diff --git a/docs/source/fastNLP.models.bert.rst b/docs/source/fastNLP.models.bert.rst new file mode 100644 index 00000000..b0c813f9 --- /dev/null +++ b/docs/source/fastNLP.models.bert.rst @@ -0,0 +1,6 @@ +fastNLP.models.bert +=================== + +.. automodule:: fastNLP.models.bert + :members: BertForSequenceClassification, BertForSentenceMatching, BertForMultipleChoice, BertForTokenClassification, BertForQuestionAnswering + diff --git a/docs/source/fastNLP.models.rst b/docs/source/fastNLP.models.rst index fb782de1..21cf41a7 100644 --- a/docs/source/fastNLP.models.rst +++ b/docs/source/fastNLP.models.rst @@ -2,7 +2,7 @@ fastNLP.models ============== .. automodule:: fastNLP.models - :members: CNNText, SeqLabeling, AdvSeqLabel, ESIM, StarTransEnc, STSeqLabel, STNLICls, STSeqCls, BiaffineParser, GraphParser + :members: CNNText, SeqLabeling, AdvSeqLabel, ESIM, StarTransEnc, STSeqLabel, STNLICls, STSeqCls, BiaffineParser, GraphParser, BertForSequenceClassification, BertForSentenceMatching, BertForMultipleChoice, BertForTokenClassification, BertForQuestionAnswering 子模块 ------ @@ -10,6 +10,7 @@ fastNLP.models .. toctree:: :maxdepth: 1 + fastNLP.models.bert fastNLP.models.biaffine_parser fastNLP.models.cnn_text_classification fastNLP.models.sequence_labeling diff --git a/docs/source/fastNLP.models.sequence_labeling.rst b/docs/source/fastNLP.models.sequence_labeling.rst index f6551f8b..dcd1300e 100644 --- a/docs/source/fastNLP.models.sequence_labeling.rst +++ b/docs/source/fastNLP.models.sequence_labeling.rst @@ -2,5 +2,5 @@ fastNLP.models.sequence_labeling ================================ .. automodule:: fastNLP.models.sequence_labeling - :members: SeqLabeling, AdvSeqLabel + :members: SeqLabeling, AdvSeqLabel, BiLSTMCRF diff --git a/docs/source/tutorials/tutorial_6_seq_labeling.rst b/docs/source/tutorials/tutorial_6_seq_labeling.rst index 09a53cdc..7fcf97b3 100644 --- a/docs/source/tutorials/tutorial_6_seq_labeling.rst +++ b/docs/source/tutorials/tutorial_6_seq_labeling.rst @@ -3,64 +3,52 @@ ===================== 这一部分的内容主要展示如何使用fastNLP 实现序列标注任务。你可以使用fastNLP的各个组件快捷,方便地完成序列标注任务,达到出色的效果。 -在阅读这篇Tutorial前,希望你已经熟悉了fastNLP的基础使用,包括基本数据结构以及数据预处理,embedding的嵌入等,希望你对之前的教程有更进一步的掌握。 -我们将对CoNLL-03的英文数据集进行处理,展示如何完成命名实体标注任务整个训练的过程。 +在阅读这篇Tutorial前,希望你已经熟悉了fastNLP的基础使用,尤其是数据的载入以及模型的构建,通过这个小任务的能让你进一步熟悉fastNLP的使用。 +我们将对基于Weibo的中文社交数据集进行处理,展示如何完成命名实体标注任务的整个过程。 载入数据 =================================== -fastNLP可以方便地载入各种类型的数据。同时,针对常见的数据集,我们已经预先实现了载入方法,其中包含CoNLL-03数据集。 +fastNLP的数据载入主要是由Loader与Pipe两个基类衔接完成的。通过Loader可以方便地载入各种类型的数据。同时,针对常见的数据集,我们已经预先实现了载入方法,其中包含weibo数据集。 在设计dataloader时,以DataSetLoader为基类,可以改写并应用于其他数据集的载入。 .. code-block:: python - class Conll2003DataLoader(DataSetLoader): - def __init__(self, task:str='ner', encoding_type:str='bioes'): - assert task in ('ner', 'pos', 'chunk') - index = {'ner':3, 'pos':1, 'chunk':2}[task] - #ConllLoader是fastNLP内置的类 - self._loader = ConllLoader(headers=['raw_words', 'target'], indexes=[0, index]) - self._tag_converters = None - if task in ('ner', 'chunk'): - #iob和iob2bioes会对tag进行统一,标准化 - self._tag_converters = [iob2] - if encoding_type == 'bioes': - self._tag_converters.append(iob2bioes) - - def load(self, path: str): - dataset = self._loader.load(path) - def convert_tag_schema(tags): - for converter in self._tag_converters: - tags = converter(tags) - return tags - if self._tag_converters: - #使用apply实现convert_tag_schema函数,实际上也支持匿名函数 - dataset.apply_field(convert_tag_schema, field_name=Const.TARGET, new_field_name=Const.TARGET) - return dataset - -输出数据格式如: - - {'raw_words': ['on', 'Friday', ':'] type=list, - 'target': ['O', 'O', 'O'] type=list}, + from fastNLP.io import WeiboNERLoader + data_bundle = WeiboNERLoader().load() + + + +载入后的数据如 :: + + {'dev': DataSet( + {{'raw_chars': ['用', '最', '大', '努', '力', '去', '做''人', '生', '。', '哈', '哈', '哈', '哈', '哈', '哈', ' + 'target': ['O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O',, 'O', 'O', 'O', 'O', 'O', 'O'] type=list})} + + {'test': DataSet( + {{'raw_chars': ['感', '恩', '大', '回', '馈'] type=list, 'target': ['O', 'O', 'O', 'O', 'O'] type=list})} + + {'train': DataSet( + {'raw_chars': ['国', '安', '老', '球', '迷'] type=list, 'target': ['B-ORG.NAM', 'I-ORG.NAM', 'B-PER.NOM', 'I-PER.NOM', 'I-PER.NOM'] type=list})} + 数据处理 ---------------------------- -我们进一步处理数据。