 将 batch_field 中的值填入到 tensor 中。 + + :param batch_field: 需要填充进入 array 中的内容 + :param padded_batch: 待填充的 tensor + :param dtype: 数据的类别 + + :return: + """ + if padded_batch.ndim == 2: + for i, content_i in enumerate(batch_field): + padded_batch[i, :len(content_i)] = paddle.Tensor(content_i, dtype=dtype) + elif padded_batch.ndim == 3: + for i, content_i in enumerate(batch_field): + for j, content_ii in enumerate(content_i): + padded_batch[i, j, :len(content_ii)] = paddle.Tensor(content_ii, dtype=dtype) + elif padded_batch.ndim == 4: + try: # 应该是图像,所以直接应该就 ok 了。 + padded_batch = np.array(batch_field) + except: + for i, content_i in enumerate(batch_field): + for j, content_ii in enumerate(content_i): + for k, content_iii in enumerate(content_ii): + padded_batch[i, j, k, :len(content_iii)] = paddle.Tensor(content_iii, dtype=dtype) + elif padded_batch.ndim == 1: + padded_batch[:] = paddle.Tensor(batch_field, dtype=dtype) + else: + raise RuntimeError("fastNLP does not support padding for more than 3 dimensions. If you need this, please " + "report.") + return padded_batch + + +def get_padded_paddle_tensor(batch_field, dtype=None, pad_val=0): + """ + 例如: + [[1,2], [3]] -> paddle.LongTensor([[1, 2], [3, 0]]) + + :param batch_field: 需要 pad 的对象。需要保证应该是可以进行 pad 的。支持 1d(多为句子长度)/2d(多为文本序列)/3d(多为字符序列) + /4d(多为图片)。 + :param dtype: 目标类别是什么 + :param pad_val: pad 的 value + :return: + """ + shapes = get_shape(batch_field) + tensor = paddle.full(shapes, dtype=dtype, fill_value=pad_val) + tensor = fill_tensor(batch_field, tensor, dtype=dtype) + return tensor diff --git a/fastNLP/core/dataloaders/jittor_dataloader/fdl.py b/fastNLP/core/dataloaders/jittor_dataloader/fdl.py index 2cf85fd8..3e9cf17a 100644 --- a/fastNLP/core/dataloaders/jittor_dataloader/fdl.py +++ b/fastNLP/core/dataloaders/jittor_dataloader/fdl.py @@ -3,16 +3,17 @@ __all__ = [ 'prepare_jittor_dataloader' ] -from typing import Callable, Optional, List +from typing import Callable, Optional, List, Union from fastNLP.envs.imports import _NEED_IMPORT_JITTOR + if _NEED_IMPORT_JITTOR: from jittor.dataset.utils import collate_batch from jittor.dataset import Dataset else: from fastNLP.core.dataset import DataSet as Dataset from fastNLP.core.utils.jittor_utils import jittor_collate_wraps -from fastNLP.core.collators import AutoCollator +from fastNLP.core.collators import Collator from fastNLP.core.utils.utils import indice_collate_wrapper from fastNLP.core.dataset import DataSet as FDataSet @@ -48,7 +49,7 @@ class JittorDataLoader: def __init__(self, dataset, batch_size: int = 16, shuffle: bool = False, drop_last: bool = False, num_workers: int = 0, buffer_size: int = 512 * 1024 * 1024, stop_grad: bool = True, keep_numpy_array: bool = False, endless: bool = False, - collate_fn: Callable = None) -> None: + collate_fn: Union[None, str, Callable] = "auto") -> None: """ :param dataset: 实现__getitem__和__len__的dataset @@ -66,11 +67,20 @@ class JittorDataLoader: # TODO 支持fastnlp dataset # TODO 验证支持replacesampler (以后完成) # 是否为 jittor 类型的 dataset - - if isinstance(dataset, FDataSet): - collator = dataset.get_collator().set_as_numpy(as_numpy=True) + if isinstance(collate_fn, str): + if collate_fn == "auto": + if isinstance(dataset, FDataSet): + self._collate_fn = dataset.collator + self._collate_fn.set_backend(backend="jittor") + else: + self._collate_fn = Collator(backend="jittor") + else: + raise ValueError(f"collate_fn: {collate_fn} must be 'auto'") + elif isinstance(collate_fn, Callable): + if collate_fn is not collate_batch: + self._collate_fn = collate_fn else: - collator = None + self._collate_fn = collate_batch self.dataset = _JittorDataset(dataset) @@ -80,17 +90,13 @@ class JittorDataLoader: if isinstance(self.dataset.dataset, Dataset): self.dataset.dataset.set_attrs(batch_size=1) # 用户提供了 collate_fn,则会自动代替 jittor 提供 collate_batch 函数 - self.collate_fn = collate_fn - if self.collate_fn is None: - self.collate_fn = collate_batch - self.auto_collator = collator - self.cur_batch_indices = None + # self._collate_fn = _collate_fn def __iter__(self): # TODO 第一次迭代后不能设置collate_fn,设置是无效的 + self.collate_fn = self._collate_fn if self.cur_batch_indices is None: - self.dataset.set_attrs(collate_batch=indice_collate_wrapper(jittor_collate_wraps(self.collate_fn, - self.auto_collator))) + self.dataset.set_attrs(collate_batch=indice_collate_wrapper(self.collate_fn)) for indices, data in self.dataset.__iter__(): self.cur_batch_indices = indices yield data @@ -100,30 +106,48 @@ class JittorDataLoader: return len(self.dataset) // self.dataset.batch_size return (len(self.dataset) - 1) // self.dataset.batch_size + 1 - def set_pad_val(self, *field_names, val: Optional[int] = 0) -> None: + def set_pad(self, field_name: Union[str, tuple], pad_val: Union[int, float, None] = 0, dtype=None, backend=None, + pad_fn: Callable = None) -> "JittorDataLoader": """ - 设置每个field_name的padding值,默认为0,只有当autocollate存在时该方法有效, 若没有则会添加auto_collator函数 - 当val=None时,意味着给定的field_names都不需要尝试padding - - :param field_names: - :param val: padding值,默认为0 - :return: + 如果需要对某个 field 的内容进行特殊的调整,请使用这个函数。 + + :param field_name: 需要调整的 field 的名称。如果 Dataset 的 __getitem__ 方法返回的是 dict 类型的,则可以直接使用对应的 + field 的 key 来表示,如果是 nested 的 dict,可以使用元组表示多层次的 key,例如 {'a': {'b': 1}} 中的使用 ('a', 'b'); + 如果 __getitem__ 返回的是 Sequence 类型的,则可以使用 '_0', '_1' 表示序列中第 0 或 1 个元素。