@@ -71,7 +71,9 @@ __all__ = [ | |||||
"QuoraLoader", | "QuoraLoader", | ||||
"SNLILoader", | "SNLILoader", | ||||
"QNLILoader", | "QNLILoader", | ||||
"RTELoader" | |||||
"RTELoader", | |||||
"CRLoader" | |||||
] | ] | ||||
from .classification import YelpLoader, YelpFullLoader, YelpPolarityLoader, IMDBLoader, SSTLoader, SST2Loader | from .classification import YelpLoader, YelpFullLoader, YelpPolarityLoader, IMDBLoader, SSTLoader, SST2Loader | ||||
from .conll import ConllLoader, Conll2003Loader, Conll2003NERLoader, OntoNotesNERLoader, CTBLoader | from .conll import ConllLoader, Conll2003Loader, Conll2003NERLoader, OntoNotesNERLoader, CTBLoader | ||||
@@ -81,3 +83,4 @@ from .json import JsonLoader | |||||
from .loader import Loader | from .loader import Loader | ||||
from .matching import MNLILoader, QuoraLoader, SNLILoader, QNLILoader, RTELoader | from .matching import MNLILoader, QuoraLoader, SNLILoader, QNLILoader, RTELoader | ||||
from .conll import MsraNERLoader, PeopleDailyNERLoader, WeiboNERLoader | from .conll import MsraNERLoader, PeopleDailyNERLoader, WeiboNERLoader | ||||
from .coreference import CRLoader |
@@ -0,0 +1,24 @@ | |||||
from ...core.dataset import DataSet | |||||
from ..file_reader import _read_json | |||||
from ...core.instance import Instance | |||||
from .json import JsonLoader | |||||
class CRLoader(JsonLoader): | |||||
def __init__(self, fields=None, dropna=False): | |||||
super().__init__(fields, dropna) | |||||
def _load(self, path): | |||||
""" | |||||
加载数据 | |||||
:param path: | |||||
:return: | |||||
""" | |||||
dataset = DataSet() | |||||
for idx, d in _read_json(path, fields=self.fields_list, dropna=self.dropna): | |||||
if self.fields: | |||||
ins = {self.fields[k]: v for k, v in d.items()} | |||||
else: | |||||
ins = d | |||||
dataset.append(Instance(**ins)) | |||||
return dataset |
@@ -37,6 +37,8 @@ __all__ = [ | |||||
"QuoraPipe", | "QuoraPipe", | ||||
"QNLIPipe", | "QNLIPipe", | ||||
"MNLIPipe", | "MNLIPipe", | ||||
"CoreferencePipe" | |||||
] | ] | ||||
from .classification import YelpFullPipe, YelpPolarityPipe, SSTPipe, SST2Pipe, IMDBPipe | from .classification import YelpFullPipe, YelpPolarityPipe, SSTPipe, SST2Pipe, IMDBPipe | ||||
@@ -46,3 +48,4 @@ from .matching import MatchingBertPipe, RTEBertPipe, SNLIBertPipe, QuoraBertPipe | |||||
from .pipe import Pipe | from .pipe import Pipe | ||||
from .conll import Conll2003Pipe | from .conll import Conll2003Pipe | ||||
from .cws import CWSPipe | from .cws import CWSPipe | ||||
from .coreference import CoreferencePipe |
@@ -0,0 +1,115 @@ | |||||
__all__ = [ | |||||
"CoreferencePipe" | |||||
] | |||||
from .pipe import Pipe | |||||
from ..data_bundle import DataBundle | |||||
from ..loader.coreference import CRLoader | |||||
from fastNLP.core.vocabulary import Vocabulary | |||||
import numpy as np | |||||
import collections | |||||
class CoreferencePipe(Pipe): | |||||
def __init__(self,config): | |||||
super().__init__() | |||||
self.config = config | |||||
def process(self, data_bundle: DataBundle): | |||||
genres = {g: i for i, g in enumerate(["bc", "bn", "mz", "nw", "pt", "tc", "wb"])} | |||||
vocab = Vocabulary().from_dataset(*data_bundle.datasets.values(), field_name='sentences') | |||||
vocab.build_vocab() | |||||
word2id = vocab.word2idx | |||||
char_dict = get_char_dict(self.config.char_path) | |||||
for name, ds in data_bundle.datasets.items(): | |||||
ds.apply(lambda x: doc2numpy(x['sentences'], word2id, char_dict, max(self.config.filter), | |||||
self.config.max_sentences, is_train=name == 'train')[0], | |||||