将数据和词表封装在 :class:`~fastNLP.DataBundle` 类中。data是DataBundle的实例。 -我们输入模型的数据包括char embedding,以及word embedding。在数据处理部分,我们尝试完成词表的构建。 -使用fastNLP中的Vocabulary类来构建词表。 +我们进一步处理数据。通过Pipe基类处理Loader载入的数据。 如果你还有印象,应该还能想起,实现自定义数据集的Pipe时,至少要编写process 函数或者process_from_file 函数。前者接受 :class:`~fastNLP.DataBundle` 类的数据,并返回该 :class:`~fastNLP.DataBundle` 。后者接收数据集所在文件夹为参数,读取并处理为 :class:`~fastNLP.DataBundle` 后,通过process 函数处理数据。 +这里我们已经实现通过Loader载入数据,并已返回 :class:`~fastNLP.DataBundle` 类的数据。我们编写process 函数以处理Loader载入后的数据。 .. code-block:: python - word_vocab = Vocabulary(min_freq=2) - word_vocab.from_dataset(data.datasets['train'], field_name=Const.INPUT) - word_vocab.index_dataset(*data.datasets.values(),field_name=Const.INPUT, new_field_name=Const.INPUT) + from fastNLP.io import ChineseNERPipe + data_bundle = ChineseNERPipe(encoding_type='bioes', bigram=True).process(data_bundle) -处理后的data对象内部为: +载入后的数据如下 :: - dataset - vocabs - dataset保存了train和test中的数据,并保存为dataset类型 - vocab保存了words,raw-words以及target的词表。 + {'raw_chars': ['用', '最', '大', '努', '力', '去', '做', '值', '得', '的', '事', '人', '生', '。', '哈', '哈', '哈', '哈', '哈', '哈', '我', '在'] type=list, + 'target': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] type=list, + 'chars': [97, 71, 34, 422, 104, 72, 144, 628, 66, 3, 158, 2, 9, 647, 485, 196, 2,19] type=list, + 'bigrams': [5948, 1950, 34840, 98, 8413, 3961, 34841, 631, 34842, 407, 462, 45, 3 1959, 1619, 3, 3, 3, 3, 3, 2663, 29, 90] type=list, + 'seq_len': 30 type=int} 模型构建 -------------------------------- @@ -69,27 +57,23 @@ fastNLP可以方便地载入各种类型的数据。同时,针对常见的数 模型的训练 首先实例化模型,导入所需的char embedding以及word embedding。Embedding的载入可以参考教程。 -也可以查看 :mod:`~fastNLP.modules.encoder.embedding` 使用所需的embedding 载入方法。 -fastNLP将模型的训练过程封装在了 :class:`~fastnlp.trainer` 类中。 +也可以查看 :mod:`~fastNLP.embedding` 使用所需的embedding 载入方法。 +fastNLP将模型的训练过程封装在了 :class:`~fastnlp.Trainer` 类中。 根据不同的任务调整trainer中的参数即可。通常,一个trainer实例需要有:指定的训练数据集,模型,优化器,loss函数,评测指标,以及指定训练的epoch数,batch size等参数。 .. code-block:: python #实例化模型 - model = CNNBiLSTMCRF(word_embed, char_embed, hidden_size=200, num_layers=1, tag_vocab=data.vocabs[Const.TARGET], encoding_type=encoding_type) - #定义优化器 - optimizer = Adam(model.parameters(), lr=0.005) + model = CNBiLSTMCRFNER(char_embed, num_classes=len(data_bundle.vocabs['target']), bigram_embed=bigram_embed) #定义评估指标 - Metrics=SpanFPreRecMetric(tag_vocab=data.vocabs[Const.TARGET], encoding_type=encoding_type) - #实例化trainer - trainer = Trainer(train_data=data.datasets['train'], model=model, optimizer=optimizer, dev_data=data.datasets['test'], batch_size=10, metrics=Metrics,callbacks=callbacks, n_epochs=100) - #开始训练 - trainer.train() + Metrics=SpanFPreRecMetric(data_bundle.vocabs['target'], encoding_type='bioes') + #实例化trainer并训练 + Trainer(data_bundle.datasets['train'], model, batch_size=20, metrics=Metrics, num_workers=2, dev_data=data_bundle. datasets['dev']).train() + 训练中会保存最优的参数配置。 -训练的结果如下: -.. code-block:: python +训练的结果如下 :: Evaluation on DataSet test: SpanFPreRecMetric: f=0.727661, pre=0.732293, rec=0.723088 diff --git a/fastNLP/models/__init__.py b/fastNLP/models/__init__.py index 14314049..a659e1d5 100644 --- a/fastNLP/models/__init__.py +++ b/fastNLP/models/__init__.py @@ -21,12 +21,18 @@ __all__ = [ "STSeqCls", "BiaffineParser", - "GraphParser" + "GraphParser", + + "BertForSequenceClassification", + "BertForSentenceMatching", + "BertForMultipleChoice", + "BertForTokenClassification", + "BertForQuestionAnswering" ] from .base_model import BaseModel from .bert import BertForMultipleChoice, BertForQuestionAnswering, BertForSequenceClassification, \ - BertForTokenClassification + BertForTokenClassification, BertForSentenceMatching from .biaffine_parser import BiaffineParser, GraphParser from .cnn_text_classification import CNNText from .sequence_labeling import SeqLabeling, AdvSeqLabel diff --git a/fastNLP/models/bert.py b/fastNLP/models/bert.py index 08f16db2..4a04bd6d 100644 --- a/fastNLP/models/bert.py +++ b/fastNLP/models/bert.py @@ -1,9 +1,35 @@ -"""undocumented -bert.py is modified from huggingface/pytorch-pretrained-BERT, which is licensed under the Apache License 2.0. +""" +fastNLP提供了BERT应用到五个下游任务的模型代码,可以直接调用。