如果该 field 在数据中没 + 有找到,则报错;如果 __getitem__ 返回的是就是整体内容,请使用 "_single" 。 + :param pad_val: 这个 field 的默认 pad 值。如果设置为 None,则表示该 field 不需要 pad , fastNLP 默认只会对可以 pad 的 + field 进行 pad,所以如果对应 field 本身就不是可以 pad 的形式,可以不需要主动设置为 None 。 + :param dtype: 对于需要 pad 的 field ,该 field 的数据 dtype 应该是什么。 + :param backend: 可选[None, 'numpy', 'torch', 'paddle', 'jittor'],分别代表,输出为 list, numpy.ndarray, torch.Tensor, + paddle.Tensor, jittor.Var 类型。若 pad_val 为 None ,该值只能为 None 或 numpy 。 + :param pad_fn: 指定当前 field 的 pad 函数,传入该函数则 pad_val, dtype, backend 等参数失效。pad_fn 的输入为当前 field 的 + batch 形式。 Collator 将自动 unbatch 数据,然后将各个 field 组成各自的 batch 。pad_func 的输入即为 field 的 batch + 形式,输出将被直接作为结果输出。 + :return: 返回 Collator 自身 """ - if self.auto_collator is None: - self.auto_collator = AutoCollator(as_numpy=True) - self.auto_collator.set_pad_val(*field_names, val=val) + if isinstance(self._collate_fn, Collator): + self._collate_fn.set_pad(field_name=field_name, pad_val=pad_val, dtype=dtype, pad_fn=pad_fn, + backend=backend) + return self + else: + raise ValueError(f"collate_fn is not fastnlp collator") - def set_input(self, *field_names) -> None: + def set_ignore(self, *field_names) -> "JittorDataLoader": """ - 被设置为inputs的field_names,会输入到AutoCollator中,未被设置默认过滤掉 - - :param field_names: - :return: + 如果有的内容不希望输出,可以在此处进行设置,被设置的 field 将在 batch 的输出中被忽略。 + Ex:: + collator.set_ignore('field1', 'field2') + + :param field_names: 需要忽略的 field 的名称。如果 Dataset 的 __getitem__ 方法返回的是 dict 类型的,则可以直接使用对应的 + field 的 key 来表示,如果是 nested 的 dict,可以使用元组来表示,例如 {'a': {'b': 1}} 中的使用 ('a', 'b'); 如果 + __getitem__ 返回的是 Sequence 类型的,则可以使用 '_0', '_1' 表示序列中第 0 或 1 个元素。 + :return: 返回 Collator 自身 """ - if self.auto_collator is None: - self.auto_collator = AutoCollator(as_numpy=True) - - self.auto_collator.set_input(*field_names) + if isinstance(self._collate_fn, Collator): + self._collate_fn.set_ignore(*field_names) + return self + else: + raise ValueError(f"collate_fn is not fastnlp collator") def get_batch_indices(self) -> List[int]: """ diff --git a/fastNLP/core/dataloaders/paddle_dataloader/fdl.py b/fastNLP/core/dataloaders/paddle_dataloader/fdl.py index b54b9cff..b4b675c4 100644 --- a/fastNLP/core/dataloaders/paddle_dataloader/fdl.py +++ b/fastNLP/core/dataloaders/paddle_dataloader/fdl.py @@ -6,6 +6,7 @@ __all__ = [ from typing import Callable, List, Optional, Union, Dict, Sequence from fastNLP.envs.imports import _NEED_IMPORT_PADDLE + if _NEED_IMPORT_PADDLE: from paddle.io import DataLoader, Dataset from paddle.fluid.dataloader.collate import default_collate_fn @@ -13,7 +14,7 @@ else: from fastNLP.core.utils.dummy_class import DummyClass as Dataset from fastNLP.core.utils.dummy_class import DummyClass as DataLoader -from fastNLP.core.collators.collator import _MultiCollator +from fastNLP.core.collators.collator import Collator from fastNLP.core.utils.utils import indice_collate_wrapper from fastNLP.core.dataset import DataSet as FDataSet @@ -45,7 +46,7 @@ class PaddleDataLoader(DataLoader): def __init__(self, dataset, feed_list=None, places=None, return_list: bool = True, batch_sampler=None, batch_size: int = 1, shuffle: bool = False, - drop_last: bool = False, collate_fn: Callable = None, + drop_last: bool = False, collate_fn: Union[str, Callable, None] = 'auto', num_workers: int = 0, use_buffer_reader: bool = True, use_shared_memory: bool = True, timeout: int = 0, worker_init_fn: Callable = None, persistent_workers=False) -> None: @@ -60,13 +61,23 @@ class PaddleDataLoader(DataLoader): use_buffer_reader=use_buffer_reader, use_shared_memory=use_shared_memory, timeout=timeout, worker_init_fn=worker_init_fn, persistent_workers=persistent_workers) - if isinstance(dataset.dataset, FDataSet): - self._collate_fn = dataset.dataset.get_collator() - self._collate_fn.set_as_numpy(as_numpy=True) - if collate_fn is not None: - self._collate_fn.add_collator(collate_fn) + if isinstance(collate_fn, str): + if collate_fn == 'auto': + if isinstance(dataset.dataset, FDataSet): + self._collate_fn = dataset.dataset.collator + self._collate_fn.set_backend(backend="paddle") + # if collate_fn is not None: + # self._collate_fn.add_collator(collate_fn) + else: + self._collate_fn = Collator(backend="paddle") + + else: + raise ValueError(f"collate_fn: {collate_fn} must be 'auto'") + elif isinstance(collate_fn, Callable): + if collate_fn is not default_collate_fn: + self._collate_fn = collate_fn else: - self._collate_fn = _MultiCollator(collate_fn) + self._collate_fn = default_collate_fn # _collate_fn = _MultiCollator(AutoCollator(as_numpy=True)) # if collate_fn is not None: # _collate_fn.add_collator(collate_fn) @@ -75,64 +86,56 @@ class PaddleDataLoader(DataLoader): def __iter__(self): # 如果没有auto_collator 也没有自定义collate_fn, 那么此时采用dataloader自带的collate_fn, 将数据打包即可。 - if len(self._collate_fn.get_collators()) == 0: - self._collate_fn.add_collator(default_collate_fn) - # self._collate_fn = default_collate_fn + # if len(self._collate_fn.get_collators()) == 0: + # self._collate_fn.add_collator(default_collate_fn) + # self._collate_fn = default_collate_fn self.collate_fn = indice_collate_wrapper(self._collate_fn) for indices, data in super().__iter__(): self.cur_batch_indices = indices yield data - def __getattr__(self, item): - """ - 为FDataLoader提供dataset的方法和属性,实现该方法后,用户可以在FDataLoader实例化后使用apply等dataset的方法 - - :param item: - :return: - """ - try: - return self.dataset.