new_field_name='doc_np') | |||||
ds.apply(lambda x: doc2numpy(x['sentences'], word2id, char_dict, max(self.config.filter), | |||||
self.config.max_sentences, is_train=name == 'train')[1], | |||||
new_field_name='char_index') | |||||
ds.apply(lambda x: doc2numpy(x['sentences'], word2id, char_dict, max(self.config.filter), | |||||
self.config.max_sentences, is_train=name == 'train')[2], | |||||
new_field_name='seq_len') | |||||
ds.apply(lambda x: speaker2numpy(x["speakers"], self.config.max_sentences, is_train=name == 'train'), | |||||
new_field_name='speaker_ids_np') | |||||
ds.apply(lambda x: genres[x["doc_key"][:2]], new_field_name='genre') | |||||
ds.set_ignore_type('clusters') | |||||
ds.set_padder('clusters', None) | |||||
ds.set_input("sentences", "doc_np", "speaker_ids_np", "genre", "char_index", "seq_len") | |||||
ds.set_target("clusters") | |||||
return data_bundle | |||||
def process_from_file(self, paths): | |||||
bundle = CRLoader().load(paths) | |||||
return self.process(bundle) | |||||
# helper | |||||
def doc2numpy(doc, word2id, chardict, max_filter, max_sentences, is_train): | |||||
docvec, char_index, length, max_len = _doc2vec(doc, word2id, chardict, max_filter, max_sentences, is_train) | |||||
assert max(length) == max_len | |||||
assert char_index.shape[0] == len(length) | |||||
assert char_index.shape[1] == max_len | |||||
doc_np = np.zeros((len(docvec), max_len), int) | |||||
for i in range(len(docvec)): | |||||
for j in range(len(docvec[i])): | |||||
doc_np[i][j] = docvec[i][j] | |||||
return doc_np, char_index, length | |||||
def _doc2vec(doc,word2id,char_dict,max_filter,max_sentences,is_train): | |||||
max_len = 0 | |||||
max_word_length = 0 | |||||
docvex = [] | |||||
length = [] | |||||
if is_train: | |||||
sent_num = min(max_sentences,len(doc)) | |||||
else: | |||||
sent_num = len(doc) | |||||
for i in range(sent_num): | |||||
sent = doc[i] | |||||
length.append(len(sent)) | |||||
if (len(sent) > max_len): | |||||
max_len = len(sent) | |||||
sent_vec =[] | |||||
for j,word in enumerate(sent): | |||||
if len(word)>max_word_length: | |||||
max_word_length = len(word) | |||||
if word in word2id: | |||||
sent_vec.append(word2id[word]) | |||||
else: | |||||
sent_vec.append(word2id["UNK"]) | |||||
docvex.append(sent_vec) | |||||
char_index = np.zeros((sent_num, max_len, max_word_length),dtype=int) | |||||
for i in range(sent_num): | |||||
sent = doc[i] | |||||
for j,word in enumerate(sent): | |||||
char_index[i, j, :len(word)] = [char_dict[c] for c in word] | |||||
return docvex,char_index,length,max_len | |||||
def speaker2numpy(speakers_raw,max_sentences,is_train): | |||||
if is_train and len(speakers_raw)> max_sentences: | |||||
speakers_raw = speakers_raw[0:max_sentences] | |||||
speakers = flatten(speakers_raw) | |||||
speaker_dict = {s: i for i, s in enumerate(set(speakers))} | |||||
speaker_ids = np.array([speaker_dict[s] for s in speakers]) | |||||
return speaker_ids | |||||
# 展平 | |||||
def flatten(l): | |||||
return [item for sublist in l for item in sublist] | |||||
def get_char_dict(path): | |||||
vocab = ["<UNK>"] | |||||
with open(path) as f: | |||||
vocab.extend(c.strip() for c in f.readlines()) | |||||
char_dict = collections.defaultdict(int) | |||||
char_dict.update({c: i for i, c in enumerate(vocab)}) | |||||
return char_dict |
@@ -1,4 +1,4 @@ | |||||
# 共指消解复现 | |||||
# 指代消解复现 | |||||
## 介绍 | ## 介绍 | ||||
Coreference resolution是查找文本中指向同一现实实体的所有表达式的任务。 | Coreference resolution是查找文本中指向同一现实实体的所有表达式的任务。 | ||||
对于涉及自然语言理解的许多更高级别的NLP任务来说, | 对于涉及自然语言理解的许多更高级别的NLP任务来说, | ||||
@@ -1,68 +0,0 @@ | |||||
