@@ -0,0 +1,16 @@ | |||
.gitignore | |||
.DS_Store | |||
.ipynb_checkpoints | |||
*.pyc | |||
__pycache__ | |||
*.swp | |||
.vscode/ | |||
.idea/** | |||
caches | |||
# fitlog | |||
.fitlog | |||
logs/ | |||
.fitconfig |
@@ -8,7 +8,7 @@ install: | |||
- pip install pytest-cov | |||
# command to run tests | |||
script: | |||
- pytest --cov=./ | |||
- pytest --cov=./ test/ | |||
after_success: | |||
- bash <(curl -s https://codecov.io/bash) |
@@ -92,7 +92,7 @@ http://docutils.sf.net/ 孤立的网址会自动生成链接 | |||
各种连接 | |||
=========== | |||
:doc:`/user/with_fitlog.rst` | |||
:doc:`/user/with_fitlog` | |||
:mod:`~fastNLP.core.batch` | |||
@@ -12,6 +12,7 @@ from queue import Empty, Full | |||
import numpy as np | |||
import torch | |||
import torch.multiprocessing as mp | |||
from numbers import Number | |||
from .sampler import RandomSampler | |||
@@ -78,8 +79,10 @@ class Batch(object): | |||
for field_name, field in self.dataset.get_all_fields().items(): | |||
if field.is_target or field.is_input: | |||
batch = field.get(indices) | |||
if not self.as_numpy and field.padder is not None: | |||
batch = _to_tensor(batch, field.dtype) | |||
if not self.as_numpy and \ | |||
field.dtype is not None and \ | |||
issubclass(field.dtype, Number) and not isinstance(batch, torch.Tensor): | |||
batch = _to_tensor(batch) | |||
if field.is_target: | |||
batch_y[field_name] = batch | |||
if field.is_input: | |||
@@ -174,12 +177,12 @@ class Batch(object): | |||
# print('iter done') | |||
def _to_tensor(batch, dtype): | |||
def _to_tensor(batch): | |||
try: | |||
if dtype in (int, np.int8, np.int16, np.int32, np.int64): | |||
batch = torch.LongTensor(batch) | |||
if dtype in (float, np.float32, np.float64): | |||
batch = torch.FloatTensor(batch) | |||
if issubclass(batch.dtype.type, np.floating): | |||
batch = torch.as_tensor(batch).float() # 默认使用float32 | |||
else: | |||
batch = torch.as_tensor(batch) # 复用内存地址,避免复制 | |||
except: | |||
pass | |||
return batch |
@@ -285,7 +285,8 @@ from .field import AutoPadder | |||
from .field import FieldArray | |||
from .instance import Instance | |||
from .utils import _get_func_signature | |||
from .field import AppendToTargetOrInputException | |||
from .field import SetInputOrTargetException | |||
class DataSet(object): | |||
""" | |||
@@ -422,7 +423,7 @@ class DataSet(object): | |||
if len(self.field_arrays) == 0: | |||
# DataSet has no field yet | |||
for name, field in instance.fields.items(): | |||
field = field.tolist() if isinstance(field, np.ndarray) else field | |||
# field = field.tolist() if isinstance(field, np.ndarray) else field | |||
self.field_arrays[name] = FieldArray(name, [field]) # 第一个样本,必须用list包装起来 | |||
else: | |||
if len(self.field_arrays) != len(instance.fields): | |||
@@ -431,7 +432,11 @@ class DataSet(object): | |||
.format(len(self.field_arrays), len(instance.fields))) | |||
for name, field in instance.fields.items(): | |||
assert name in self.field_arrays | |||
self.field_arrays[name].append(field) | |||
try: | |||
self.field_arrays[name].append(field) | |||
except AppendToTargetOrInputException as e: | |||
print(f"Cannot append to field:{name}.") | |||
raise e | |||
def add_fieldarray(self, field_name, fieldarray): | |||
""" | |||
@@ -565,7 +570,11 @@ class DataSet(object): | |||
assert isinstance(flag, bool), "Only bool type supported." | |||
for name in field_names: | |||
if name in self.field_arrays: | |||
self.field_arrays[name].is_target = flag | |||
try: | |||
self.field_arrays[name].is_target = flag | |||
except SetInputOrTargetException as e: | |||
print(f"Cannot set field:{name} as target.") | |||
raise e | |||
else: | |||
raise KeyError("{} is not a valid field name.".format(name)) | |||
@@ -581,7 +590,11 @@ class DataSet(object): | |||
""" | |||
for name in field_names: | |||
if name in self.field_arrays: | |||
self.field_arrays[name].is_input = flag | |||