__getattr__(item) - except AttributeError as e: - raise e - - def set_pad_val(self, *field_names, val: Optional[int] = 0) -> None: - """ - 设置每个field_name的padding值,默认为0,只有当autocollate存在时该方法有效, 若没有则会添加auto_collator函数 - 当val=None时,意味着给定的field_names都不需要尝试padding - - :param field_names: - :param val: padding值,默认为0 - :return: - """ - for field_name in field_names: - self._collate_fn.set_pad_val(field_name, val=val) - - def set_input(self, *field_names) -> None: - """ - 被设置为inputs的field_names,会输入到AutoCollator中,未被设置默认过滤掉 - - :param field_names: - :return: - """ - self._collate_fn.set_input(*field_names) - - def set_collator(self, collator: Callable) -> None: + def set_pad(self, field_name: Union[str, tuple], pad_val: Union[int, float, None] = 0, dtype=None, backend=None, + pad_fn: Callable = None) -> "PaddleDataLoader": """ - 设置collate_fn函数,调用该函数后覆盖当前所有的collate_fn,包括Auto_Collate - - :param collator: 用户自定义的Callable函数 - :return: + 如果需要对某个 field 的内容进行特殊的调整,请使用这个函数。 + + :param field_name: 需要调整的 field 的名称。如果 Dataset 的 __getitem__ 方法返回的是 dict 类型的,则可以直接使用对应的 + field 的 key 来表示,如果是 nested 的 dict,可以使用元组表示多层次的 key,例如 {'a': {'b': 1}} 中的使用 ('a', 'b'); + 如果 __getitem__ 返回的是 Sequence 类型的,则可以使用 '_0', '_1' 表示序列中第 0 或 1 个元素。如果该 field 在数据中没 + 有找到,则报错;如果 __getitem__ 返回的是就是整体内容,请使用 "_single" 。 + :param pad_val: 这个 field 的默认 pad 值。如果设置为 None,则表示该 field 不需要 pad , fastNLP 默认只会对可以 pad 的 + field 进行 pad,所以如果对应 field 本身就不是可以 pad 的形式,可以不需要主动设置为 None 。 + :param dtype: 对于需要 pad 的 field ,该 field 的数据 dtype 应该是什么。 + :param backend: 可选[None, 'numpy', 'torch', 'paddle', 'jittor'],分别代表,输出为 list, numpy.ndarray, torch.Tensor, + paddle.Tensor, jittor.Var 类型。若 pad_val 为 None ,该值只能为 None 或 numpy 。 + :param pad_fn: 指定当前 field 的 pad 函数,传入该函数则 pad_val, dtype, backend 等参数失效。pad_fn 的输入为当前 field 的 + batch 形式。 Collator 将自动 unbatch 数据,然后将各个 field 组成各自的 batch 。pad_func 的输入即为 field 的 batch + 形式,输出将被直接作为结果输出。 + :return: 返回 Collator 自身 """ - self._collate_fn = _MultiCollator(collator) + if isinstance(self._collate_fn, Collator): + self._collate_fn.set_pad(field_name=field_name, pad_val=pad_val, dtype=dtype, pad_fn=pad_fn, + backend=backend) + return self + else: + raise ValueError(f"collate_fn is not fastnlp collator") - def add_collator(self, collator) -> None: + def set_ignore(self, *field_names) -> "PaddleDataLoader": """ - 添加collate_fn函数,调用该函数后会将其添加到已有的collate_fn后面 - - :param collator: - :return: + 如果有的内容不希望输出,可以在此处进行设置,被设置的 field 将在 batch 的输出中被忽略。 + Ex:: + collator.set_ignore('field1', 'field2') + + :param field_names: 需要忽略的 field 的名称。如果 Dataset 的 __getitem__ 方法返回的是 dict 类型的,则可以直接使用对应的 + field 的 key 来表示,如果是 nested 的 dict,可以使用元组来表示,例如 {'a': {'b': 1}} 中的使用 ('a', 'b'); 如果 + __getitem__ 返回的是 Sequence 类型的,则可以使用 '_0', '_1' 表示序列中第 0 或 1 个元素。 + :return: 返回 Collator 自身 """ - self._collate_fn.add_collator(collator) + if isinstance(self._collate_fn, Collator): + self._collate_fn.set_ignore(*field_names) + return self + else: + raise ValueError(f"collate_fn is not fastnlp collator") def get_batch_indices(self) -> List[int]: """ @@ -144,20 +147,21 @@ class PaddleDataLoader(DataLoader): def prepare_paddle_dataloader(ds_or_db, feed_list=None, places=None, - return_list: bool = True, batch_sampler=None, - train_batch_size: int = 1, shuffle: bool = False, - drop_last: bool = False, collate_fn: Callable = None, - num_workers: int = 0, use_buffer_reader: bool = True, - use_shared_memory: bool = True, timeout: int = 0, - worker_init_fn: Callable = None, persistent_workers=False, - non_train_batch_size: int = 16, - input_fields: Union[List[str], str] = None)\ - -> Union[Sequence[PaddleDataLoader], Dict[str, PaddleDataLoader], PaddleDataLoader]: - if isinstance(input_fields, str): - input_fields = [input_fields] - + return_list: bool = True, batch_sampler=None, + train_batch_size: int = 1, shuffle: bool = False, + drop_last: bool = False, collate_fn: Union[Callable, str, None] = None, + num_workers: int = 0, use_buffer_reader: bool = True, + use_shared_memory: bool = True, timeout: int = 0, + worker_init_fn: Callable = None, persistent_workers=False, + non_train_batch_size: int = 16) \ + -> Union[Sequence[PaddleDataLoader], Dict[str, PaddleDataLoader], PaddleDataLoader]: if isinstance(ds_or_db, Dataset): - ... + dl = PaddleDataLoader(ds_or_db, feed_list=feed_list, places=places, return_list=return_list, + batch_sampler=batch_sampler, batch_size=train_batch_size, shuffle=shuffle, + drop_last=drop_last, collate_fn=collate_fn, num_workers=num_workers, + use_shared_memory=use_shared_memory, use_buffer_reader=use_buffer_reader, + timeout=timeout, worker_init_fn=worker_init_fn, persistent_workers=persistent_workers) + return dl elif isinstance(ds_or_db, Sequence): ds_seq = [] for ds in ds_or_db: @@ -166,7 +170,6 @@ def prepare_paddle_dataloader(ds_or_db, feed_list=None, places=None, drop_last=drop_last, collate_fn=collate_fn, num_workers=num_workers, use_shared_memory=use_shared_memory, use_buffer_reader=use_buffer_reader, timeout=timeout, worker_init_fn=worker_init_fn, persistent_workers=persistent_workers) - dl.set_input(*input_fields) ds_seq.append(dl) return ds_seq @@ -178,14 +181,15 @@ def