diff --git a/README.md b/README.md index 2fd27048..74090646 100644 --- a/README.md +++ b/README.md @@ -6,4 +6,133 @@ ![Hex.pm](https://img.shields.io/hexpm/l/plug.svg) [![Documentation Status](https://readthedocs.org/projects/fastnlp/badge/?version=latest)](http://fastnlp.readthedocs.io/?badge=latest) -dev0.8.0正在开发中 \ No newline at end of file +fastNLP是一款轻量级的自然语言处理(NLP)工具包,目标是快速实现NLP任务以及构建复杂模型。 + +fastNLP具有如下的特性: + +- 统一的Tabular式数据容器,简化数据预处理过程; +- 内置多种数据集的Loader和Pipe,省去预处理代码; +- 各种方便的NLP工具,例如Embedding加载(包括ELMo和BERT)、中间数据cache等; +- 部分[数据集与预训练模型](https://docs.qq.com/sheet/DVnpkTnF6VW9UeXdh?c=A1A0A0)的自动下载; +- 提供多种神经网络组件以及复现模型(涵盖中文分词、命名实体识别、句法分析、文本分类、文本匹配、指代消解、摘要等任务); +- Trainer提供多种内置Callback函数,方便实验记录、异常捕获等。 + +## 安装指南 + +fastNLP 依赖以下包: + ++ numpy>=1.14.2 ++ torch>=1.0.0 ++ tqdm>=4.28.1 ++ nltk>=3.4.1 ++ requests ++ spacy ++ prettytable>=0.7.2 + +其中torch的安装可能与操作系统及 CUDA 的版本相关,请参见 [PyTorch 官网](https://pytorch.org/) 。 +在依赖包安装完成后,您可以在命令行执行如下指令完成安装 + +```shell +pip install fastNLP +python -m spacy download en +``` + + +## fastNLP教程 +中文[文档](https://fastnlp.readthedocs.io/)、[教程](https://fastnlp.readthedocs.io/zh/latest/user/tutorials.html) + +### 快速入门 + +- [0. 快速入门](https://fastnlp.readthedocs.io/zh/latest/user/quickstart.html) + +### 详细使用教程 + +- [1. 使用DataSet预处理文本](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_1_data_preprocess.html) +- [2. 使用Vocabulary转换文本与index](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_2_vocabulary.html) +- [3. 使用Embedding模块将文本转成向量](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_3_embedding.html) +- [4. 使用Loader和Pipe加载并处理数据集](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_4_load_dataset.html) +- [5. 动手实现一个文本分类器I-使用Trainer和Tester快速训练和测试](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_5_loss_optimizer.html) +- [6. 动手实现一个文本分类器II-使用DataSetIter实现自定义训练过程](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_6_datasetiter.html) +- [7. 使用Metric快速评测你的模型](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_7_metrics.html) +- [8. 使用Modules和Models快速搭建自定义模型](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_8_modules_models.html) +- [9. 快速实现序列标注模型](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_9_seq_labeling.html) +- [10. 使用Callback自定义你的训练过程](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_10_callback.html) + +### 扩展教程 + +- [Extend-1. BertEmbedding的各种用法](https://fastnlp.readthedocs.io/zh/latest/tutorials/extend_1_bert_embedding.html) +- [Extend-2. 分布式训练简介](https://fastnlp.readthedocs.io/zh/latest/tutorials/extend_2_dist.html) +- [Extend-3. 使用fitlog 辅助 fastNLP 进行科研](https://fastnlp.readthedocs.io/zh/latest/tutorials/extend_3_fitlog.html) + + +## 内置组件 + +大部分用于的 NLP 任务神经网络都可以看做由词嵌入(embeddings)和两种模块:编码器(encoder)、解码器(decoder)组成。 + +以文本分类任务为例,下图展示了一个BiLSTM+Attention实现文本分类器的模型流程图: + + +![](./docs/source/figures/text_classification.png) + +fastNLP 在 embeddings 模块中内置了几种不同的embedding:静态embedding(GloVe、word2vec)、上下文相关embedding +(ELMo、BERT)、字符embedding(基于CNN或者LSTM的CharEmbedding) + +与此同时,fastNLP 在 modules 模块中内置了两种模块的诸多组件,可以帮助用户快速搭建自己所需的网络。 两种模块的功能和常见组件如下: + + + + + + + + + + + + + + + + +
类型 功能 例子
encoder 将输入编码为具有具有表示能力的向量 Embedding, RNN, CNN, Transformer, ... +
decoder 将具有某种表示意义的向量解码为需要的输出形式 MLP, CRF, ...