try: | |||
self.field_arrays[name].is_input = flag | |||
except SetInputOrTargetException as e: | |||
print(f"Cannot set field:{name} as input.") | |||
raise e | |||
else: | |||
raise KeyError("{} is not a valid field name.".format(name)) | |||
@@ -1,251 +1,162 @@ | |||
""" | |||
field模块实现了 FieldArray 和若干 Padder。 FieldArray 是 :class:`~fastNLP.DataSet` 中一列的存储方式, | |||
原理部分请参考 :doc:`fastNLP.core.dataset` | |||
""" | |||
__all__ = [ | |||
"FieldArray", | |||
"Padder", | |||
"AutoPadder", | |||
"EngChar2DPadder" | |||
] | |||
from copy import deepcopy | |||
from numbers import Number | |||
import torch | |||
import numpy as np | |||
from typing import Any | |||
from abc import abstractmethod | |||
from copy import deepcopy | |||
class FieldArray(object): | |||
""" | |||
别名::class:`fastNLP.FieldArray` :class:`fastNLP.core.field.FieldArray` | |||
FieldArray 是用于保存 :class:`~fastNLP.DataSet` 中一个field的类型。 | |||
:param str name: FieldArray的名称 | |||
:param list,numpy.ndarray content: 列表的元素可以为list,int,float, | |||
:param bool is_target: 这个field是否是一个target field。 | |||
:param bool is_input: 这个field是否是一个input field。 | |||
:param padder: :class:`~fastNLP.Padder` 类型。赋值给fieldarray的padder的对象会被deepcopy一份,需要修改padder参数必须通过 | |||
fieldarray.set_pad_val()。默认为None,即使用 :class:`~fastNLP.AutoPadder` 。 | |||
:param bool ignore_type: 是否忽略该field的type,一般如果这个field不需要转为torch.FloatTensor或torch.LongTensor, | |||
就可以设置为True。具体意义请参考 :class:`~fastNLP.DataSet` 。 | |||
""" | |||
def __init__(self, name, content, is_target=None, is_input=None, padder=None, ignore_type=False): | |||
class SetInputOrTargetException(Exception): | |||
def __init__(self, msg, index=None, field_name=None): | |||
super().__init__(msg) | |||
self.msg = msg | |||
self.index = index # 标示在哪个数据遭遇到问题了 | |||
self.field_name = field_name # 标示当前field的名称 | |||
class AppendToTargetOrInputException(Exception): | |||
def __init__(self, msg, index=None, field_name=None): | |||
super().__init__(msg) | |||
self.msg = msg | |||
self.index = index # 标示在哪个数据遭遇到问题了 | |||
self.field_name = field_name # 标示当前field的名称 | |||
class FieldArray: | |||
def __init__(self, name, content, is_target=False, is_input=False, padder=None, ignore_type=False): | |||
if len(content)==0: | |||
raise RuntimeError("Empty fieldarray is not allowed.") | |||
_content = content | |||
try: | |||
_content = list(_content) | |||
except BaseException as e: | |||
print(f"Cannot convert content(of type:{type(content)}) into list.") | |||
raise e | |||
self.name = name | |||
if isinstance(content, list): | |||
# 如果DataSet使用dict初始化, content 可能是二维list/二维array/三维list | |||
# 如果DataSet使用list of Instance 初始化, content可能是 [list]/[array]/[2D list] | |||
for idx, item in enumerate(content): | |||
# 这是使用list of Instance 初始化时第一个样本:FieldArray(name, [field]) | |||
# 将[np.array] 转化为 list of list | |||
# 也可以支持[array, array, array]的情况 | |||
if isinstance(item, np.ndarray): | |||
content[idx] = content[idx].tolist() | |||
elif isinstance(content, np.ndarray): | |||
content = content.tolist() # convert np.ndarray into 2-D list | |||
else: | |||
raise TypeError("content in FieldArray can only be list or numpy.ndarray, got {}.".format(type(content))) | |||
if len(content) == 0: | |||
raise RuntimeError("Cannot initialize FieldArray with empty list.") | |||
self.content = content # 1维 或 2维 或 3维 list, 形状可能不对齐 | |||
self.content_dim = None # 表示content是多少维的list | |||
self.content = _content | |||
self._ignore_type = ignore_type | |||
# 根据input的情况设置input,target等 | |||
self._cell_ndim = None # 多少维度 | |||
self.dtype = None # 最内层的element都是什么类型的 | |||
self._is_input = False | |||
self._is_target = False | |||
if is_input: | |||
self.is_input = is_input | |||
if is_target: | |||
self.is_target = is_target | |||
if padder is None: | |||
padder = AutoPadder(pad_val=0) | |||
else: | |||
assert isinstance(padder, Padder), "padder must be of type Padder." | |||
