Browse Source

Merge pull request #211 from lyhuang18/lyhuang-reproduction

datasetloader改成pipe
tags/v0.4.10
lyhuang18 GitHub 5 years ago
parent
commit
b134c9f7e7
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 32 additions and 41 deletions
  1. +10
    -13
      reproduction/text_classification/train_awdlstm.py
  2. +11
    -14
      reproduction/text_classification/train_lstm.py
  3. +11
    -14
      reproduction/text_classification/train_lstm_att.py

+ 10
- 13
reproduction/text_classification/train_awdlstm.py View File

@@ -1,11 +1,9 @@
# 这个模型需要在pytorch=0.4下运行,weight_drop不支持1.0

# 首先需要加入以下的路径到环境变量,因为当前只对内部测试开放,所以需要手动申明一下路径
import os
os.environ['FASTNLP_BASE_URL'] = 'http://10.141.222.118:8888/file/download/'
os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches'
import sys
sys.path.append('../..')

from fastNLP.io.data_loader import IMDBLoader
from fastNLP.io.pipe.classification import IMDBPipe
from fastNLP.embeddings import StaticEmbedding
from model.awd_lstm import AWDLSTMSentiment

@@ -32,15 +30,14 @@ opt=Config()


# load data
dataloader=IMDBLoader()
datainfo=dataloader.process(opt.datapath)
data_bundle=IMDBPipe.process_from_file(opt.datapath)

# print(datainfo.datasets["train"])
# print(datainfo)
# print(data_bundle.datasets["train"])
# print(data_bundle)


# define model
vocab=datainfo.vocabs['words']
vocab=data_bundle.vocabs['words']
embed = StaticEmbedding(vocab, model_dir_or_name='en-glove-840b-300', requires_grad=True)
model=AWDLSTMSentiment(init_embed=embed, num_classes=opt.num_classes, hidden_dim=opt.hidden_dim, num_layers=opt.num_layers, nfc=opt.nfc, wdrop=opt.wdrop)

@@ -52,11 +49,11 @@ optimizer= Adam([param for param in model.parameters() if param.requires_grad==T


def train(datainfo, model, optimizer, loss, metrics, opt):
trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss,
metrics=metrics, dev_data=datainfo.datasets['test'], device=0, check_code_level=-1,
trainer = Trainer(data_bundle.datasets['train'], model, optimizer=optimizer, loss=loss,
metrics=metrics, dev_data=data_bundle.datasets['test'], device=0, check_code_level=-1,
n_epochs=opt.train_epoch, save_path=opt.save_model_path)
trainer.train()


if __name__ == "__main__":
train(datainfo, model, optimizer, loss, metrics, opt)
train(data_bundle, model, optimizer, loss, metrics, opt)

+ 11
- 14
reproduction/text_classification/train_lstm.py View File

@@ -1,9 +1,7 @@
# 首先需要加入以下的路径到环境变量,因为当前只对内部测试开放,所以需要手动申明一下路径
import os
os.environ['FASTNLP_BASE_URL'] = 'http://10.141.222.118:8888/file/download/'
os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches'
import sys
sys.path.append('../..')

from fastNLP.io.data_loader import IMDBLoader
from fastNLP.io.pipe.classification import IMDBPipe
from fastNLP.embeddings import StaticEmbedding
from model.lstm import BiLSTMSentiment

@@ -29,15 +27,14 @@ opt=Config()


# load data
dataloader=IMDBLoader()
datainfo=dataloader.process(opt.datapath)
data_bundle=IMDBPipe.process_from_file(opt.datapath)

# print(datainfo.datasets["train"])
# print(datainfo)
# print(data_bundle.datasets["train"])
# print(data_bundle)


# define model
vocab=datainfo.vocabs['words']
vocab=data_bundle.vocabs['words']
embed = StaticEmbedding(vocab, model_dir_or_name='en-glove-840b-300', requires_grad=True)
model=BiLSTMSentiment(init_embed=embed, num_classes=opt.num_classes, hidden_dim=opt.hidden_dim, num_layers=opt.num_layers, nfc=opt.nfc)

@@ -48,12 +45,12 @@ metrics=AccuracyMetric()
optimizer= Adam([param for param in model.parameters() if param.requires_grad==True], lr=opt.lr)


def train(datainfo, model, optimizer, loss, metrics, opt):
trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss,
metrics=metrics, dev_data=datainfo.datasets['test'], device=0, check_code_level=-1,
def train(data_bundle, model, optimizer, loss, metrics, opt):
trainer = Trainer(data_bundle.datasets['train'], model, optimizer=optimizer, loss=loss,
metrics=metrics, dev_data=data_bundle.datasets['test'], device=0, check_code_level=-1,
n_epochs=opt.train_epoch, save_path=opt.save_model_path)
trainer.train()


if __name__ == "__main__":
train(datainfo, model, optimizer, loss, metrics, opt)
train(data_bundle, model, optimizer, loss, metrics, opt)

+ 11
- 14
reproduction/text_classification/train_lstm_att.py View File

@@ -1,9 +1,7 @@
# 首先需要加入以下的路径到环境变量,因为当前只对内部测试开放,所以需要手动申明一下路径
import os
os.environ['FASTNLP_BASE_URL'] = 'http://10.141.222.118:8888/file/download/'
os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches'
import sys
sys.path.append('../..')

from fastNLP.io.data_loader import IMDBLoader
from fastNLP.io.pipe.classification import IMDBPipe
from fastNLP.embeddings import StaticEmbedding
from model.lstm_self_attention import BiLSTM_SELF_ATTENTION

@@ -31,15 +29,14 @@ opt=Config()


# load data
dataloader=IMDBLoader()
datainfo=dataloader.process(opt.datapath)
data_bundle=IMDBPipe.process_from_file(opt.datapath)

# print(datainfo.datasets["train"])
# print(datainfo)
# print(data_bundle.datasets["train"])
# print(data_bundle)


# define model
vocab=datainfo.vocabs['words']
vocab=data_bundle.vocabs['words']
embed = StaticEmbedding(vocab, model_dir_or_name='en-glove-840b-300', requires_grad=True)
model=BiLSTM_SELF_ATTENTION(init_embed=embed, num_classes=opt.num_classes, hidden_dim=opt.hidden_dim, num_layers=opt.num_layers, attention_unit=opt.attention_unit, attention_hops=opt.attention_hops, nfc=opt.nfc)

@@ -50,12 +47,12 @@ metrics=AccuracyMetric()
optimizer= Adam([param for param in model.parameters() if param.requires_grad==True], lr=opt.lr)


def train(datainfo, model, optimizer, loss, metrics, opt):
trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss,
metrics=metrics, dev_data=datainfo.datasets['test'], device=0, check_code_level=-1,
def train(data_bundle, model, optimizer, loss, metrics, opt):
trainer = Trainer(data_bundle.datasets['train'], model, optimizer=optimizer, loss=loss,
metrics=metrics, dev_data=data_bundle.datasets['test'], device=0, check_code_level=-1,
n_epochs=opt.train_epoch, save_path=opt.save_model_path)
trainer.train()


if __name__ == "__main__":
train(datainfo, model, optimizer, loss, metrics, opt)
train(data_bundle, model, optimizer, loss, metrics, opt)

Loading…
Cancel
Save