+ + +## 项目结构 + +
+ + + +fastNLP的大致工作流程如上图所示,而项目结构如下: + + + + + + + + + + + + + + + + + + + + + + + + + + +
fastNLP 开源的自然语言处理库
fastNLP.core 实现了核心功能,包括数据处理组件、训练器、测试器等
fastNLP.models 实现了一些完整的神经网络模型
fastNLP.modules 实现了用于搭建神经网络模型的诸多组件
fastNLP.embeddings 实现了将序列index转为向量序列的功能,包括读取预训练embedding等
fastNLP.io 实现了读写功能,包括数据读入与预处理,模型读写,数据与模型自动下载等
+ +
+ +*In memory of @FengZiYjun. May his soul rest in peace. We will miss you very very much!* diff --git a/fastNLP/core/drivers/paddle_driver/fleet.py b/fastNLP/core/drivers/paddle_driver/fleet.py index 0fd74795..d2d548f5 100644 --- a/fastNLP/core/drivers/paddle_driver/fleet.py +++ b/fastNLP/core/drivers/paddle_driver/fleet.py @@ -19,7 +19,7 @@ from fastNLP.core.utils import ( paddle_move_data_to_device, is_in_paddle_dist, ) -from fastNLP.core.samplers import ReproducibleIterator, RandomSampler, UnrepeatedDistributedSampler +from fastNLP.core.samplers import ReproducibleIterator, RandomSampler, UnrepeatedSampler from fastNLP.envs.env import FASTNLP_DISTRIBUTED_CHECK, USER_CUDA_VISIBLE_DEVICES from fastNLP.core.log import logger @@ -362,7 +362,7 @@ class PaddleFleetDriver(PaddleDriver): return dataloader # evaluator elif dist == "unrepeatdist": - sampler = UnrepeatedDistributedSampler( + sampler = UnrepeatedSampler( dataset=dataloader.dataset, shuffle=shuffle, seed=int(os.environ.get("FASTNLP_SEED", 0)) diff --git a/fastNLP/core/drivers/torch_driver/ddp.py b/fastNLP/core/drivers/torch_driver/ddp.py index 2d393dab..9e5e16fd 100644 --- a/fastNLP/core/drivers/torch_driver/ddp.py +++ b/fastNLP/core/drivers/torch_driver/ddp.py @@ -28,7 +28,7 @@ from fastNLP.core.drivers.torch_driver.utils import ( ) from fastNLP.core.drivers.utils import distributed_open_proc from fastNLP.core.utils import auto_param_call, check_user_specific_params -from fastNLP.core.samplers import ReproducibleIterator, RandomSampler, UnrepeatedDistributedSampler, ReproducibleBatchSampler +from fastNLP.core.samplers import ReproducibleIterator, RandomSampler, UnrepeatedSampler, ReproducibleBatchSampler from fastNLP.envs import FASTNLP_DISTRIBUTED_CHECK, FASTNLP_GLOBAL_RANK, FASTNLP_GLOBAL_SEED from fastNLP.core.log import logger from fastNLP.core.drivers.torch_driver.dist_utils import fastnlp_torch_all_gather, fastnlp_torch_broadcast_object @@ -507,7 +507,7 @@ class TorchDDPDriver(TorchDriver): args = self.get_dataloader_args(dataloader) # todo 判断 batch_sampler; - sampler = UnrepeatedDistributedSampler( + sampler = UnrepeatedSampler( dataset=args.dataset, shuffle=args.shuffle, ) diff --git a/fastNLP/core/samplers/__init__.py b/fastNLP/core/samplers/__init__.py index 68928b66..bb2ee661 100644 --- a/fastNLP/core/samplers/__init__.py +++ b/fastNLP/core/samplers/__init__.py @@ -3,19 +3,24 @@ __all__ = [ 'SortedSampler', 'ConstTokenNumSampler', 'ConstantTokenNumSampler', - 'UnrepeatedDistributedSampler', + 'MixSampler', - 'InnerSampler', 'DopedSampler', 'MixSequentialSampler', 'PollingSampler', + 'ReproducibleIterator', 'RandomSampler', - 're_instantiate_sampler' + + 're_instantiate_sampler', + + 'UnrepeatedSampler', + "UnrepeatedSortedSampler" ] -from .sampler import BucketSampler, SortedSampler, ConstTokenNumSampler, ConstantTokenNumSampler, UnrepeatedDistributedSampler -from .mix_sampler import MixSampler, InnerSampler, DopedSampler, MixSequentialSampler, PollingSampler +from .sampler import BucketSampler, SortedSampler, ConstTokenNumSampler, ConstantTokenNumSampler +from .unrepeated_sampler import UnrepeatedSampler, UnrepeatedSortedSampler +from .mix_sampler import MixSampler, DopedSampler, MixSequentialSampler, PollingSampler from .reproducible_sampler import ReproducibleIterator, RandomSampler, re_instantiate_sampler from .reproducible_batch_sampler import ReproducibleBatchSampler, BucketedBatchSampler diff --git a/fastNLP/core/samplers/mix_sampler.py b/fastNLP/core/samplers/mix_sampler.py index e219b6e2..f53c06a5 100644 --- a/fastNLP/core/samplers/mix_sampler.py +++ b/fastNLP/core/samplers/mix_sampler.py @@ -4,7 +4,6 @@ from typing import Union, List, Iterable, Dict __all__ = [ 'MixSampler', - 'InnerSampler', 'DopedSampler', 'MixSequentialSampler', 'PollingSampler' diff --git a/fastNLP/core/samplers/sampler.py b/fastNLP/core/samplers/sampler.py index e41472bf..89751884 100644 --- a/fastNLP/core/samplers/sampler.py +++ b/fastNLP/core/samplers/sampler.py @@ -7,7 +7,6 @@ __all__ = [ "SortedSampler", 'ConstTokenNumSampler', "ConstantTokenNumSampler", - "UnrepeatedDistributedSampler", ] from itertools import chain @@ -18,7 +17,7 @@ import numpy as np from fastNLP.envs.imports import _NEED_IMPORT_TORCH if _NEED_IMPORT_TORCH: - from torch.utils.data import SequentialSampler, Sampler, RandomSampler + from torch.utils.data import Sampler else: from fastNLP.core.utils.dummy_class import DummyClass as Sampler @@ -727,87 +726,3 @@ def k_means_bucketing(lengths, buckets): if buckets[bucket_id] is None or lengths[idx] <= buckets[bucket_id]: bucket_data[bucket_id].append(idx) return bucket_data - - -class UnrepeatedDistributedSampler: - def __init__(self, dataset, shuffle: bool = False, seed: int = 0): - """ - 考虑在多卡evaluate的场景下,不能重复sample。 - - :param dataset: - :param shuffle: - :param seed: - """ - self.dataset = dataset - self.shuffle = shuffle - self.seed = seed - - # 多卡的相关的参数 - self.num_replicas = 1 - self.rank = 0 - self.epoch = -1 - - def __len__(self): - """ - 返回 sampler 一次完整的迭代过程会产生多少个index。多卡的情况下,只考虑当前rank; - :return: - """ - num_common = len(self.dataset)//self.num_replicas - self.num_samples = num_common + int(self.rank < (len(self.dataset)-num_common*self.num_replicas)) - return self.num_samples - - def __iter__(self): - r""" - 当前使用num_consumed_samples做法会在交替使用的时候遇到问题; - Example: - >>> sampler = RandomSampler() - >>> iter1 = iter(sampler) - >>> iter2 = iter(sampler) - >>> next(iter1) - >>> next(iter2) # 当前num_consumed_samples的数量会发生变化 - """ - - indices = self.generate_indices() - - # subsample - indices = indices[self.rank:len(indices):self.num_replicas] - assert len(indices) == len(self) - - for index in indices: - yield index - - def generate_indices(self) -> List[int]: - """ - 生成随机序列 - - :return: - """ - if self.shuffle: - indices = list(range(len(self.dataset))) - seed = self.seed + self.epoch - rng = np.random.default_rng(abs(seed)) - rng.shuffle(indices) - if self.epoch < 0: # 防止用户忘记调用 set_epoch,至少这样可以保证每次epoch出来的index顺序不同。 - self.epoch -= 1 - else: - indices = list(range(len(self.dataset))) - return indices - - def set_epoch(self, epoch: int) -> None: - self.epoch = epoch - - def set_distributed(self, num_replicas, rank): - """ - 该方法本质上等同于 ddp 情形下的没有完成的初始化,应当在初始化该 sampler 本身后立即被调用; - - :param num_replicas: - :param rank: - :return: - """ - assert num_replicas>0 and isinstance(num_replicas, int) - assert isinstance(rank, int) and 0<=rank List[int]: + """ + 生成随机序列 + + :return: + """ + if self.shuffle: + indices = list(range(len(self.dataset))) + seed = self.seed + self.epoch + rng = np.random.default_rng(abs(seed)) + rng.shuffle(indices) + if self.epoch < 0: # 防止用户忘记调用 set_epoch,至少这样可以保证每次epoch出来的index顺序不同。 + self.epoch -= 1 + else: + indices = list(range(len(self.dataset))) + return indices + + def set_epoch(self, epoch: int) -> None: + self.epoch = epoch + + def set_distributed(self, num_replicas, rank): + """ + 该方法本质上等同于 ddp 情形下的没有完成的初始化,应当在初始化该 sampler 本身后立即被调用; + + :param num_replicas: + :param rank: + :return: + """ + assert num_replicas>0 and isinstance(num_replicas, int) + assert isinstance(rank, int) and 0<=rank List[int]: + return self.sorted_indices diff --git a/tests/core/metrics/test_span_f1_rec_acc_torch.py b/tests/core/metrics/test_span_f1_rec_acc_torch.py index 5908663a..bc711a54 100644 --- a/tests/core/metrics/test_span_f1_rec_acc_torch.py +++ b/tests/core/metrics/test_span_f1_rec_acc_torch.py @@ -1,5 +1,5 @@ import pytest -import unittest + from collections import Counter import os, sys import copy diff --git a/tests/core/samplers/test_unrepeated_sampler.py b/tests/core/samplers/test_unrepeated_sampler.py new file mode 100644 index 00000000..3e2f79ed --- /dev/null +++ b/tests/core/samplers/test_unrepeated_sampler.py @@ -0,0 +1,64 @@ +from itertools import chain + +import pytest + +from fastNLP.core.samplers import UnrepeatedSampler, UnrepeatedSortedSampler + + +class DatasetWithVaryLength: + def __init__(self, num_of_data=100): + self.data = list(range(num_of_data)) + + def __getitem__(self, item): + return self.data[item] + + def __len__(self): + return len(self.data) + + +class TestUnrepeatedSampler: + @pytest.mark.parametrize('shuffle', [True, False]) + def test_single(self, shuffle): + num_of_data = 100 + data = DatasetWithVaryLength(num_of_data) + sampler = UnrepeatedSampler(data, shuffle) + indexes = set(sampler) + assert indexes==set(range(num_of_data)) + + @pytest.mark.parametrize('num_replica', [2, 3]) + @pytest.mark.parametrize('num_of_data', [2, 3, 4, 100]) + @pytest.mark.parametrize('shuffle', [False, True]) + def test_multi(self, num_replica, num_of_data, shuffle): + data = DatasetWithVaryLength(num_of_data=num_of_data) + samplers = [] + for i in range(num_replica): + sampler = UnrepeatedSampler(dataset=data, shuffle=shuffle) + sampler.set_distributed(num_replica, rank=i) + samplers.append(sampler) + + indexes = set(chain(*samplers)) + assert indexes==set(range(num_of_data)) + + +class TestUnrepeatedSortedSampler: + @pytest.mark.parametrize('shuffle', [True, False]) + def test_single(self, shuffle): + num_of_data = 100 + data = DatasetWithVaryLength(num_of_data) + sampler = UnrepeatedSortedSampler(data, length=data.data) + indexes = list(sampler) + assert indexes==list(range(num_of_data-1, -1, -1)) + + @pytest.mark.parametrize('num_replica', [2, 3]) + @pytest.mark.parametrize('num_of_data', [2, 3, 4, 100]) + @pytest.mark.parametrize('shuffle', [False, True]) + def test_multi(self, num_replica, num_of_data, shuffle): + data = DatasetWithVaryLength(num_of_data=num_of_data) + samplers = [] + for i in range(num_replica): + sampler = UnrepeatedSortedSampler(dataset=data, length=data.data) + sampler.set_distributed(num_replica, rank=i) + samplers.append(sampler) + + indexes = set(chain(*samplers)) + assert indexes==set(range(num_of_data))