@@ -16,10 +16,12 @@ class Batch(object): | |||
:param int batch_size: the size of the batch | |||
:param Sampler sampler: a Sampler object | |||
:param bool as_numpy: If True, return Numpy array. Otherwise, return torch tensors. | |||
:param bool prefetch: If True, use multiprocessing to fetch next batch when training. | |||
:param str or torch.device device: the batch's device, if as_numpy is True, device is ignored. | |||
""" | |||
def __init__(self, dataset, batch_size, sampler=RandomSampler(), as_numpy=False): | |||
def __init__(self, dataset, batch_size, sampler=RandomSampler(), as_numpy=False, prefetch=False, | |||
device='cpu'): | |||
self.dataset = dataset | |||
self.batch_size = batch_size | |||
self.sampler = sampler | |||
@@ -28,6 +30,10 @@ class Batch(object): | |||
self.curidx = 0 | |||
self.num_batches = len(dataset) // batch_size + int(len(dataset) % batch_size != 0) | |||
self.cur_batch_indices = None | |||
self.prefetch = prefetch | |||
self.lengths = 0 | |||
if not as_numpy: | |||
self.device = device if isinstance(device, torch.device) else torch.device(device) | |||
def fetch_one(self): | |||
if self.curidx >= len(self.idx_list): | |||
@@ -44,6 +50,7 @@ class Batch(object): | |||
batch = field.get(indices) | |||
if not self.as_numpy and field.padder is not None: | |||
batch = to_tensor(batch, field.dtype) | |||
batch = batch.to(self.device) | |||
if field.is_target: | |||
batch_y[field_name] = batch | |||
if field.is_input: | |||
@@ -57,7 +64,21 @@ class Batch(object): | |||
Iterate on dataset, fetch batch data. Fetch process don't block the iterate process | |||
:return: | |||
""" | |||
return run_batch_iter(self) | |||
if self.prefetch: | |||
return run_batch_iter(self) | |||
def batch_iter(): | |||
self.init_iter() | |||
while 1: | |||
res = self.fetch_one() | |||
if res is None: | |||
break | |||
yield res | |||
return batch_iter() | |||
def init_iter(self): | |||
self.idx_list = self.sampler(self.dataset) | |||
self.curidx = 0 | |||
self.lengths = self.dataset.get_length() | |||
def __len__(self): | |||
return self.num_batches | |||
@@ -78,9 +99,7 @@ def to_tensor(batch, dtype): | |||
def run_fetch(batch, q): | |||
batch.idx_list = batch.sampler(batch.dataset) | |||
batch.curidx = 0 | |||
batch.lengths = batch.dataset.get_length() | |||
batch.init_iter() | |||
# print('start fetch') | |||
while 1: | |||
res = batch.fetch_one() | |||
@@ -34,8 +34,8 @@ from fastNLP.core.utils import get_func_signature | |||
class Trainer(object): | |||
def __init__(self, train_data, model, loss=None, metrics=None, n_epochs=3, batch_size=32, print_every=50, | |||
validate_every=-1, dev_data=None, save_path=None, optimizer=Adam(lr=0.01, weight_decay=0), | |||
check_code_level=0, metric_key=None, sampler=RandomSampler(), num_workers=0, | |||
use_tqdm=True, use_cuda=False, callbacks=None): | |||
check_code_level=0, metric_key=None, sampler=RandomSampler(), num_workers=0, pin_memory=False, | |||
timeout=0, use_tqdm=True, use_cuda=False, callbacks=None): | |||
""" | |||
:param DataSet train_data: the training data | |||
:param torch.nn.modules.module model: a PyTorch model | |||
@@ -127,6 +127,8 @@ class Trainer(object): | |||
self.best_dev_perf = None | |||
self.sampler = sampler | |||
self.num_workers = num_workers | |||
self.pin_memory = pin_memory | |||
self.timeout = timeout | |||
self.callback_manager = CallbackManager(env={"trainer": self}, callbacks=callbacks) | |||
if isinstance(optimizer, torch.optim.Optimizer): | |||
@@ -247,7 +249,9 @@ class Trainer(object): | |||
len(self.train_data) % self.batch_size != 0)) * self.n_epochs | |||
with inner_tqdm(total=total_steps, postfix='loss:{0:<6.5f}', leave=False, dynamic_ncols=True) as pbar: | |||
avg_loss = 0 | |||
data_iterator = Batch(self.train_data, batch_size=self.batch_size, sampler=self.sampler, as_numpy=False) | |||
data_iterator = Batch(self.train_data, batch_size=self.batch_size, sampler=self.sampler, as_numpy=False, | |||
num_workers=self.num_workers, pin_memory=self.pin_memory, timeout=self.timeout, | |||
keep_process=True) | |||
for epoch in range(1, self.n_epochs+1): | |||
pbar.set_description_str(desc="Epoch {}/{}".format(epoch, self.n_epochs)) | |||
# early stopping | |||
@@ -257,7 +261,7 @@ class Trainer(object): | |||
# negative sampling; replace unknown; re-weight batch_y | |||
self.callback_manager.before_batch(batch_x, batch_y, indices) | |||
_move_dict_value_to_device(batch_x, batch_y, device=self._model_device, | |||
non_blocking=self.use_cuda) # pin_memory, use non_blockling. | |||
non_blocking=self.pin_memory) # pin_memory, use non_blockling. | |||
prediction = self._data_forward(self.model, batch_x) | |||
# edit prediction | |||