这五个任务分别为 + + - 文本分类任务: :class:`~fastNLP.models.BertForSequenceClassification` + - Matching任务: :class:`~fastNLP.models.BertForSentenceMatching` + - 多选任务: :class:`~fastNLP.models.BertForMultipleChoice` + - 序列标注任务: :class:`~fastNLP.models.BertForTokenClassification` + - 抽取式QA任务: :class:`~fastNLP.models.BertForQuestionAnswering` + +每一个模型必须要传入一个名字为 `embed` 的 :class:`fastNLP.embeddings.BertEmbedding` ,这个参数包含了 +:class:`fastNLP.modules.encoder.BertModel` ,是下游模型的编码器(encoder)。 + +除此以外,还需要传入一个数字,这个数字在不同下游任务模型上的意义如下:: + + 下游任务模型 参数名称 含义 + BertForSequenceClassification num_labels 文本分类类别数目,默认值为2 + BertForSentenceMatching num_labels Matching任务类别数目,默认值为2 + BertForMultipleChoice num_choices 多选任务选项数目,默认值为2 + BertForTokenClassification num_labels 序列标注标签数目,无默认值 + BertForQuestionAnswering num_labels 抽取式QA列数,默认值为2(即第一列为start_span, 第二列为end_span) + +最后还可以传入dropout的大小,默认值为0.1。 """ -__all__ = [] +__all__ = [ + "BertForSequenceClassification", + "BertForSentenceMatching", + "BertForMultipleChoice", + "BertForTokenClassification", + "BertForQuestionAnswering" +] import warnings @@ -13,28 +39,40 @@ from torch import nn from .base_model import BaseModel from ..core.const import Const from ..core._logger import logger -from ..modules.encoder import BertModel -from ..modules.encoder.bert import BertConfig, CONFIG_FILE -from ..embeddings.bert_embedding import BertEmbedding +from ..embeddings import BertEmbedding class BertForSequenceClassification(BaseModel): - """BERT model for classification. """ - def __init__(self, init_embed: BertEmbedding, num_labels: int=2): + 别名: :class:`fastNLP.models.BertForSequenceClassification` + :class:`fastNLP.models.bert.BertForSequenceClassification` + + BERT model for classification. + + :param fastNLP.embeddings.BertEmbedding embed: 下游模型的编码器(encoder). + :param int num_labels: 文本分类类别数目,默认值为2. + :param float dropout: dropout的大小,默认值为0.1. + """ + def __init__(self, embed: BertEmbedding, num_labels: int=2, dropout=0.1): super(BertForSequenceClassification, self).__init__() self.num_labels = num_labels - self.bert = init_embed - self.dropout = nn.Dropout(0.1) + self.bert = embed + self.dropout = nn.Dropout(p=dropout) self.classifier = nn.Linear(self.bert.embedding_dim, num_labels) if not self.bert.model.include_cls_sep: - warn_msg = "Bert for sequence classification excepts BertEmbedding `include_cls_sep` True, but got False." + self.bert.model.include_cls_sep = True + warn_msg = "Bert for sequence classification excepts BertEmbedding `include_cls_sep` True, " \ + "but got False. FastNLP has changed it to True." logger.warn(warn_msg) warnings.warn(warn_msg) def forward(self, words): + """ + :param torch.LongTensor words: [batch_size, seq_len] + :return: { :attr:`fastNLP.Const.OUTPUT` : logits}: torch.Tensor [batch_size, num_labels] + """ hidden = self.dropout(self.bert(words)) cls_hidden = hidden[:, 0] logits = self.classifier(cls_hidden) @@ -42,172 +80,193 @@ class BertForSequenceClassification(BaseModel): return {Const.OUTPUT: logits} def predict(self, words): + """ + :param torch.LongTensor words: [batch_size, seq_len] + :return: { :attr:`fastNLP.Const.OUTPUT` : logits}: torch.LongTensor [batch_size] + """ logits = self.forward(words)[Const.OUTPUT] return {Const.OUTPUT: torch.argmax(logits, dim=-1)} class BertForSentenceMatching(BaseModel): + """ + 别名: :class:`fastNLP.models.BertForSentenceMatching` + :class:`fastNLP.models.bert.BertForSentenceMatching` + + BERT model for sentence matching. - """BERT model for matching. + :param fastNLP.embeddings.BertEmbedding embed: 下游模型的编码器(encoder). + :param int num_labels: Matching任务类别数目,默认值为2. + :param float dropout: dropout的大小,默认值为0.1. """ - def __init__(self, init_embed: BertEmbedding, num_labels: int=2): + def __init__(self, embed: BertEmbedding, num_labels: int=2, dropout=0.1): super(BertForSentenceMatching, self).