prepare_paddle_dataloader(ds_or_db, feed_list=None, places=None, batch_sampler=batch_sampler, batch_size=train_batch_size, shuffle=shuffle, drop_last=drop_last, collate_fn=collate_fn, num_workers=num_workers, use_shared_memory=use_shared_memory, use_buffer_reader=use_buffer_reader, - timeout=timeout, worker_init_fn=worker_init_fn, persistent_workers=persistent_workers) + timeout=timeout, worker_init_fn=worker_init_fn, + persistent_workers=persistent_workers) else: dl = PaddleDataLoader(ds, feed_list=feed_list, places=places, return_list=return_list, batch_sampler=batch_sampler, batch_size=non_train_batch_size, shuffle=shuffle, drop_last=drop_last, collate_fn=collate_fn, num_workers=num_workers, use_shared_memory=use_shared_memory, use_buffer_reader=use_buffer_reader, - timeout=timeout, worker_init_fn=worker_init_fn, persistent_workers=persistent_workers) - dl.set_input(*input_fields) + timeout=timeout, worker_init_fn=worker_init_fn, + persistent_workers=persistent_workers) ds_dict[name] = dl return ds_dict else: diff --git a/fastNLP/core/dataloaders/torch_dataloader/fdl.py b/fastNLP/core/dataloaders/torch_dataloader/fdl.py index 02721aaf..689d24b1 100644 --- a/fastNLP/core/dataloaders/torch_dataloader/fdl.py +++ b/fastNLP/core/dataloaders/torch_dataloader/fdl.py @@ -6,8 +6,7 @@ __all__ = [ from typing import Optional, Callable, Sequence, List, Union, Tuple, Dict, Mapping from fastNLP.core.dataset import DataSet -from fastNLP.core.collators import AutoCollator -from fastNLP.core.collators.collator import _MultiCollator +from fastNLP.core.collators import Collator from fastNLP.core.utils.utils import indice_collate_wrapper from fastNLP.io.data_bundle import DataBundle from fastNLP.envs.imports import _NEED_IMPORT_TORCH @@ -51,11 +50,11 @@ class TorchDataLoader(DataLoader): def __init__(self, dataset, batch_size: int = 1, shuffle: bool = False, sampler: Union["Sampler[int]", ReproducibleSampler, UnrepeatedSampler] = None, batch_sampler: Union["Sampler[Sequence[int]]", ReproducibleBatchSampler] = None, - num_workers: int = 0, collate_fn: Optional[Callable] = None, + num_workers: int = 0, collate_fn: Union[Callable, str, None] = 'auto', pin_memory: bool = False, drop_last: bool = False, timeout: float = 0, worker_init_fn: Optional[Callable] = None, multiprocessing_context=None, generator=None, prefetch_factor: int = 2, - persistent_workers: bool = False, as_numpy: bool = False, **kwargs) -> None: + persistent_workers: bool = False, **kwargs) -> None: """ :param dataset: 实现了__getitem__和__len__的数据容器 @@ -64,7 +63,7 @@ class TorchDataLoader(DataLoader): :param sampler: sampler实例化对象 :param batch_sampler: batch_sampler实例化对象,其能迭代返回一个list的index数据 :param num_workers: 进程的数量,当num_worker=0时不开启多进程 - :param collate_fn: 对取得到的数据进行打包的callable函数 + :param collate_fn: [None, 'auto', callable] 对取得到的数据进行打包的callable函数 :param pin_memory: :param drop_last: 是否去掉最后一个不符合batch_size的数据 :param timeout: @@ -73,7 +72,6 @@ class TorchDataLoader(DataLoader): :param generator: :param prefetch_factor: :param persistent_workers: - :param as_numpy: 返回数据是否设置为numpy类型,否则为torch.tensor类型 """ if not isinstance(dataset, _FDataSet): dataset = _FDataSet(dataset) @@ -84,91 +82,76 @@ class TorchDataLoader(DataLoader): multiprocessing_context=multiprocessing_context, generator=generator, prefetch_factor=prefetch_factor, persistent_workers=persistent_workers) - if isinstance(dataset.dataset, DataSet): # 使用了 fastnlp dataset - self._collate_fn = dataset.dataset.get_collator() - self._collate_fn.set_as_numpy(as_numpy) - if collate_fn is not None and collate_fn is not default_collate: - # 防止ddp重新初始化时候将torch dataloader的默认collate加进来 - self._collate_fn.add_collator(collate_fn) + if isinstance(collate_fn, str): + if collate_fn == 'auto': + if isinstance(dataset.dataset, DataSet): # 使用了 fastnlp dataset + self._collate_fn = dataset.dataset.collator + self._collate_fn.set_backend(backend="torch") + # if collate_fn is not None and collate_fn is not default_collate: + # # 防止ddp重新初始化时候将torch dataloader的默认collate加进来 + # self._collate_fn.add_collator(collate_fn) + else: + self._collate_fn = Collator(backend='torch') + else: + raise ValueError(f"collate_fn: {collate_fn} must be 'auto'") + elif isinstance(collate_fn, Callable): + if collate_fn is not default_collate: + self._collate_fn = collate_fn else: - self._collate_fn = _MultiCollator(collate_fn) + self._collate_fn = default_collate self.cur_indices_batch = None - self.as_numpy = as_numpy - - def __getattr__(self, item): - """ - 为FDataLoader提供dataset的方法和属性,实现该方法后,用户可以在FDataLoader实例化后使用apply等dataset的方法 - - :param item: - :return: - """ - try: - return self.dataset.__getattr__(item) - except AttributeError as e: - raise e def __iter__(self): # 如果没有auto_collator 也没有自定义collate_fn, 那么此时采用dataloader自带的collate_fn, 将数据打包即可。 - if len(self._collate_fn.get_collators()) == 0: - self._collate_fn.add_collator(self.collate_fn) + # if len(self._collate_fn.get_collators()) == 0: + # self._collate_fn.add_collator(self.collate_fn) self.collate_fn = indice_collate_wrapper(self._collate_fn) for indices, data in super().