assert isinstance(padder, Padder), "padder must be of type fastNLP.Padder." | |||
padder = deepcopy(padder) | |||
self.set_padder(padder) | |||
self.ignore_type = ignore_type | |||
self.BASIC_TYPES = (int, float, str) # content中可接受的Python基本类型,这里没有np.array | |||
self.pytype = None | |||
self.dtype = None | |||
self._is_input = None | |||
self._is_target = None | |||
if is_input is not None or is_target is not None: | |||
self.is_input = is_input | |||
self.is_target = is_target | |||
def _set_dtype(self): | |||
if self.ignore_type is False: | |||
self.pytype = self._type_detection(self.content) | |||
self.dtype = self._map_to_np_type(self.pytype) | |||
@property | |||
def ignore_type(self): | |||
return self._ignore_type | |||
@ignore_type.setter | |||
def ignore_type(self, value): | |||
if value: | |||
self._cell_ndim = None | |||
self.dtype = None | |||
@property | |||
def is_input(self): | |||
return self._is_input | |||
@is_input.setter | |||
def is_input(self, value): | |||
""" | |||
当 field_array.is_input = True / False 时被调用 | |||
""" | |||
if value is True: | |||
self._set_dtype() | |||
# 如果(value为True)且(_is_input和_is_target都是False)且(ignore_type为False) | |||
if value is True and \ | |||
self._is_target is False and \ | |||
self._ignore_type is False: | |||
self._check_dtype_and_ndim() | |||
if value is False and self._is_target is False: | |||
self.dtype = None | |||
self._cell_ndim = None | |||
self._is_input = value | |||
@property | |||
def is_target(self): | |||
return self._is_target | |||
@is_target.setter | |||
def is_target(self, value): | |||
""" | |||
当 field_array.is_target = True / False 时被调用 | |||
""" | |||
if value is True: | |||
self._set_dtype() | |||
if value is True and \ | |||
self._is_input is False and \ | |||
self._ignore_type is False: | |||
self._check_dtype_and_ndim() | |||
if value is False and self._is_input is False: | |||
self.dtype = None | |||
self._cell_ndim = None | |||
self._is_target = value | |||
def _type_detection(self, content): | |||
""" | |||
当该field被设置为is_input或者is_target时被调用 | |||
def _check_dtype_and_ndim(self): | |||
""" | |||
if len(content) == 0: | |||
raise RuntimeError("Empty list in Field {}.".format(self.name)) | |||
type_set = set([type(item) for item in content]) | |||
if list in type_set: | |||
if len(type_set) > 1: | |||
# list 跟 非list 混在一起 | |||
raise RuntimeError("Mixed data types in Field {}: {}".format(self.name, list(type_set))) | |||
# >1维list | |||
inner_type_set = set() | |||
for l in content: | |||
[inner_type_set.add(type(obj)) for obj in l] | |||
if list not in inner_type_set: | |||
# 二维list | |||
self.content_dim = 2 | |||
return self._basic_type_detection(inner_type_set) | |||
else: | |||
if len(inner_type_set) == 1: | |||
# >2维list | |||
inner_inner_type_set = set() | |||
for _2d_list in content: | |||
for _1d_list in _2d_list: | |||
[inner_inner_type_set.add(type(obj)) for obj in _1d_list] | |||
if list in inner_inner_type_set: | |||
raise RuntimeError("FieldArray cannot handle 4-D or more-D list.") | |||
# 3维list | |||
self.content_dim = 3 | |||
return self._basic_type_detection(inner_inner_type_set) | |||
else: | |||
# list 跟 非list 混在一起 | |||
raise RuntimeError("Mixed data types in Field {}: {}".format(self.name, list(inner_type_set))) | |||
else: | |||
# 一维list | |||
for content_type in type_set: | |||
if content_type not in self.BASIC_TYPES: | |||
raise RuntimeError("Unexpected data type in Field '{}'. Expect one of {}. Got {}.".format( | |||
self.name, self.BASIC_TYPES, content_type)) | |||
self.content_dim = 1 | |||
return self._basic_type_detection(type_set) | |||
def _basic_type_detection(self, type_set): | |||
检查当前content所有的element是否是同一个类型,且是否每个元素具有相同的维度。通过的话,设置_cell_ndim与_ele_type属性;没有 | |||
通过将直接报错. | |||
:return: | |||
""" | |||
:param type_set: a set of Python types | |||
:return: one of self.BASIC_TYPES | |||