__init__() self.num_labels = num_labels - self.bert = init_embed - self.dropout = nn.Dropout(0.1) + self.bert = embed + self.dropout = nn.Dropout(p=dropout) self.classifier = nn.Linear(self.bert.embedding_dim, num_labels) if not self.bert.model.include_cls_sep: - error_msg = "Bert for sentence matching excepts BertEmbedding `include_cls_sep` True, but got False." - logger.error(error_msg) - raise RuntimeError(error_msg) + self.bert.model.include_cls_sep = True + warn_msg = "Bert for sentence matching excepts BertEmbedding `include_cls_sep` True, " \ + "but got False. FastNLP has changed it to True." + logger.warn(warn_msg) + warnings.warn(warn_msg) def forward(self, words): - hidden = self.dropout(self.bert(words)) - cls_hidden = hidden[:, 0] + """ + :param torch.LongTensor words: [batch_size, seq_len] + :return: { :attr:`fastNLP.Const.OUTPUT` : logits}: torch.Tensor [batch_size, num_labels] + """ + hidden = self.bert(words) + cls_hidden = self.dropout(hidden[:, 0]) logits = self.classifier(cls_hidden) return {Const.OUTPUT: logits} def predict(self, words): + """ + :param torch.LongTensor words: [batch_size, seq_len] + :return: { :attr:`fastNLP.Const.OUTPUT` : logits}: torch.LongTensor [batch_size] + """ logits = self.forward(words)[Const.OUTPUT] return {Const.OUTPUT: torch.argmax(logits, dim=-1)} class BertForMultipleChoice(BaseModel): - """BERT model for multiple choice tasks. """ - def __init__(self, init_embed: BertEmbedding, num_choices=2): + 别名: :class:`fastNLP.models.BertForMultipleChoice` + :class:`fastNLP.models.bert.BertForMultipleChoice` + + BERT model for multiple choice. + + :param fastNLP.embeddings.BertEmbedding embed: 下游模型的编码器(encoder). + :param int num_choices: 多选任务选项数目,默认值为2. + :param float dropout: dropout的大小,默认值为0.1. + """ + def __init__(self, embed: BertEmbedding, num_choices=2, dropout=0.1): super(BertForMultipleChoice, self).__init__() self.num_choices = num_choices - self.bert = init_embed - self.dropout = nn.Dropout(0.1) + self.bert = embed + self.dropout = nn.Dropout(p=dropout) self.classifier = nn.Linear(self.bert.embedding_dim, 1) - self.include_cls_sep = init_embed.model.include_cls_sep if not self.bert.model.include_cls_sep: - error_msg = "Bert for multiple choice excepts BertEmbedding `include_cls_sep` True, but got False." - logger.error(error_msg) - raise RuntimeError(error_msg) + self.bert.model.include_cls_sep = True + warn_msg = "Bert for multiple choice excepts BertEmbedding `include_cls_sep` True, " \ + "but got False. FastNLP has changed it to True." + logger.warn(warn_msg) + warnings.warn(warn_msg) def forward(self, words): """ - :param torch.Tensor words: [batch_size, num_choices, seq_len] - :return: [batch_size, num_labels] + :param torch.LongTensor words: [batch_size, num_choices, seq_len] + :return: { :attr:`fastNLP.Const.OUTPUT` : logits}: torch.LongTensor [batch_size, num_choices] """ batch_size, num_choices, seq_len = words.size() input_ids = words.view(batch_size * num_choices, seq_len) hidden = self.bert(input_ids) - pooled_output = hidden[:, 0] - pooled_output = self.dropout(pooled_output) + pooled_output = self.dropout(hidden[:, 0]) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, self.num_choices) return {Const.OUTPUT: reshaped_logits} def predict(self, words): + """ + :param torch.LongTensor words: [batch_size, num_choices, seq_len] + :return: { :attr:`fastNLP.Const.OUTPUT` : logits}: torch.LongTensor [batch_size] + """ logits = self.forward(words)[Const.OUTPUT] return {Const.OUTPUT: torch.argmax(logits, dim=-1)} class BertForTokenClassification(BaseModel): - """BERT model for token-level classification. """ - def __init__(self, init_embed: BertEmbedding, num_labels): + 别名: :class:`fastNLP.models.BertForTokenClassification` + :class:`fastNLP.models.bert.BertForTokenClassification` + + BERT model for token classification. + + :param fastNLP.embeddings.BertEmbedding embed: 下游模型的编码器(encoder). + :param int num_labels: 序列标注标签数目,无默认值. + :param float dropout: dropout的大小,默认值为0.1. + """ + def __init__(self, embed: BertEmbedding, num_labels, dropout=0.1): super(BertForTokenClassification, self).__init__() self.num_labels = num_labels - self.bert = init_embed - self.dropout = nn.Dropout(0.1) + self.bert = embed + self.dropout = nn.Dropout(p=dropout) self.classifier = nn.Linear(self.bert.embedding_dim, num_labels) - self.include_cls_sep = init_embed.model.include_cls_sep - if self.include_cls_sep: - warn_msg = "Bert for token classification excepts BertEmbedding `include_cls_sep` False, but got True." - warnings.warn(warn_msg) + if self.bert.model.include_cls_sep: + self.bert.model.include_cls_sep = False + warn_msg = "Bert for token classification excepts BertEmbedding `include_cls_sep` False, " \ + "but got True. FastNLP has changed it to False." logger.warn(warn_msg) + warnings.warn(warn_msg) def forward(self, words): """ - :param