__iter__(): self.cur_batch_indices = indices yield data - def set_pad_val(self, *field_names, val: Optional[int] = 0) -> None: + def set_pad(self, field_name:Union[str, tuple], pad_val:Union[int, float, None]=0, dtype=None, backend=None, + pad_fn:Callable=None) -> "TorchDataLoader": """ - 设置每个field_name的padding值,默认为0,只有当autocollate存在时该方法有效, 若没有则会添加auto_collator函数 - 当val=None时,意味着给定的field_names都不需要尝试padding - - :param field_names: - :param val: padding值,默认为0 - :return: - """ - flag = False - for collator in self._collate_fn.get_collators(): - if isinstance(collator, AutoCollator): - flag = True - break - if flag is False: - self._collate_fn.add_collator(AutoCollator(self.as_numpy)) - for field_name in field_names: - self._collate_fn.set_pad_val(field_name, val=val) - - def set_input(self, *field_names) -> None: + 如果需要对某个 field 的内容进行特殊的调整,请使用这个函数。 + + :param field_name: 需要调整的 field 的名称。如果 Dataset 的 __getitem__ 方法返回的是 dict 类型的,则可以直接使用对应的 + field 的 key 来表示,如果是 nested 的 dict,可以使用元组表示多层次的 key,例如 {'a': {'b': 1}} 中的使用 ('a', 'b'); + 如果 __getitem__ 返回的是 Sequence 类型的,则可以使用 '_0', '_1' 表示序列中第 0 或 1 个元素。如果该 field 在数据中没 + 有找到,则报错;如果 __getitem__ 返回的是就是整体内容,请使用 "_single" 。 + :param pad_val: 这个 field 的默认 pad 值。如果设置为 None,则表示该 field 不需要 pad , fastNLP 默认只会对可以 pad 的 + field 进行 pad,所以如果对应 field 本身就不是可以 pad 的形式,可以不需要主动设置为 None 。 + :param dtype: 对于需要 pad 的 field ,该 field 的数据 dtype 应该是什么。 + :param backend: 可选[None, 'numpy', 'torch', 'paddle', 'jittor'],分别代表,输出为 list, numpy.ndarray, torch.Tensor, + paddle.Tensor, jittor.Var 类型。若 pad_val 为 None ,该值只能为 None 或 numpy 。 + :param pad_fn: 指定当前 field 的 pad 函数,传入该函数则 pad_val, dtype, backend 等参数失效。pad_fn 的输入为当前 field 的 + batch 形式。 Collator 将自动 unbatch 数据,然后将各个 field 组成各自的 batch 。pad_func 的输入即为 field 的 batch + 形式,输出将被直接作为结果输出。 + :return: 返回 Collator 自身 """ - 被设置为inputs的field_names,会输入到AutoCollator中,未被设置默认过滤掉 - - :param field_names: - :return: - """ - flag = False - for collator in self._collate_fn.get_collators(): - if isinstance(collator, AutoCollator): - flag = True - break - if flag is False: - self._collate_fn.add_collator(AutoCollator(self.as_numpy)) - self._collate_fn.set_input(*field_names) - - def set_collator(self, collator: Callable) -> None: - """ - 设置collate_fn函数,调用该函数后覆盖当前所有的collate_fn,包括Auto_Collate - - :param collator: 用户自定义的Callable函数 - :return: - """ - self._collate_fn = _MultiCollator(collator) + if isinstance(self._collate_fn, Collator): + self._collate_fn.set_pad(field_name=field_name, pad_val=pad_val, dtype=dtype, pad_fn=pad_fn, backend=backend) + return self + else: + raise ValueError(f"collate_fn is not fastnlp collator") - def add_collator(self, collator) -> None: + def set_ignore(self, *field_names) -> "TorchDataLoader": """ - 添加collate_fn函数,调用该函数后会将其添加到已有的collate_fn后面 - - :param collator: - :return: + 如果有的内容不希望输出,可以在此处进行设置,被设置的 field 将在 batch 的输出中被忽略。 + Ex:: + collator.set_ignore('field1', 'field2') + + :param field_names: 需要忽略的 field 的名称。如果 Dataset 的 __getitem__ 方法返回的是 dict 类型的,则可以直接使用对应的 + field 的 key 来表示,如果是 nested 的 dict,可以使用元组来表示,例如 {'a': {'b': 1}} 中的使用 ('a', 'b'); 如果 + __getitem__ 返回的是 Sequence 类型的,则可以使用 '_0', '_1' 表示序列中第 0 或 1 个元素。 + :return: 返回 Collator 自身 """ - self._collate_fn.add_collator(collator) + if isinstance(self._collate_fn, Collator): + self._collate_fn.set_ignore(*field_names) + return self + else: + raise ValueError(f"collate_fn is not fastnlp collator") def get_batch_indices(self) -> List[int]: """ @@ -183,13 +166,12 @@ def prepare_torch_dataloader(ds_or_db: Union[DataSet, DataBundle, Sequence[DataS batch_size: int = 1, shuffle: bool = False, sampler: Optional["Sampler[int]"] = None, batch_sampler: Optional["Sampler[Sequence[int]]"] = None, - num_workers: int = 0, collate_fn: Optional[Callable] = None, + num_workers: int = 0, collate_fn: Union[str, Callable, None] = None, pin_memory: bool = False, drop_last: bool = False, timeout: float = 0, worker_init_fn: Optional[Callable] = None, multiprocessing_context=None, generator=None, prefetch_factor: int = 2, persistent_workers: bool = False, non_train_sampler: Optional["Sampler[int]"] = None, - non_train_batch_size: int = 16, as_numpy: bool = False, - input_fields: Union[List, str, None] = None) \ + non_train_batch_size: int = 16) \ -> Union[TorchDataLoader, Dict[str, TorchDataLoader], Sequence[TorchDataLoader]]: """ 传入dataset或者data_bundle后,将其处理返回相对应的FdataLoader实例化对象 @@ -201,7 +183,7 @@ def prepare_torch_dataloader(ds_or_db: Union[DataSet, DataBundle, Sequence[DataS :param sampler: sampler实例化对象 :param batch_sampler: batch_sampler实例化对象,其能迭代返回一个list的index数据 :param num_workers: 进程的数量,当num_worker=0时不开启多进程 - :param collate_fn: 对取得到的数据进行打包的callable函数 + :param collate_fn: ['auto', None, callable]对取得到的数据进行打包的callable函数 :param pin_memory: :param drop_last: 是否去掉最后一个不符合batch_size的数据 :param timeout: @@ -212,11 +194,7 @@ def prepare_torch_dataloader(ds_or_db: Union[DataSet, DataBundle, Sequence[DataS :param persistent_workers: :param non_train_sampler: 非 'train' 数据使用的 Sampler, 以及Sequence的第二个以上的ds使用的 Sampler :param non_train_batch_size: - :param as_numpy: 返回数据是否设置为numpy类型,否则根据情况设置为 torch.tensor 类型。 """ - # TODO dict, sequence情况下需要提供 - if isinstance(input_fields, str): - input_fields = [input_fields] if isinstance(ds_or_db, DataSet): dl = TorchDataLoader(dataset=ds_or_db, batch_size=batch_size, @@ -225,9 +203,7 @@ def prepare_torch_dataloader(ds_or_db: Union[DataSet, DataBundle, Sequence[DataS drop_last=drop_last, timeout=timeout, worker_init_fn=worker_init_fn, multiprocessing_context=multiprocessing_context, generator=generator, prefetch_factor=prefetch_factor, persistent_workers=persistent_workers, - as_numpy=as_numpy) - if input_fields: - dl.set_input(*input_fields) + ) return dl elif isinstance(ds_or_db, DataBundle): @@ -241,7 +217,7 @@ def prepare_torch_dataloader(ds_or_db: Union[DataSet, DataBundle, Sequence[DataS multiprocessing_context=multiprocessing_context, generator=generator, prefetch_factor=prefetch_factor, persistent_workers=persistent_workers, - as_numpy=as_numpy) + ) else: dl_bundle[name] = TorchDataLoader(dataset=ds, batch_size=non_train_batch_size, shuffle=shuffle, sampler=non_train_sampler, @@ -251,9 +227,7 @@ def prepare_torch_dataloader(ds_or_db: Union[DataSet, DataBundle, Sequence[DataS multiprocessing_context=multiprocessing_context, generator=generator, prefetch_factor=prefetch_factor, persistent_workers=persistent_workers, - as_numpy=as_numpy) - if input_fields: - dl_bundle[name].set_input(*input_fields) + ) return dl_bundle elif isinstance(ds_or_db, Sequence): @@ -267,7 +241,7 @@ def prepare_torch_dataloader(ds_or_db: Union[DataSet, DataBundle, Sequence[DataS drop_last=drop_last, timeout=timeout, worker_init_fn=worker_init_fn, multiprocessing_context=multiprocessing_context, generator=generator, prefetch_factor=prefetch_factor, persistent_workers=persistent_workers, - as_numpy=as_numpy) + ) ) else: dl_bundle.append( @@ -277,11 +251,8 @@ def prepare_torch_dataloader(ds_or_db: Union[DataSet, DataBundle, Sequence[DataS drop_last=drop_last, timeout=timeout, worker_init_fn=worker_init_fn, multiprocessing_context=multiprocessing_context, generator=generator, prefetch_factor=prefetch_factor, persistent_workers=persistent_workers, - as_numpy=as_numpy) + ) ) - if input_fields: - for dl in dl_bundle: - dl.set_input(*input_fields) return dl_bundle elif isinstance(ds_or_db, Mapping): @@ -295,7 +266,7 @@ def prepare_torch_dataloader(ds_or_db: Union[DataSet, DataBundle, Sequence[DataS multiprocessing_context=multiprocessing_context, generator=generator, prefetch_factor=prefetch_factor, persistent_workers=persistent_workers, - as_numpy=as_numpy) + ) else: dl_bundle[name] = TorchDataLoader(dataset=ds, batch_size=non_train_batch_size, shuffle=shuffle, sampler=non_train_sampler, @@ -305,10 +276,7 @@ def prepare_torch_dataloader(ds_or_db: Union[DataSet, DataBundle, Sequence[DataS multiprocessing_context=multiprocessing_context, generator=generator, prefetch_factor=prefetch_factor, persistent_workers=persistent_workers, - as_numpy=as_numpy) - - if input_fields: - dl_bundle[name].set_input(*input_fields) + ) return dl_bundle else: diff --git a/fastNLP/core/dataloaders/utils/__init__.py b/fastNLP/core/dataloaders/utils/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/fastNLP/core/dataset/dataset.py b/fastNLP/core/dataset/dataset.py index cd887253..9e65ea95 100644 --- a/fastNLP/core/dataset/dataset.py +++ b/fastNLP/core/dataset/dataset.py @@ -23,9 +23,8 @@ except: from .field import FieldArray from .instance import Instance from fastNLP.core.utils.utils import pretty_table_printer, deprecated -from fastNLP.core.collators import AutoCollator +from fastNLP.core.collators import Collator from fastNLP.core.utils.rich_progress import f_rich_progress -from fastNLP.core.collators.collator import _MultiCollator class ApplyResultException(Exception): @@ -114,7 +113,7 @@ class DataSet: 每个元素应该为具有相同field的 :class:`~fastNLP.Instance` 。 """ self.field_arrays = {} - self.collate_fns: _MultiCollator = _MultiCollator(AutoCollator(as_numpy=False)) + self._collator = Collator(backend="numpy") if data is not None: if isinstance(data, Dict): length_set = set() @@ -181,7 +180,7 @@ class DataSet: dataset = DataSet() for field_name, field in self.field_arrays.items(): dataset.add_field(field_name=field_name, fields=field.content[idx]) - dataset.collate_fns = deepcopy(self.collate_fns) + dataset._collator = deepcopy(self.collator) return dataset elif isinstance(idx, str): if idx not in self: @@ -193,7 +192,7 @@ class DataSet: assert isinstance(i, int), "Only int index allowed." instance = self[i] dataset.append(instance) - dataset.collate_fns = deepcopy(self.collate_fns) + dataset._collator = deepcopy(self.collator) return dataset else: raise KeyError("Unrecognized type {} for idx in __getitem__ method".format(type(idx))) @@ -676,8 +675,8 @@ class DataSet: dev_set.append(self[idx]) for idx in train_indices: train_set.append(self[idx]) - dev_set.collate_fns = deepcopy(self.collate_fns) - train_set.collate_fns = deepcopy(self.collate_fns) + dev_set._collator = deepcopy(self.collator) + train_set._collator = deepcopy(self.collator) return dev_set, train_set @@ -772,63 +771,17 @@ class DataSet: df = self.to_pandas() df.to_csv(path, encoding="utf-8") - def add_collate_fn(self, collate_fn: Callable) -> None: - """ - 添加collate_fn函数,调用该函数后会将其添加到已有的collate_fn后面 - - :param collate_fn: Callable的函数 - :return: - """ - self.collate_fns.add_collator(collate_fn) - - def set_collate_fn(self, collate_fn: Callable) -> None: - """ - 设置collate_fn函数,调用该函数后覆盖当前所有的collate_fn,包括Auto_Collate - - :param collate_fn: - :return: - """ - self.collate_fns = _MultiCollator(collate_fn) - - def set_pad_val(self, *field_names, val: Optional[int] = 0) -> None: - """ - 设置每个field_name的padding值,默认为0,只有当AutoCollator存在时该方法有效 - 当val=None时,意味着给定的field_names都不需要尝试padding - - :param field_names: dataset存在的field_name - :param val: 默认为0。如果为 None ,则为不对 field 进行 padding 。 - :return: - """ - # TODO 不能为空 - for field_name in field_names: - self.collate_fns.set_pad_val(field_name, val=val) - - def set_input(self, *field_names) -> None: - """ - 被设置为inputs的field_names,会输入到AutoCollator中,未被设置默认过滤掉 - - :param field_names: - :return: - """ - # - self.collate_fns.set_input(*field_names) - - def get_collator(self) -> _MultiCollator: - """ - 获取dataset绑定的collate_fn,其中包括auto_collate - - :return: - """ - return self.collate_fns - - @deprecated() - def set_target(self, *field_names) -> None: + def set_ignore(self, *field_names) -> None: """ 被设置为inputs的field_names,会输入到AutoCollator中,未被设置默认过滤掉 :param field_names: :return: """ - self.collate_fns.set_input(*field_names) - + self.collator.set_ignore(*field_names) + @property + def collator(self): + if self._collator is None: + self._collator = Collator() + return self._collator diff --git a/fastNLP/core/utils/jittor_utils.py b/fastNLP/core/utils/jittor_utils.py index 3784f991..89686cff 100644 --- a/fastNLP/core/utils/jittor_utils.py +++ b/fastNLP/core/utils/jittor_utils.py @@ -7,13 +7,13 @@ from collections.abc import Mapping, Callable from functools import wraps from fastNLP.envs.imports import _NEED_IMPORT_JITTOR + if _NEED_IMPORT_JITTOR: import jittor as jt from fastNLP.core.dataset import Instance - def is_jittor_dataset(dataset) -> bool: try: if isinstance(dataset, jt.dataset.Dataset): @@ -32,6 +32,7 @@ def jittor_collate_wraps(func, auto_collator: Callable): :param auto_collator: :return: """ + @wraps(func) def wrapper(batch): if isinstance(batch[0], Instance): diff --git a/tests/core/collators/padders/test_paddle_padder.py b/tests/core/collators/padders/test_paddle_padder.py new file mode 100644 index 00000000..3674cd48 --- /dev/null +++ b/tests/core/collators/padders/test_paddle_padder.py @@ -0,0 +1,107 @@ +import numpy as np +import pytest + +from fastNLP.core.collators.padders.paddle_padder import paddleTensorPadder, paddleSequencePadder, paddleNumberPadder +from fastNLP.core.collators.padders.exceptions import DtypeError +from fastNLP.envs.imports import _NEED_IMPORT_PADDLE + +if _NEED_IMPORT_PADDLE: + import paddle + + +@pytest.mark.paddle +class TestpaddleNumberPadder: + def test_run(self): + padder = paddleNumberPadder(ele_dtype=int, dtype=int, pad_val=-1) + a = [1, 2, 3] + t_a = padder(a) + assert isinstance(t_a, paddle.Tensor) + assert (t_a == paddle.to_tensor(a, dtype='int64')).sum() == 3 + + +@pytest.mark.paddle +class TestpaddleSequencePadder: + def test_run(self): + padder = paddleSequencePadder(ele_dtype=int, dtype=int, pad_val=-1) + a = [[1, 2, 3], [3]] + a = padder(a) + shape = a.shape + assert isinstance(a, paddle.Tensor) + assert tuple(shape) == (2, 3) + b = paddle.to_tensor([[1, 2, 3], [3, -1, -1]], dtype='int64') + assert (a == b).sum().item() == shape[0]*shape[1] + + def test_dtype_check(self): + padder = paddleSequencePadder(ele_dtype=np.zeros(3, dtype=np.int8).dtype, dtype=int, pad_val=-1) + with pytest.raises(DtypeError): + padder = paddleSequencePadder(ele_dtype=str, dtype=int, pad_val=-1) + padder = paddleSequencePadder(ele_dtype='int64', dtype=int, pad_val=-1) + padder = paddleSequencePadder(ele_dtype=np.int8, dtype=None, pad_val=-1) + a = padder([[1], [2, 322]]) + assert (a>67).sum()==0 # 因为int8的范围为-67 - 66 + padder = paddleSequencePadder(ele_dtype=np.zeros(2).dtype, dtype=None, pad_val=-1) + + +@pytest.mark.paddle +class TestpaddleTensorPadder: + def test_run(self): + padder = paddleTensorPadder(ele_dtype=paddle.zeros(3).dtype, dtype=int, pad_val=-1) + a = [paddle.zeros(3), paddle.zeros(2), paddle.zeros(0)] + a = padder(a) + shape = a.shape + assert isinstance(a, paddle.Tensor) + assert tuple(shape) == (3, 3) + b = paddle.to_tensor([[0, 0, 0], [0, 0, -1], [-1, -1, -1]], dtype='int64') + assert (a == b).sum().item() == shape[0]*shape[1] + + a = [paddle.zeros((3, 2)), paddle.zeros((2, 2)), paddle.zeros((1, 2))] + a = padder(a) + shape = a.shape + assert isinstance(a, paddle.Tensor) + assert tuple(shape) == (3, 3, 2) + b = paddle.LongTensor([[[0, 0], [0, 0], [0, 0]], + [[0, 0], [0, 0], [-1, -1]], + [[0, 0], [-1, -1], [-1, -1]]]) + assert (a == b).sum().item() == shape[0]*shape[1]*shape[2] + + a = [paddle.zeros((3, 2)), paddle.zeros((2, 2)), paddle.zeros((1, 1))] + a = padder(a) + shape = a.shape + assert isinstance(a, paddle.Tensor) + assert tuple(shape) == (3, 3, 2) + b = paddle.LongTensor([[[0, 0], [0, 0], [0, 0]], + [[0, 0], [0, 0], [-1, -1]], + [[0, -1], [-1, -1], [-1, -1]]]) + assert (a == b).sum().item() == shape[0]*shape[1]*shape[2] + + padder = paddleTensorPadder(ele_dtype=paddle.zeros(3).dtype, dtype=int, pad_val=-1) + a = [paddle.zeros((3, 2)), paddle.zeros((2, 2)), paddle.zeros((1, 0))] + a = padder(a) + shape = a.shape + assert isinstance(a, paddle.Tensor) + assert tuple(shape) == (3, 3, 2) + b = paddle.LongTensor([[[0, 0], [0, 0], [0, 0]], + [[0, 0], [0, 0], [-1, -1]], + [[-1, -1], [-1, -1], [-1, -1]]]) + assert (a == b).sum().item() == shape[0]*shape[1]*shape[2] + + padder = paddleTensorPadder(ele_dtype=paddle.zeros(3).dtype, dtype=None, pad_val=-1) + a = [np.zeros((3, 2)), np.zeros((2, 2)), np.zeros((1, 0))] + a = padder(a) + shape = a.shape + assert isinstance(a, paddle.Tensor) + assert tuple(shape) == (3, 3, 2) + b = paddle.FloatTensor([[[0, 0], [0, 0], [0, 0]], + [[0, 0], [0, 0], [-1, -1]], + [[-1, -1], [-1, -1], [-1, -1]]]) + assert (a == b).sum().item() == shape[0]*shape[1]*shape[2] + + def