@@ -9,6 +9,8 @@ __all__ = [ | |||
from .callback_events import Events | |||
from .callback import Callback | |||
from fastNLP.core.log import logger | |||
from .progress_callback import ProgressCallback, choose_progress_callback | |||
from fastNLP.envs import rank_zero_call | |||
def _transfer(func): | |||
@@ -26,6 +28,43 @@ def _transfer(func): | |||
return wrapper | |||
def prepare_callbacks(callbacks, progress_bar): | |||
""" | |||
:param callbacks: | |||
:param progress_bar: | |||
:return: | |||
""" | |||
_callbacks = [] | |||
if callbacks is not None: | |||
if isinstance(callbacks, Callback): | |||
callbacks = [callbacks] | |||
if not isinstance(callbacks, Sequence): | |||
raise ValueError("Parameter `callbacks` should be type 'List' or 'Tuple'.") | |||
callbacks = list(callbacks) | |||
for _callback in callbacks: | |||
if not isinstance(_callback, Callback): | |||
raise TypeError(f"callbacks must be of Callback type, instead of `{type(_callback)}`") | |||
_callbacks += callbacks | |||
has_no_progress = False | |||
for _callback in _callbacks: | |||
if isinstance(_callback, ProgressCallback): | |||
has_no_progress = True | |||
if not has_no_progress: | |||
callback = choose_progress_callback(progress_bar) | |||
if callback is not None: | |||
_callbacks.append(callback) | |||
elif progress_bar is not None and progress_bar != 'auto': | |||
logger.warning(f"Since you have passed in ProgressBar callback, progress_bar will be ignored.") | |||
if has_no_progress and progress_bar is None: | |||
rank_zero_call(logger.warning)("No progress bar is provided, there will have no information output " | |||
"during training.") | |||
return _callbacks | |||
class CallbackManager: | |||
r""" | |||
用来管理训练过程中的所有的 callback 实例; | |||
@@ -45,24 +84,13 @@ class CallbackManager: | |||
""" | |||
self._need_reproducible_sampler = False | |||
_callbacks = [] | |||
if callbacks is not None: | |||
if isinstance(callbacks, Callback): | |||
callbacks = [callbacks] | |||
if not isinstance(callbacks, Sequence): | |||
raise ValueError("Parameter `callbacks` should be type 'List' or 'Tuple'.") | |||
callbacks = list(callbacks) | |||
for _callback in callbacks: | |||
if not isinstance(_callback, Callback): | |||
raise TypeError(f"callbacks must be of Callback type, instead of `{type(_callback)}`") | |||
_callbacks += callbacks | |||
self.callback_fns = defaultdict(list) | |||
# 因为理论上用户最多只能通过 'trainer.on_train_begin' 或者 'trainer.callback_manager.on_train_begin' 来调用,即其是没办法 | |||
# 直接调用具体的某一个 callback 函数,而不调用其余的同名的 callback 函数的,因此我们只需要记录具体 Event 的时机即可; | |||
self.callback_counter = defaultdict(lambda: 0) | |||
if len(_callbacks): | |||
if len(callbacks): | |||
# 这一对象是为了保存原始的类 callback 对象来帮助用户进行 debug,理论上在正常的使用中你并不会需要它; | |||
self.class_callbacks = _callbacks | |||
self.class_callbacks = callbacks | |||
else: | |||
self.class_callbacks: Optional[List[Callback]] = [] | |||
@@ -11,8 +11,6 @@ __all__ = [ | |||
from .has_monitor_callback import HasMonitorCallback | |||
from fastNLP.core.utils import f_rich_progress | |||
from fastNLP.core.log import logger | |||
from fastNLP.core.utils.utils import is_notebook | |||
class ProgressCallback(HasMonitorCallback): | |||
@@ -19,8 +19,8 @@ from .evaluator import Evaluator | |||
from fastNLP.core.controllers.utils.utils import TrainerEventTrigger, _TruncatedDataLoader | |||