torch.Tensor words: [batch_size, seq_len] - :return: [batch_size, seq_len, num_labels] + :param torch.LongTensor words: [batch_size, seq_len] + :return: { :attr:`fastNLP.Const.OUTPUT` : logits}: torch.Tensor [batch_size, seq_len, num_labels] """ - sequence_output = self.bert(words) - if self.include_cls_sep: - sequence_output = sequence_output[:, 1: -1] # [batch_size, seq_len, embed_dim] + sequence_output = self.bert(words) # [batch_size, seq_len, embed_dim] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) return {Const.OUTPUT: logits} def predict(self, words): + """ + :param torch.LongTensor words: [batch_size, seq_len] + :return: { :attr:`fastNLP.Const.OUTPUT` : logits}: torch.LongTensor [batch_size, seq_len] + """ logits = self.forward(words)[Const.OUTPUT] return {Const.OUTPUT: torch.argmax(logits, dim=-1)} class BertForQuestionAnswering(BaseModel): - """BERT model for Question Answering (span extraction). - This module is composed of the BERT model with a linear layer on top of - the sequence output that computes start_logits and end_logits - Params: - `config`: a BertConfig class instance with the configuration to build a new model. - `bert_dir`: a dir which contains the bert parameters within file `pytorch_model.bin` - Inputs: - `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] - with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts - `extract_features.py`, `run_classifier.py` and `run_squad.py`) - `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token - types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to - a `sentence B` token (see BERT paper for more details). - `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices - selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max - input sequence length in the current batch. It's the mask that we typically use for attention when - a batch has varying length sentences. - `start_positions`: position of the first token for the labeled span: torch.LongTensor of shape [batch_size]. - Positions are clamped to the length of the sequence and position outside of the sequence are not taken - into account for computing the loss. - `end_positions`: position of the last token for the labeled span: torch.LongTensor of shape [batch_size]. - Positions are clamped to the length of the sequence and position outside of the sequence are not taken - into account for computing the loss. - Outputs: - if `start_positions` and `end_positions` are not `None`: - Outputs the total_loss which is the sum of the CrossEntropy loss for the start and end token positions. - if `start_positions` or `end_positions` is `None`: - Outputs a tuple of start_logits, end_logits which are the logits respectively for the start and end - position tokens of shape [batch_size, sequence_length]. - Example usage: - ```python - # Already been converted into WordPiece token ids - input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) - input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) - token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]]) - config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768, - num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072) - bert_dir = 'your-bert-file-dir' - model = BertForQuestionAnswering(config, bert_dir) - start_logits, end_logits = model(input_ids, token_type_ids, input_mask) - ``` """ - def __init__(self, init_embed: BertEmbedding, num_labels=2): + 别名: :class:`fastNLP.models.BertForQuestionAnswering` + :class:`fastNLP.models.bert.BertForQuestionAnswering` + + BERT model for classification. + + :param fastNLP.embeddings.BertEmbedding embed: 下游模型的编码器(encoder). + :param int num_labels: 抽取式QA列数,默认值为2(即第一列为start_span, 第二列为end_span). + """ + def __init__(self, embed: BertEmbedding, num_labels=2): super(BertForQuestionAnswering, self).