from fastNLP.io.dataset_loader import JsonLoader,DataSet,Instance | |||||
from fastNLP.io.file_reader import _read_json | |||||
from fastNLP.core.vocabulary import Vocabulary | |||||
from fastNLP.io.data_bundle import DataBundle | |||||
from reproduction.coreference_resolution.model.config import Config | |||||
import reproduction.coreference_resolution.model.preprocess as preprocess | |||||
class CRLoader(JsonLoader): | |||||
def __init__(self, fields=None, dropna=False): | |||||
super().__init__(fields, dropna) | |||||
def _load(self, path): | |||||
""" | |||||
加载数据 | |||||
:param path: | |||||
:return: | |||||
""" | |||||
dataset = DataSet() | |||||
for idx, d in _read_json(path, fields=self.fields_list, dropna=self.dropna): | |||||
if self.fields: | |||||
ins = {self.fields[k]: v for k, v in d.items()} | |||||
else: | |||||
ins = d | |||||
dataset.append(Instance(**ins)) | |||||
return dataset | |||||
def process(self, paths, **kwargs): | |||||
data_info = DataBundle() | |||||
for name in ['train', 'test', 'dev']: | |||||
data_info.datasets[name] = self.load(paths[name]) | |||||
config = Config() | |||||
vocab = Vocabulary().from_dataset(*data_info.datasets.values(), field_name='sentences') | |||||
vocab.build_vocab() | |||||
word2id = vocab.word2idx | |||||
char_dict = preprocess.get_char_dict(config.char_path) | |||||
data_info.vocabs = vocab | |||||
genres = {g: i for i, g in enumerate(["bc", "bn", "mz", "nw", "pt", "tc", "wb"])} | |||||
for name, ds in data_info.datasets.items(): | |||||
ds.apply(lambda x: preprocess.doc2numpy(x['sentences'], word2id, char_dict, max(config.filter), | |||||
config.max_sentences, is_train=name=='train')[0], | |||||
new_field_name='doc_np') | |||||
ds.apply(lambda x: preprocess.doc2numpy(x['sentences'], word2id, char_dict, max(config.filter), | |||||
config.max_sentences, is_train=name=='train')[1], | |||||
new_field_name='char_index') | |||||
ds.apply(lambda x: preprocess.doc2numpy(x['sentences'], word2id, char_dict, max(config.filter), | |||||
config.max_sentences, is_train=name=='train')[2], | |||||
new_field_name='seq_len') | |||||
ds.apply(lambda x: preprocess.speaker2numpy(x["speakers"], config.max_sentences, is_train=name=='train'), | |||||
new_field_name='speaker_ids_np') | |||||
ds.apply(lambda x: genres[x["doc_key"][:2]], new_field_name='genre') | |||||
ds.set_ignore_type('clusters') | |||||
ds.set_padder('clusters', None) | |||||
ds.set_input("sentences", "doc_np", "speaker_ids_np", "genre", "char_index", "seq_len") | |||||
ds.set_target("clusters") | |||||
# train_dev, test = self.ds.split(348 / (2802 + 343 + 348), shuffle=False) | |||||
# train, dev = train_dev.split(343 / (2802 + 343), shuffle=False) | |||||
return data_info | |||||
@@ -1,14 +1,14 @@ | |||||
import unittest | import unittest | ||||
from ..data_load.cr_loader import CRLoader | |||||
from fastNLP.io.pipe.coreference import CoreferencePipe | |||||
from reproduction.coreference_resolution.model.config import Config | |||||
class Test_CRLoader(unittest.TestCase): | class Test_CRLoader(unittest.TestCase): | ||||
def test_cr_loader(self): | def test_cr_loader(self): | ||||
train_path = 'data/train.english.jsonlines.mini' | |||||
dev_path = 'data/dev.english.jsonlines.minid' | |||||
test_path = 'data/test.english.jsonlines' | |||||
cr = CRLoader() | |||||
data_info = cr.process({'train':train_path,'dev':dev_path,'test':test_path}) | |||||
print(data_info.datasets['train'][0]) | |||||
print(data_info.datasets['dev'][0]) | |||||
print(data_info.datasets['test'][0]) | |||||
config = Config() | |||||