from fastNLP.core.callbacks import Callback, CallbackManager, Events, EventsList | |||
from fastNLP.core.callbacks.callback import _CallbackWrapper | |||
from fastNLP.core.callbacks.callback_manager import prepare_callbacks | |||
from fastNLP.core.callbacks.callback_events import _SingleEventState | |||
from fastNLP.core.callbacks.progress_callback import choose_progress_callback | |||
from fastNLP.core.drivers import Driver | |||
from fastNLP.core.drivers.utils import choose_driver | |||
from fastNLP.core.utils import get_fn_arg_names, match_and_substitute_params, nullcontext | |||
@@ -133,7 +133,7 @@ class Trainer(TrainerEventTrigger): | |||
["all", "ignore", "only_error"];当该参数的值不是以上值时,该值应当表示一个文件夹的名字,我们会将其他 rank 的输出流重定向到 | |||
log 文件中,然后将 log 文件保存在通过该参数值设定的文件夹中;默认为 "only_error"; | |||
progress_bar: 以哪种方式显示 progress ,目前支持[None, 'raw', 'rich', 'auto'] 或者 RichCallback, RawTextCallback对象, | |||
默认为 auto , auto 表示如果检测到当前 terminal 为交互型 则使用 RichCallback,否则使用 RawTextCallback对象。如果 | |||
默认为 auto , auto 表示如果检测到当前 terminal 为交互型则使用 RichCallback,否则使用 RawTextCallback对象。如果 | |||
需要定制 progress bar 的参数,例如打印频率等,可以传入 RichCallback, RawTextCallback 对象。 | |||
train_input_mapping: 与 input_mapping 一致,但是只用于 train 中。与 input_mapping 互斥。 | |||
train_output_mapping: 与 output_mapping 一致,但是只用于 train 中。与 output_mapping 互斥。 | |||
@@ -212,17 +212,7 @@ class Trainer(TrainerEventTrigger): | |||
self.driver.set_optimizers(optimizers=optimizers) | |||
# 根据 progress_bar 参数选择 ProgressBarCallback | |||
progress_bar_callback = choose_progress_callback(kwargs.get('progress_bar', 'auto')) | |||
if progress_bar_callback is not None: | |||
if callbacks is None: | |||
callbacks = [] | |||
elif not isinstance(callbacks, Sequence): | |||
callbacks = [callbacks] | |||
callbacks = list(callbacks) + [progress_bar_callback] | |||
else: | |||
rank_zero_call(logger.warning)("No progress bar is provided, there will have no information output " | |||
"during training.") | |||
callbacks = prepare_callbacks(callbacks, kwargs.get('progress_bar', 'auto')) | |||
# 初始化 callback manager; | |||
self.callback_manager = CallbackManager(callbacks) | |||
# 添加所有的函数式 callbacks; | |||
@@ -73,7 +73,7 @@ def model_and_optimizers(request): | |||
@pytest.mark.parametrize("driver,device", [("torch", "cpu"), ("torch_ddp", [0, 1]), ("torch", 1)]) # ("torch", "cpu"), ("torch_ddp", [0, 1]), ("torch", 1) | |||
@pytest.mark.parametrize("version", [0, 1]) | |||
@pytest.mark.parametrize("only_state_dict", [True, False]) | |||
@magic_argv_env_context | |||
@magic_argv_env_context(timeout=100) | |||
def test_model_checkpoint_callback_1( | |||
model_and_optimizers: TrainerParameters, | |||
driver, | |||
@@ -193,7 +193,7 @@ def test_model_checkpoint_callback_1( | |||
trainer.load_model(folder, only_state_dict=only_state_dict) | |||
trainer.run() | |||
trainer.driver.barrier() | |||
finally: | |||
rank_zero_rm(path) | |||
@@ -203,7 +203,7 @@ def test_model_checkpoint_callback_1( | |||
@pytest.mark.parametrize("driver,device", [("torch", "cpu"), ("torch_ddp", [0, 1]), ("torch", 1)]) # ("torch", "cpu"), ("torch_ddp", [0, 1]), ("torch", 1) | |||
@pytest.mark.parametrize("only_state_dict", [True]) | |||
@magic_argv_env_context | |||
@magic_argv_env_context(timeout=100) | |||
def test_model_checkpoint_callback_2( | |||