__init__() - self.bert = init_embed + self.bert = embed self.num_labels = num_labels self.qa_outputs = nn.Linear(self.bert.embedding_dim, self.num_labels) if not self.bert.model.include_cls_sep: - error_msg = "Bert for multiple choice excepts BertEmbedding `include_cls_sep` True, but got False." - logger.error(error_msg) - raise RuntimeError(error_msg) + self.bert.model.include_cls_sep = True + warn_msg = "Bert for question answering excepts BertEmbedding `include_cls_sep` True, " \ + "but got False. FastNLP has changed it to True." + logger.warn(warn_msg) + warnings.warn(warn_msg) def forward(self, words): + """ + :param torch.LongTensor words: [batch_size, seq_len] + :return: 一个包含num_labels个logit的dict,每一个logit的形状都是[batch_size, seq_len] + """ sequence_output = self.bert(words) logits = self.qa_outputs(sequence_output) # [batch_size, seq_len, num_labels] return {Const.OUTPUTS(i): logits[:, :, i] for i in range(self.num_labels)} def predict(self, words): + """ + :param torch.LongTensor words: [batch_size, seq_len] + :return: 一个包含num_labels个logit的dict,每一个logit的形状都是[batch_size] + """ logits = self.forward(words) return {Const.OUTPUTS(i): torch.argmax(logits[Const.OUTPUTS(i)], dim=-1) for i in range(self.num_labels)} diff --git a/fastNLP/models/biaffine_parser.py b/fastNLP/models/biaffine_parser.py index 6b0829bd..455d27a7 100644 --- a/fastNLP/models/biaffine_parser.py +++ b/fastNLP/models/biaffine_parser.py @@ -245,7 +245,7 @@ class BiaffineParser(GraphParser): Biaffine Dependency Parser 实现. 论文参考 `Deep Biaffine Attention for Neural Dependency Parsing (Dozat and Manning, 2016) `_ . - :param init_embed: 单词词典, 可以是 tuple, 包括(num_embedings, embedding_dim), 即 + :param embed: 单词词典, 可以是 tuple, 包括(num_embedings, embedding_dim), 即 embedding的大小和每个词的维度. 也可以传入 nn.Embedding 对象, 此时就以传入的对象作为embedding :param pos_vocab_size: part-of-speech 词典大小 @@ -262,7 +262,7 @@ class BiaffineParser(GraphParser): """ def __init__(self, - init_embed, + embed, pos_vocab_size, pos_emb_dim, num_label, @@ -276,7 +276,7 @@ class BiaffineParser(GraphParser): super(BiaffineParser, self).__init__() rnn_out_size = 2 * rnn_hidden_size word_hid_dim = pos_hid_dim = rnn_hidden_size - self.word_embedding = get_embeddings(init_embed) + self.word_embedding = get_embeddings(embed) word_emb_dim = self.word_embedding.embedding_dim self.pos_embedding = nn.Embedding(num_embeddings=pos_vocab_size, embedding_dim=pos_emb_dim) self.word_fc = nn.Linear(word_emb_dim, word_hid_dim) diff --git a/fastNLP/models/cnn_text_classification.py b/fastNLP/models/cnn_text_classification.py index 37a60c35..4bf9c4d1 100644 --- a/fastNLP/models/cnn_text_classification.py +++ b/fastNLP/models/cnn_text_classification.py @@ -23,7 +23,7 @@ class CNNText(torch.nn.Module): 使用CNN进行文本分类的模型 'Yoon Kim. 2014. Convolution Neural Networks for Sentence Classification.' - :param tuple(int,int),torch.FloatTensor,nn.Embedding,numpy.ndarray init_embed: Embedding的大小(传入tuple(int, int), + :param tuple(int,int),torch.FloatTensor,nn.Embedding,numpy.ndarray embed: Embedding的大小(传入tuple(int, int), 第一个int为vocab_zie, 第二个int为embed_dim); 如果为Tensor, Embedding, ndarray等则直接使用该值初始化Embedding :param int num_classes: 一共有多少类 :param int,tuple(int) out_channels: 输出channel的数量。如果为list,则需要与kernel_sizes的数量保持一致 @@ -31,7 +31,7 @@ class CNNText(torch.nn.Module): :param float dropout: Dropout的大小 """ - def __init__(self, init_embed, + def __init__(self, embed, num_classes, kernel_nums=(30, 40, 50), kernel_sizes=(1, 3, 5), @@ -39,7 +39,7 @@ class CNNText(torch.nn.Module): super(CNNText, self).__init__() # no support for pre-trained embedding currently - self.embed = embedding.Embedding(init_embed) + self.embed = embedding.Embedding(embed) self.conv_pool = encoder.ConvMaxpool( in_channels=self.embed.embedding_dim, out_channels=kernel_nums, diff --git a/fastNLP/models/snli.py b/fastNLP/models/snli.py index 5ca4052d..97a14e9f 100644 --- a/fastNLP/models/snli.py +++ b/fastNLP/models/snli.py @@ -24,21 +24,21 @@ class ESIM(BaseModel): ESIM model的一个PyTorch实现 论文参见: https://arxiv.org/pdf/1609.06038.pdf - :param init_embedding: 初始化的Embedding + :param embed: 初始化的Embedding :param int hidden_size: 隐藏层大小,默认值为Embedding的维度 :param int num_labels: 目标标签种类数量,默认值为3 :param float dropout_rate: dropout的比率,默认值为0.3 :param float dropout_embed: 对Embedding的dropout比率,默认值为0.1 """ - def __init__(self, init_embedding, hidden_size=None, num_labels=3, dropout_rate=0.3, + def __init__(self, embed, hidden_size=None, num_labels=3, dropout_rate=0.3, dropout_embed=0.1): super(ESIM, self).