| @@ -9,6 +9,8 @@ __all__ = [ | |||
| from .callback_events import Events | |||
| from .callback import Callback | |||
| from fastNLP.core.log import logger | |||
| from .progress_callback import ProgressCallback, choose_progress_callback | |||
| from fastNLP.envs import rank_zero_call | |||
| def _transfer(func): | |||
| @@ -26,6 +28,43 @@ def _transfer(func): | |||
| return wrapper | |||
| def prepare_callbacks(callbacks, progress_bar): | |||
| """ | |||
| :param callbacks: | |||
| :param progress_bar: | |||
| :return: | |||
| """ | |||
| _callbacks = [] | |||
| if callbacks is not None: | |||
| if isinstance(callbacks, Callback): | |||
| callbacks = [callbacks] | |||
| if not isinstance(callbacks, Sequence): | |||
| raise ValueError("Parameter `callbacks` should be type 'List' or 'Tuple'.") | |||
| callbacks = list(callbacks) | |||
| for _callback in callbacks: | |||
| if not isinstance(_callback, Callback): | |||
| raise TypeError(f"callbacks must be of Callback type, instead of `{type(_callback)}`") | |||
| _callbacks += callbacks | |||
| has_no_progress = False | |||
| for _callback in _callbacks: | |||
| if isinstance(_callback, ProgressCallback): | |||
| has_no_progress = True | |||
| if not has_no_progress: | |||
| callback = choose_progress_callback(progress_bar) | |||
| if callback is not None: | |||
| _callbacks.append(callback) | |||
| elif progress_bar is not None and progress_bar != 'auto': | |||
| logger.warning(f"Since you have passed in ProgressBar callback, progress_bar will be ignored.") | |||
| if has_no_progress and progress_bar is None: | |||
| rank_zero_call(logger.warning)("No progress bar is provided, there will have no information output " | |||
| "during training.") | |||
| return _callbacks | |||
| class CallbackManager: | |||
| r""" | |||
| 用来管理训练过程中的所有的 callback 实例; | |||
| @@ -45,24 +84,13 @@ class CallbackManager: | |||
| """ | |||
| self._need_reproducible_sampler = False | |||
| _callbacks = [] | |||
| if callbacks is not None: | |||
| if isinstance(callbacks, Callback): | |||
| callbacks = [callbacks] | |||
| if not isinstance(callbacks, Sequence): | |||
| raise ValueError("Parameter `callbacks` should be type 'List' or 'Tuple'.") | |||
| callbacks = list(callbacks) | |||
| for _callback in callbacks: | |||
| if not isinstance(_callback, Callback): | |||
| raise TypeError(f"callbacks must be of Callback type, instead of `{type(_callback)}`") | |||
| _callbacks += callbacks | |||
| self.callback_fns = defaultdict(list) | |||
| # 因为理论上用户最多只能通过 'trainer.on_train_begin' 或者 'trainer.callback_manager.on_train_begin' 来调用,即其是没办法 | |||
| # 直接调用具体的某一个 callback 函数,而不调用其余的同名的 callback 函数的,因此我们只需要记录具体 Event 的时机即可; | |||
| self.callback_counter = defaultdict(lambda: 0) | |||
| if len(_callbacks): | |||
| if len(callbacks): | |||
| # 这一对象是为了保存原始的类 callback 对象来帮助用户进行 debug,理论上在正常的使用中你并不会需要它; | |||
| self.class_callbacks = _callbacks | |||
| self.class_callbacks = callbacks | |||
| else: | |||
| self.class_callbacks: Optional[List[Callback]] = [] | |||
| @@ -11,8 +11,6 @@ __all__ = [ | |||
| from .has_monitor_callback import HasMonitorCallback | |||
| from fastNLP.core.utils import f_rich_progress | |||
| from fastNLP.core.log import logger | |||
| from fastNLP.core.utils.utils import is_notebook | |||
| class ProgressCallback(HasMonitorCallback): | |||
| @@ -19,8 +19,8 @@ from .evaluator import Evaluator | |||
| from fastNLP.core.controllers.utils.utils import TrainerEventTrigger, _TruncatedDataLoader | |||