model_and_optimizers: TrainerParameters, | |||
driver, | |||
@@ -283,6 +283,7 @@ def test_model_checkpoint_callback_2( | |||
trainer.load_model(folder, only_state_dict=only_state_dict) | |||
trainer.run() | |||
trainer.driver.barrier() | |||
finally: | |||
rank_zero_rm(path) | |||
@@ -295,7 +296,7 @@ def test_model_checkpoint_callback_2( | |||
@pytest.mark.parametrize("driver,device", [("torch", "cpu"), ("torch_ddp", [0, 1]), ("torch", 0)]) # ("torch", "cpu"), ("torch_ddp", [0, 1]), ("torch", 1) | |||
@pytest.mark.parametrize("version", [0, 1]) | |||
@pytest.mark.parametrize("only_state_dict", [True, False]) | |||
@magic_argv_env_context | |||
@magic_argv_env_context(timeout=100) | |||
def test_trainer_checkpoint_callback_1( | |||
model_and_optimizers: TrainerParameters, | |||
driver, | |||
@@ -413,6 +414,7 @@ def test_trainer_checkpoint_callback_1( | |||
trainer.load(folder, only_state_dict=only_state_dict) | |||
trainer.run() | |||
trainer.driver.barrier() | |||
finally: | |||
rank_zero_rm(path) | |||
@@ -661,6 +663,7 @@ def test_trainer_checkpoint_callback_2( | |||
trainer.load(folder, model_load_fn=model_load_fn) | |||
trainer.run() | |||
trainer.driver.barrier() | |||
finally: | |||
rank_zero_rm(path) | |||
@@ -16,7 +16,6 @@ from fastNLP.core.controllers.trainer import Trainer | |||
from fastNLP.core.metrics.accuracy import Accuracy | |||
from fastNLP.core.callbacks.load_best_model_callback import LoadBestModelCallback | |||
from fastNLP.core import Evaluator | |||
from fastNLP.core.utils.utils import safe_rm | |||
from fastNLP.core.drivers.torch_driver import TorchSingleDriver | |||
from tests.helpers.models.torch_model import TorchNormalModel_Classification_1 | |||
from tests.helpers.datasets.torch_data import TorchArgMaxDataset | |||
@@ -112,7 +111,8 @@ def test_load_best_model_callback( | |||
results = evaluator.run() | |||
assert np.allclose(callbacks[0].monitor_value, results['acc#acc#dl1']) | |||
if save_folder: | |||
safe_rm(save_folder) | |||
import shutil | |||
shutil.rmtree(save_folder, ignore_errors=True) | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() | |||
@@ -171,7 +171,7 @@ def test_model_more_evaluate_callback_1( | |||
trainer.load_model(folder, only_state_dict=only_state_dict) | |||
trainer.run() | |||
trainer.driver.barrier() | |||
finally: | |||
rank_zero_rm(path) | |||
@@ -255,6 +255,7 @@ def test_trainer_checkpoint_callback_1( | |||
trainer.load(folder, only_state_dict=only_state_dict) | |||
trainer.run() | |||
trainer.driver.barrier() | |||
finally: | |||
rank_zero_rm(path) | |||
@@ -33,6 +33,8 @@ def recover_logger(fn): | |||
def magic_argv_env_context(fn=None, timeout=600): | |||
""" | |||
用来在测试时包裹每一个单独的测试函数,使得 ddp 测试正确; | |||
会丢掉 pytest 中的 arg 参数。 | |||
:param timeout: 表示一个测试如果经过多久还没有通过的话就主动将其 kill 掉,默认为 10 分钟,单位为秒; | |||
:return: | |||
""" | |||
@@ -46,9 +48,10 @@ def magic_argv_env_context(fn=None, timeout=600): | |||
env = deepcopy(os.environ.copy()) | |||
used_args = [] | |||
for each_arg in sys.argv[1:]: | |||
if "test" not in each_arg: | |||
used_args.append(each_arg) | |||
# for each_arg in sys.argv[1:]: | |||
# # warning,否则 可能导致 pytest -s . 中的点混入其中,导致多卡启动的 collect tests items 不为 1 | |||
# if each_arg.startswith('-'): | |||
# used_args.append(each_arg) | |||
pytest_current_test = os.environ.get('PYTEST_CURRENT_TEST') | |||