__init__() - if isinstance(init_embedding, TokenEmbedding) or isinstance(init_embedding, Embedding): - self.embedding = init_embedding + if isinstance(embed, TokenEmbedding) or isinstance(embed, Embedding): + self.embedding = embed else: - self.embedding = Embedding(init_embedding) + self.embedding = Embedding(embed) self.dropout_embed = EmbedDropout(p=dropout_embed) if hidden_size is None: hidden_size = self.embedding.embed_size diff --git a/fastNLP/models/star_transformer.py b/fastNLP/models/star_transformer.py index b95d1c25..7fe0d343 100644 --- a/fastNLP/models/star_transformer.py +++ b/fastNLP/models/star_transformer.py @@ -23,7 +23,7 @@ class StarTransEnc(nn.Module): 带word embedding的Star-Transformer Encoder - :param init_embed: 单词词典, 可以是 tuple, 包括(num_embedings, embedding_dim), 即 + :param embed: 单词词典, 可以是 tuple, 包括(num_embedings, embedding_dim), 即 embedding的大小和每个词的维度. 也可以传入 nn.Embedding 对象, 此时就以传入的对象作为embedding :param hidden_size: 模型中特征维度. @@ -35,7 +35,7 @@ class StarTransEnc(nn.Module): :param dropout: 模型除词嵌入外的dropout概率. """ - def __init__(self, init_embed, + def __init__(self, embed, hidden_size, num_layers, num_head, @@ -44,7 +44,7 @@ class StarTransEnc(nn.Module): emb_dropout, dropout): super(StarTransEnc, self).__init__() - self.embedding = get_embeddings(init_embed) + self.embedding = get_embeddings(embed) emb_dim = self.embedding.embedding_dim self.emb_fc = nn.Linear(emb_dim, hidden_size) # self.emb_drop = nn.Dropout(emb_dropout) @@ -108,7 +108,7 @@ class STSeqLabel(nn.Module): 用于序列标注的Star-Transformer模型 - :param init_embed: 单词词典, 可以是 tuple, 包括(num_embedings, embedding_dim), 即 + :param embed: 单词词典, 可以是 tuple, 包括(num_embedings, embedding_dim), 即 embedding的大小和每个词的维度. 也可以传入 nn.Embedding 对象, 此时就以传入的对象作为embedding :param num_cls: 输出类别个数 @@ -122,7 +122,7 @@ class STSeqLabel(nn.Module): :param dropout: 模型除词嵌入外的dropout概率. Default: 0.1 """ - def __init__(self, init_embed, num_cls, + def __init__(self, embed, num_cls, hidden_size=300, num_layers=4, num_head=8, @@ -132,7 +132,7 @@ class STSeqLabel(nn.Module): emb_dropout=0.1, dropout=0.1, ): super(STSeqLabel, self).__init__() - self.enc = StarTransEnc(init_embed=init_embed, + self.enc = StarTransEnc(embed=embed, hidden_size=hidden_size, num_layers=num_layers, num_head=num_head, @@ -173,7 +173,7 @@ class STSeqCls(nn.Module): 用于分类任务的Star-Transformer - :param init_embed: 单词词典, 可以是 tuple, 包括(num_embedings, embedding_dim), 即 + :param embed: 单词词典, 可以是 tuple, 包括(num_embedings, embedding_dim), 即 embedding的大小和每个词的维度. 也可以传入 nn.Embedding 对象, 此时就以传入的对象作为embedding :param num_cls: 输出类别个数 @@ -187,7 +187,7 @@ class STSeqCls(nn.Module): :param dropout: 模型除词嵌入外的dropout概率. Default: 0.1 """ - def __init__(self, init_embed, num_cls, + def __init__(self, embed, num_cls, hidden_size=300, num_layers=4, num_head=8, @@ -197,7 +197,7 @@ class STSeqCls(nn.Module): emb_dropout=0.1, dropout=0.1, ): super(STSeqCls, self).__init__() - self.enc = StarTransEnc(init_embed=init_embed, + self.enc = StarTransEnc(embed=embed, hidden_size=hidden_size, num_layers=num_layers, num_head=num_head, @@ -238,7 +238,7 @@ class STNLICls(nn.Module): 用于自然语言推断(NLI)的Star-Transformer - :param init_embed: 单词词典, 可以是 tuple, 包括(num_embedings, embedding_dim), 即 + :param embed: 单词词典, 可以是 tuple, 包括(num_embedings, embedding_dim), 即 embedding的大小和每个词的维度. 也可以传入 nn.Embedding 对象, 此时就以传入的对象作为embedding :param num_cls: 输出类别个数 @@ -252,7 +252,7 @@ class STNLICls(nn.Module): :param dropout: 模型除词嵌入外的dropout概率. Default: 0.1 """ - def __init__(self, init_embed, num_cls, + def __init__(self, embed, num_cls, hidden_size=300, num_layers=4, num_head=8, @@ -262,7 +262,7 @@ class STNLICls(nn.Module): emb_dropout=0.1, dropout=0.1, ): super(STNLICls, self).__init__() - self.enc = StarTransEnc(init_embed=init_embed, + self.enc = StarTransEnc(embed=embed, hidden_size=hidden_size, num_layers=num_layers, num_head=num_head, diff --git a/test/models/test_bert.py b/test/models/test_bert.py index 969a8594..9cab3a88 100644 --- a/test/models/test_bert.py +++ b/test/models/test_bert.py @@ -23,10 +23,25 @@ class TestBert(unittest.TestCase): self.assertTrue(Const.OUTPUT in pred) self.assertEqual(tuple(pred[Const.OUTPUT].shape), (2, 2)) - pred = model.predict(input_ids) + pred = model(input_ids) self.assertTrue(isinstance(pred, dict)) self.assertTrue(Const.OUTPUT in pred) - self.assertEqual(tuple(pred[Const.OUTPUT].shape), (2,)) + self.assertEqual(tuple(pred[Const.OUTPUT].shape), (2, 2)) + + def test_bert_1_w(self): + vocab = Vocabulary().add_word_lst("this is a test .".split()) + embed = BertEmbedding(vocab, model_dir_or_name='test/data_for_tests/embedding/small_bert', + include_cls_sep=False) + + with self.assertWarns(Warning): + model = BertForSequenceClassification(embed, 2) + + input_ids = torch.LongTensor([[1, 2, 3], [5, 6, 0]]) + + pred = model.predict(input_ids) + self.assertTrue(isinstance(pred, dict)) + self.assertTrue(Const.OUTPUT in pred) + self.assertEqual(tuple(pred[Const.OUTPUT].shape), (2,)) def test_bert_2(self): @@ -44,6 +59,23 @@ class TestBert(unittest.TestCase): self.assertTrue(Const.OUTPUT in pred) self.assertEqual(tuple(pred[Const.OUTPUT].shape), (1, 2)) + def test_bert_2_w(self): + + vocab = Vocabulary().add_word_lst("this is a test [SEP] .".split()) + embed = BertEmbedding(vocab, model_dir_or_name='test/data_for_tests/embedding/small_bert', + include_cls_sep=False) + + with self.assertWarns(Warning): + model = BertForMultipleChoice(embed, 2) + + input_ids = torch.LongTensor([[[2, 6, 7], [1, 6, 5]]]) + print(input_ids.size()) + + pred = model.predict(input_ids) + self.assertTrue(isinstance(pred, dict)) + self.assertTrue(Const.OUTPUT in pred) + self.assertEqual(tuple(pred[Const.OUTPUT].shape), (1,)) + def test_bert_3(self): vocab = Vocabulary().add_word_lst("this is a test [SEP] .".split()) @@ -58,6 +90,22 @@ class TestBert(unittest.TestCase): self.assertTrue(Const.OUTPUT in pred) self.assertEqual(tuple(pred[Const.OUTPUT].shape), (2, 3, 7)) + def test_bert_3_w(self): + + vocab = Vocabulary().add_word_lst("this is a test [SEP] .".split()) + embed = BertEmbedding(vocab, model_dir_or_name='test/data_for_tests/embedding/small_bert', + include_cls_sep=True) + + with self.assertWarns(Warning): + model = BertForTokenClassification(embed, 7) + + input_ids = torch.LongTensor([[1, 2, 3], [6, 5, 0]]) + + pred = model.predict(input_ids) + self.assertTrue(isinstance(pred, dict)) + self.assertTrue(Const.OUTPUT in pred) + self.assertEqual(tuple(pred[Const.OUTPUT].shape), (2, 3)) + def test_bert_4(self): vocab = Vocabulary().add_word_lst("this is a test [SEP] .".split()) @@ -79,6 +127,22 @@ class TestBert(unittest.TestCase): self.assertTrue(isinstance(pred, dict)) self.assertEqual(len(pred), 7) + def test_bert_4_w(self): + + vocab = Vocabulary().add_word_lst("this is a test [SEP] .".split()) + embed = BertEmbedding(vocab, model_dir_or_name='test/data_for_tests/embedding/small_bert', + include_cls_sep=False) + + with self.assertWarns(Warning): + model = BertForQuestionAnswering(embed) + + input_ids = torch.LongTensor([[1, 2, 3], [6, 5, 0]]) + + pred = model.predict(input_ids) + self.assertTrue(isinstance(pred, dict)) + self.assertTrue(Const.OUTPUTS(1) in pred) + self.assertEqual(tuple(pred[Const.OUTPUTS(1)].shape), (2,)) + def test_bert_5(self): vocab = Vocabulary().add_word_lst("this is a test [SEP] .".split()) @@ -93,3 +157,19 @@ class TestBert(unittest.TestCase): self.assertTrue(Const.OUTPUT in pred) self.assertEqual(tuple(pred[Const.OUTPUT].shape), (2, 2)) + def test_bert_5_w(self): + + vocab = Vocabulary().add_word_lst("this is a test [SEP] .".split()) + embed = BertEmbedding(vocab, model_dir_or_name='test/data_for_tests/embedding/small_bert', + include_cls_sep=False) + + with self.assertWarns(Warning): + model = BertForSentenceMatching(embed) + + input_ids = torch.LongTensor([[1, 2, 3], [6, 5, 0]]) + + pred = model.predict(input_ids) + self.assertTrue(isinstance(pred, dict)) + self.assertTrue(Const.OUTPUT in pred) + self.assertEqual(tuple(pred[Const.OUTPUT].shape), (2,)) + diff --git a/test/models/test_biaffine_parser.py b/test/models/test_biaffine_parser.py index 4f93b994..4b38d816 100644 --- a/test/models/test_biaffine_parser.py +++ b/test/models/test_biaffine_parser.py @@ -27,7 +27,7 @@ def prepare_parser_data(): class TestBiaffineParser(unittest.TestCase): def test_train(self): - model = BiaffineParser(init_embed=(VOCAB_SIZE, 10), + model = BiaffineParser(embed=(VOCAB_SIZE, 10), pos_vocab_size=VOCAB_SIZE, pos_emb_dim=10, rnn_hidden_size=10, arc_mlp_size=10, @@ -37,7 +37,7 @@ class TestBiaffineParser(unittest.TestCase): RUNNER.run_model(model, ds, loss=ParserLoss(), metrics=ParserMetric()) def test_train2(self): - model = BiaffineParser(init_embed=(VOCAB_SIZE, 10), + model = BiaffineParser(embed=(VOCAB_SIZE, 10), pos_vocab_size=VOCAB_SIZE, pos_emb_dim=10, rnn_hidden_size=16, arc_mlp_size=10,