| from fastNLP.core.callbacks import Callback, CallbackManager, Events, EventsList | |||
| from fastNLP.core.callbacks.callback import _CallbackWrapper | |||
| from fastNLP.core.callbacks.callback_manager import prepare_callbacks | |||
| from fastNLP.core.callbacks.callback_events import _SingleEventState | |||
| from fastNLP.core.callbacks.progress_callback import choose_progress_callback | |||
| from fastNLP.core.drivers import Driver | |||
| from fastNLP.core.drivers.utils import choose_driver | |||
| from fastNLP.core.utils import get_fn_arg_names, match_and_substitute_params, nullcontext | |||
| @@ -133,7 +133,7 @@ class Trainer(TrainerEventTrigger): | |||
| ["all", "ignore", "only_error"];当该参数的值不是以上值时,该值应当表示一个文件夹的名字,我们会将其他 rank 的输出流重定向到 | |||
| log 文件中,然后将 log 文件保存在通过该参数值设定的文件夹中;默认为 "only_error"; | |||
| progress_bar: 以哪种方式显示 progress ,目前支持[None, 'raw', 'rich', 'auto'] 或者 RichCallback, RawTextCallback对象, | |||
| 默认为 auto , auto 表示如果检测到当前 terminal 为交互型 则使用 RichCallback,否则使用 RawTextCallback对象。如果 | |||
| 默认为 auto , auto 表示如果检测到当前 terminal 为交互型则使用 RichCallback,否则使用 RawTextCallback对象。如果 | |||
| 需要定制 progress bar 的参数,例如打印频率等,可以传入 RichCallback, RawTextCallback 对象。 | |||
| train_input_mapping: 与 input_mapping 一致,但是只用于 train 中。与 input_mapping 互斥。 | |||
| train_output_mapping: 与 output_mapping 一致,但是只用于 train 中。与 output_mapping 互斥。 | |||
| @@ -212,17 +212,7 @@ class Trainer(TrainerEventTrigger): | |||
| self.driver.set_optimizers(optimizers=optimizers) | |||
| # 根据 progress_bar 参数选择 ProgressBarCallback | |||
| progress_bar_callback = choose_progress_callback(kwargs.get('progress_bar', 'auto')) | |||
| if progress_bar_callback is not None: | |||
| if callbacks is None: | |||
| callbacks = [] | |||
| elif not isinstance(callbacks, Sequence): | |||
| callbacks = [callbacks] | |||
| callbacks = list(callbacks) + [progress_bar_callback] | |||
| else: | |||
| rank_zero_call(logger.warning)("No progress bar is provided, there will have no information output " | |||
| "during training.") | |||
| callbacks = prepare_callbacks(callbacks, kwargs.get('progress_bar', 'auto')) | |||
| # 初始化 callback manager; | |||
| self.callback_manager = CallbackManager(callbacks) | |||
| # 添加所有的函数式 callbacks; | |||
| @@ -73,7 +73,7 @@ def model_and_optimizers(request): | |||
| @pytest.mark.parametrize("driver,device", [("torch", "cpu"), ("torch_ddp", [0, 1]), ("torch", 1)]) # ("torch", "cpu"), ("torch_ddp", [0, 1]), ("torch", 1) | |||
| @pytest.mark.parametrize("version", [0, 1]) | |||
| @pytest.mark.parametrize("only_state_dict", [True, False]) | |||
| @magic_argv_env_context | |||
| @magic_argv_env_context(timeout=100) | |||
| def test_model_checkpoint_callback_1( | |||
| model_and_optimizers: TrainerParameters, | |||
| driver, | |||
| @@ -193,7 +193,7 @@ def test_model_checkpoint_callback_1( | |||
| trainer.load_model(folder, only_state_dict=only_state_dict) | |||
| trainer.run() | |||
| trainer.driver.barrier() | |||
| finally: | |||
| rank_zero_rm(path) | |||
| @@ -203,7 +203,7 @@ def test_model_checkpoint_callback_1( | |||
| @pytest.mark.parametrize("driver,device", [("torch", "cpu"), ("torch_ddp", [0, 1]), ("torch", 1)]) # ("torch", "cpu"), ("torch_ddp", [0, 1]), ("torch", 1) | |||
| @pytest.mark.parametrize("only_state_dict", [True]) | |||
| @magic_argv_env_context | |||
| @magic_argv_env_context(timeout=100) | |||
| def test_model_checkpoint_callback_2( | |||
| model_and_optimizers: TrainerParameters, | |||