test_dtype_check(self): + padder = paddleTensorPadder(ele_dtype=np.zeros(3, dtype=np.int8).dtype, dtype=int, pad_val=-1) + with pytest.raises(DtypeError): + padder = paddleTensorPadder(ele_dtype=str, dtype=int, pad_val=-1) + padder = paddleTensorPadder(ele_dtype=paddle.long, dtype=int, pad_val=-1) + padder = paddleTensorPadder(ele_dtype=int, dtype=paddle.long, pad_val=-1) + + + diff --git a/tests/core/dataloaders/jittor_dataloader/test_fdl.py b/tests/core/dataloaders/jittor_dataloader/test_fdl.py index f2021923..90eae486 100644 --- a/tests/core/dataloaders/jittor_dataloader/test_fdl.py +++ b/tests/core/dataloaders/jittor_dataloader/test_fdl.py @@ -36,8 +36,8 @@ class TestJittor: """ dataset = MyDataset() jtl = JittorDataLoader(dataset, keep_numpy_array=True, batch_size=4) - jtl.set_pad_val('x', 'y') - jtl.set_input('x') + # jtl.set_pad_val('x', 'y') + # jtl.set_input('x') for batch in jtl: print(batch) print(jtl.get_batch_indices()) @@ -50,15 +50,17 @@ class TestJittor: """ dataset = Fdataset({'x': [[1, 2], [0], [2, 3, 4, 5]] * 100, 'y': [0, 1, 2] * 100}) jtl = JittorDataLoader(dataset, batch_size=16, drop_last=True) - jtl.set_pad_val('x', val=-1) - jtl.set_input('x', 'y') + jtl.set_pad("x", -1) + jtl.set_ignore("y") + # jtl.set_pad_val('x', val=-1) + # jtl.set_input('x', 'y') for batch in jtl: assert batch['x'].size() == (16, 4) def test_v3(self): dataset = HfDataset.from_dict({'x': [[1, 2], [0], [2, 3, 4, 5]] * 100, 'y': [0, 1, 2] * 100}) jtl = JittorDataLoader(dataset, batch_size=4, drop_last=True) - jtl.set_input('x', 'y') + # jtl.set_input('x', 'y') for batch in jtl: print(batch) diff --git a/tests/core/dataloaders/paddle_dataloader/test_fdl.py b/tests/core/dataloaders/paddle_dataloader/test_fdl.py index 83e40610..8a603c51 100644 --- a/tests/core/dataloaders/paddle_dataloader/test_fdl.py +++ b/tests/core/dataloaders/paddle_dataloader/test_fdl.py @@ -2,6 +2,7 @@ import pytest from fastNLP.core.dataloaders.paddle_dataloader.fdl import PaddleDataLoader from fastNLP.core.dataset import DataSet +from fastNLP.core.log import logger from paddle.io import Dataset, DataLoader import numpy as np import paddle @@ -11,7 +12,7 @@ class RandomDataset(Dataset): def __getitem__(self, idx): image = np.random.random((10, 5)).astype('float32') - return {'image': paddle.Tensor(image), 'label': [[0, 1], [1, 2, 3, 4]]} + return {'image': image, 'label': [[0, 1], [1, 2, 3, 4]]} def __len__(self): return 10 @@ -32,23 +33,30 @@ class TestPaddle: def test_fdl_batch_indices(self): ds = DataSet({'x': [[1, 2], [2, 3, 4], [1]] * 10, 'y': [0, 1, 1] * 10}) fdl = PaddleDataLoader(ds, batch_size=4, shuffle=True, drop_last=True) - fdl.set_input("x", "y") for batch in fdl: assert len(fdl.get_batch_indices()) == 4 print(batch) print(fdl.get_batch_indices()) def test_set_inputs_and_set_pad_val(self): + logger.setLevel("DEBUG") ds = RandomDataset() fdl = PaddleDataLoader(ds, batch_size=2, drop_last=True) - fdl.set_input('image', 'label') - fdl.set_pad_val('label', val=-1) + fdl.set_pad('label', -1) for batch in fdl: + print(batch['image']) assert batch['image'].shape == [2, 10, 5] print(batch) fdl1 = PaddleDataLoader(ds, batch_size=4, drop_last=True) - fdl1.set_input('image', 'label') - fdl1.set_pad_val('image', val=None) + fdl1.set_ignore('image') for batch in fdl1: assert batch['image'].shape == [4, 10, 5] print(batch) + + def test_v2(self): + from fastNLP.core.collators import Collator + logger.setLevel("DEBUG") + data = [paddle.Tensor(np.random.random((10, 5)).astype('float32')), paddle.Tensor(np.random.random((10, 5)).astype('float32'))] + col = Collator(backend="jittor") + res = col(data) + print(res) \ No newline at end of file diff --git a/tests/core/dataloaders/torch_dataloader/test_fdl.py b/tests/core/dataloaders/torch_dataloader/test_fdl.py index 1b521ca9..52fe48ff 100644 --- a/tests/core/dataloaders/torch_dataloader/test_fdl.py +++ b/tests/core/dataloaders/torch_dataloader/test_fdl.py @@ -13,42 +13,23 @@ class TestFdl: fdl = TorchDataLoader(ds, batch_size=3, shuffle=True, drop_last=True) # for batch in fdl: # print(batch) - fdl1 = TorchDataLoader(ds, batch_size=3, shuffle=True, drop_last=True, as_numpy=True) + fdl1 = TorchDataLoader(ds, batch_size=3, shuffle=True, drop_last=True) # for batch in fdl1: # print(batch) def test_set_padding(self): ds = DataSet({"x": [[1, 2], [2, 3, 4], [4, 5, 6, 7]] * 10, "y": [1, 0, 1] * 10}) - ds.set_pad_val("x", val=-1) fdl = TorchDataLoader(ds, batch_size=3) - fdl.set_input("x", "y") - fdl.set_pad_val("x", val=None) + fdl.set_pad("x", -1) for batch in fdl: print(batch) # fdl.set_pad_val("x", val=-2) # for batch in fdl: # print(batch) - def test_add_collator(self): - ds = DataSet({"x": [[1, 2], [2, 3, 4], [4, 5, 6, 7]] * 10, "y": [1, 0, 1] * 10}) - - def collate_fn(ins_list): - _dict = {"Y": []} - for ins in ins_list: - _dict["Y"].append(ins['y']) - return _dict - - fdl = TorchDataLoader(ds, batch_size=3, as_numpy=True) - fdl.set_input("x", "y") - # fdl.set_pad_val("x", val=None) - fdl.add_collator(collate_fn) - for batch in fdl: - print(batch) - def test_get_batch_indices(self): ds = DataSet({"x": [[1, 2], [2, 3, 4], [4, 5, 6, 7]] * 10, "y": [1, 0, 1] * 10}) fdl = TorchDataLoader(ds, batch_size=3, shuffle=True) - fdl.set_input("y", "x") for batch in fdl: print(fdl.get_batch_indices())