cell_0 = self.content[0] | |||
index = 0 | |||
try: | |||
type_0, dim_0 = _get_ele_type_and_dim(cell_0) | |||
for cell in self.content[1:]: | |||
index += 1 | |||
type_i, dim_i = _get_ele_type_and_dim(cell) | |||
if type_i!=type_0: | |||
raise SetInputOrTargetException("Type:{} in index {} is different from the first element with type:{}." | |||
".".format(type_i, index, type_0)) | |||
if dim_0!=dim_i: | |||
raise SetInputOrTargetException("Dimension:{} in index {} is different from the first element with " | |||
"dimension:{}.".format(dim_i, index, dim_0)) | |||
self._cell_ndim = dim_0 | |||
self.dtype = type_0 | |||
except SetInputOrTargetException as e: | |||
e.index = index | |||
raise e | |||
def append(self, val:Any): | |||
""" | |||
:param val: 把该val append到fieldarray。 | |||
:return: | |||
""" | |||
if len(type_set) == 1: | |||
return type_set.pop() | |||
elif len(type_set) == 2: | |||
# 有多个basic type; 可能需要up-cast | |||
if float in type_set and int in type_set: | |||
# up-cast int to float | |||
return float | |||
else: | |||
# str 跟 int 或者 float 混在一起 | |||
raise RuntimeError("Mixed data types in Field {}: {}".format(self.name, list(type_set))) | |||
if (self._is_target or self._is_input) and self._ignore_type is False: | |||
type_, dim_ = _get_ele_type_and_dim(val) | |||
if self.dtype!=type_: | |||
raise AppendToTargetOrInputException(f"Value(type:{type_}) are of different types with " | |||
f"previous values(type:{self.dtype}).") | |||
if self._cell_ndim!=dim_: | |||
raise AppendToTargetOrInputException(f"Value(dim:{dim_}) are of different dimensions with " | |||
f"previous values(dim:{self._cell_ndim}).") | |||
self.content.append(val) | |||
else: | |||
# str, int, float混在一起 | |||
raise RuntimeError("Mixed data types in Field {}: {}".format(self.name, list(type_set))) | |||
def _1d_list_check(self, val): | |||
"""如果不是1D list就报错 | |||
""" | |||
type_set = set((type(obj) for obj in val)) | |||
if any(obj not in self.BASIC_TYPES for obj in type_set): | |||
raise ValueError("Mixed data types in Field {}: {}".format(self.name, list(type_set))) | |||
self._basic_type_detection(type_set) | |||
# otherwise: _basic_type_detection will raise error | |||
return True | |||
def _2d_list_check(self, val): | |||
"""如果不是2D list 就报错 | |||
""" | |||
type_set = set(type(obj) for obj in val) | |||
if list(type_set) != [list]: | |||
raise ValueError("Mixed data types in Field {}: {}".format(self.name, type_set)) | |||
inner_type_set = set() | |||
for l in val: | |||
for obj in l: | |||
inner_type_set.add(type(obj)) | |||
self._basic_type_detection(inner_type_set) | |||
return True | |||
@staticmethod | |||
def _map_to_np_type(basic_type): | |||
type_mapping = {int: np.int64, float: np.float64, str: np.str, np.ndarray: np.ndarray} | |||
return type_mapping[basic_type] | |||
def __repr__(self): | |||
return "FieldArray {}: {}".format(self.name, self.content.__repr__()) | |||
def append(self, val): | |||
"""将val append到这个field的尾部。如果这个field已经被设置为input或者target,则在append之前会检查该类型是否与已有 | |||
的内容是匹配的。 | |||
:param Any val: 需要append的值。 | |||
""" | |||
if self.ignore_type is False: | |||
if isinstance(val, list): | |||
pass | |||
elif isinstance(val, tuple): # 确保最外层是list | |||
val = list(val) | |||
elif isinstance(val, np.ndarray): | |||
val = val.tolist() | |||
elif any((isinstance(val, t) for t in self.BASIC_TYPES)): | |||
pass | |||
else: | |||
raise RuntimeError( | |||
"Unexpected data type {}. Should be list, np.array, or {}".format(type(val), self.BASIC_TYPES)) | |||
if self.is_input is True or self.is_target is True: | |||
if type(val) == list: | |||
if len(val) == 0: | |||
raise ValueError("Cannot append an empty list.") | |||
if self.content_dim == 2 and self._1d_list_check(val): | |||
# 1维list检查 | |||
pass | |||
elif self.content_dim == 3 and self._2d_list_check(val): | |||
# 2维list检查 | |||
pass | |||