bundle = CoreferencePipe(config).process_from_file({'train': config.train_path, 'dev': config.dev_path,'test': config.test_path}) | |||||
print(bundle.datasets['train'][0]) | |||||
print(bundle.datasets['dev'][0]) | |||||
print(bundle.datasets['test'][0]) |
@@ -7,7 +7,8 @@ from torch.optim import Adam | |||||
from fastNLP.core.callback import Callback, GradientClipCallback | from fastNLP.core.callback import Callback, GradientClipCallback | ||||
from fastNLP.core.trainer import Trainer | from fastNLP.core.trainer import Trainer | ||||
from reproduction.coreference_resolution.data_load.cr_loader import CRLoader | |||||
from fastNLP.io.pipe.coreference import CoreferencePipe | |||||
from reproduction.coreference_resolution.model.config import Config | from reproduction.coreference_resolution.model.config import Config | ||||
from reproduction.coreference_resolution.model.model_re import Model | from reproduction.coreference_resolution.model.model_re import Model | ||||
from reproduction.coreference_resolution.model.softmax_loss import SoftmaxLoss | from reproduction.coreference_resolution.model.softmax_loss import SoftmaxLoss | ||||
@@ -38,11 +39,8 @@ if __name__ == "__main__": | |||||
@cache_results('cache.pkl') | @cache_results('cache.pkl') | ||||
def cache(): | def cache(): | ||||
cr_train_dev_test = CRLoader() | |||||
data_info = cr_train_dev_test.process({'train': config.train_path, 'dev': config.dev_path, | |||||
'test': config.test_path}) | |||||
return data_info | |||||
bundle = CoreferencePipe(Config()).process_from_file({'train': config.train_path, 'dev': config.dev_path,'test': config.test_path}) | |||||
return bundle | |||||
data_info = cache() | data_info = cache() | ||||
print("数据集划分:\ntrain:", str(len(data_info.datasets["train"])), | print("数据集划分:\ntrain:", str(len(data_info.datasets["train"])), | ||||
"\ndev:" + str(len(data_info.datasets["dev"])) + "\ntest:" + str(len(data_info.datasets["test"]))) | "\ndev:" + str(len(data_info.datasets["dev"])) + "\ntest:" + str(len(data_info.datasets["test"]))) | ||||
@@ -1,7 +1,8 @@ | |||||
import torch | import torch | ||||
from reproduction.coreference_resolution.model.config import Config | from reproduction.coreference_resolution.model.config import Config | ||||
from reproduction.coreference_resolution.model.metric import CRMetric | from reproduction.coreference_resolution.model.metric import CRMetric | ||||
from reproduction.coreference_resolution.data_load.cr_loader import CRLoader | |||||
from fastNLP.io.pipe.coreference import CoreferencePipe | |||||
from fastNLP import Tester | from fastNLP import Tester | ||||
import argparse | import argparse | ||||
@@ -11,13 +12,12 @@ if __name__=='__main__': | |||||
parser.add_argument('--path') | parser.add_argument('--path') | ||||
args = parser.parse_args() | args = parser.parse_args() | ||||
cr_loader = CRLoader() | |||||
config = Config() | config = Config() | ||||
data_info = cr_loader.process({'train': config.train_path, 'dev': config.dev_path, | |||||
'test': config.test_path}) | |||||
bundle = CoreferencePipe(Config()).process_from_file( | |||||
{'train': config.train_path, 'dev': config.dev_path, 'test': config.test_path}) | |||||
metirc = CRMetric() | metirc = CRMetric() | ||||
model = torch.load(args.path) | model = torch.load(args.path) | ||||
tester = Tester(data_info.datasets['test'],model,metirc,batch_size=1,device="cuda:0") | |||||
tester = Tester(bundle.datasets['test'],model,metirc,batch_size=1,device="cuda:0") | |||||
tester.test() | tester.test() | ||||
print('test over') | print('test over') | ||||