| driver, | |||
| @@ -283,6 +283,7 @@ def test_model_checkpoint_callback_2( | |||
| trainer.load_model(folder, only_state_dict=only_state_dict) | |||
| trainer.run() | |||
| trainer.driver.barrier() | |||
| finally: | |||
| rank_zero_rm(path) | |||
| @@ -295,7 +296,7 @@ def test_model_checkpoint_callback_2( | |||
| @pytest.mark.parametrize("driver,device", [("torch", "cpu"), ("torch_ddp", [0, 1]), ("torch", 0)]) # ("torch", "cpu"), ("torch_ddp", [0, 1]), ("torch", 1) | |||
| @pytest.mark.parametrize("version", [0, 1]) | |||
| @pytest.mark.parametrize("only_state_dict", [True, False]) | |||
| @magic_argv_env_context | |||
| @magic_argv_env_context(timeout=100) | |||
| def test_trainer_checkpoint_callback_1( | |||
| model_and_optimizers: TrainerParameters, | |||
| driver, | |||
| @@ -413,6 +414,7 @@ def test_trainer_checkpoint_callback_1( | |||
| trainer.load(folder, only_state_dict=only_state_dict) | |||
| trainer.run() | |||
| trainer.driver.barrier() | |||
| finally: | |||
| rank_zero_rm(path) | |||
| @@ -661,6 +663,7 @@ def test_trainer_checkpoint_callback_2( | |||
| trainer.load(folder, model_load_fn=model_load_fn) | |||
| trainer.run() | |||
| trainer.driver.barrier() | |||
| finally: | |||
| rank_zero_rm(path) | |||
| @@ -16,7 +16,6 @@ from fastNLP.core.controllers.trainer import Trainer | |||
| from fastNLP.core.metrics.accuracy import Accuracy | |||
| from fastNLP.core.callbacks.load_best_model_callback import LoadBestModelCallback | |||
| from fastNLP.core import Evaluator | |||
| from fastNLP.core.utils.utils import safe_rm | |||
| from fastNLP.core.drivers.torch_driver import TorchSingleDriver | |||
| from tests.helpers.models.torch_model import TorchNormalModel_Classification_1 | |||
| from tests.helpers.datasets.torch_data import TorchArgMaxDataset | |||
| @@ -112,7 +111,8 @@ def test_load_best_model_callback( | |||
| results = evaluator.run() | |||
| assert np.allclose(callbacks[0].monitor_value, results['acc#acc#dl1']) | |||
| if save_folder: | |||
| safe_rm(save_folder) | |||
| import shutil | |||
| shutil.rmtree(save_folder, ignore_errors=True) | |||
| if dist.is_initialized(): | |||
| dist.destroy_process_group() | |||
| @@ -171,7 +171,7 @@ def test_model_more_evaluate_callback_1( | |||
| trainer.load_model(folder, only_state_dict=only_state_dict) | |||
| trainer.run() | |||
| trainer.driver.barrier() | |||
| finally: | |||
| rank_zero_rm(path) | |||
| @@ -255,6 +255,7 @@ def test_trainer_checkpoint_callback_1( | |||
| trainer.load(folder, only_state_dict=only_state_dict) | |||
| trainer.run() | |||
| trainer.driver.barrier() | |||
| finally: | |||
| rank_zero_rm(path) | |||
| @@ -33,6 +33,8 @@ def recover_logger(fn): | |||
| def magic_argv_env_context(fn=None, timeout=600): | |||
| """ | |||
| 用来在测试时包裹每一个单独的测试函数,使得 ddp 测试正确; | |||
| 会丢掉 pytest 中的 arg 参数。 | |||
| :param timeout: 表示一个测试如果经过多久还没有通过的话就主动将其 kill 掉,默认为 10 分钟,单位为秒; | |||
| :return: | |||
| """ | |||
| @@ -46,9 +48,10 @@ def magic_argv_env_context(fn=None, timeout=600): | |||
| env = deepcopy(os.environ.copy()) | |||
| used_args = [] | |||
| for each_arg in sys.argv[1:]: | |||
| if "test" not in each_arg: | |||
| used_args.append(each_arg) | |||
| # for each_arg in sys.argv[1:]: | |||
| # # warning,否则 可能导致 pytest -s . 中的点混入其中,导致多卡启动的 collect tests items 不为 1 | |||
| # if each_arg.startswith('-'): | |||
| # used_args.append(each_arg) | |||
| pytest_current_test = os.environ.get('PYTEST_CURRENT_TEST') | |||