else: | |||
raise RuntimeError( | |||
"Dimension not matched: expect dim={}, got {}.".format(self.content_dim - 1, val)) | |||
elif type(val) in self.BASIC_TYPES and self.content_dim == 1: | |||
# scalar检查 | |||
if type(val) == float and self.pytype == int: | |||
self.pytype = float | |||
self.dtype = self._map_to_np_type(self.pytype) | |||
else: | |||
raise RuntimeError( | |||
"Unexpected data type {}. Should be list, np.array, or {}".format(type(val), self.BASIC_TYPES)) | |||
self.content.append(val) | |||
self.content.append(val) | |||
def __getitem__(self, indices): | |||
return self.get(indices, pad=False) | |||
def __setitem__(self, idx, val): | |||
assert isinstance(idx, int) | |||
if (self._is_target or self._is_input) and self.ignore_type is False: # 需要检测类型 | |||
type_, dim_ = _get_ele_type_and_dim(val) | |||
if self.dtype!=type_: | |||
raise RuntimeError(f"Value(type:{type_}) are of different types with " | |||
f"other values(type:{self.dtype}).") | |||
if self._cell_ndim!=dim_: | |||
raise RuntimeError(f"Value(dim:{dim_}) are of different dimensions with " | |||
f"previous values(dim:{self._cell_ndim}).") | |||
self.content[idx] = val | |||
def get(self, indices, pad=True): | |||
""" | |||
根据给定的indices返回内容 | |||
@@ -257,14 +168,14 @@ class FieldArray(object): | |||
if isinstance(indices, int): | |||
return self.content[indices] | |||
if self.is_input is False and self.is_target is False: | |||
raise RuntimeError("Please specify either is_input or is_target is True for {}".format(self.name)) | |||
raise RuntimeError("Please specify either is_input or is_target to True for {}".format(self.name)) | |||
contents = [self.content[i] for i in indices] | |||
if self.padder is None or pad is False: | |||
return np.array(contents) | |||
else: | |||
return self.padder(contents, field_name=self.name, field_ele_dtype=self.dtype) | |||
return self.padder(contents, field_name=self.name, field_ele_dtype=self.dtype, dim=self._cell_ndim) | |||
def set_padder(self, padder): | |||
""" | |||
设置padder,在这个field进行pad的时候用这个padder进行pad,如果为None则不进行pad。 | |||
@@ -276,7 +187,7 @@ class FieldArray(object): | |||
self.padder = deepcopy(padder) | |||
else: | |||
self.padder = None | |||
def set_pad_val(self, pad_val): | |||
""" | |||
修改padder的pad_val. | |||
@@ -286,7 +197,7 @@ class FieldArray(object): | |||
if self.padder is not None: | |||
self.padder.set_pad_val(pad_val) | |||
return self | |||
def __len__(self): | |||
""" | |||
Returns the size of FieldArray. | |||
@@ -294,7 +205,7 @@ class FieldArray(object): | |||
:return int length: | |||
""" | |||
return len(self.content) | |||
def to(self, other): | |||
""" | |||
将other的属性复制给本FieldArray(other必须为FieldArray类型). | |||
@@ -303,22 +214,63 @@ class FieldArray(object): | |||
:param other: :class:`~fastNLP.FieldArray` 从哪个field拷贝属性 | |||
:return: :class:`~fastNLP.FieldArray` | |||
""" | |||
assert isinstance(other, FieldArray), "Only support FieldArray type, not {}.".format(type(other)) | |||
assert isinstance(other, FieldArray), "Only supports fastNLP.FieldArray type, not {}.".format(type(other)) | |||
self.ignore_type = other.ignore_type | |||
self.is_input = other.is_input | |||
self.is_target = other.is_target | |||
self.padder = other.padder | |||
self.ignore_type = other.ignore_type | |||
return self | |||
def _is_iterable(content): | |||
def _get_ele_type_and_dim(cell:Any, dim=0): | |||
""" | |||
识别cell的类别与dimension的数量 | |||
numpy scalar type:https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.scalars.html | |||
:param cell: | |||
:param dim: | |||
:return: | |||
""" | |||
if isinstance(cell, (str, Number, np.bool_)): | |||
return type(cell), dim | |||
elif isinstance(cell, list): | |||
dim += 1 | |||
res = [_get_ele_type_and_dim(cell_i, dim) for cell_i in cell] | |||
types = set([i for i,j in res]) | |||
dims = set([j for i,j in res]) | |||
if len(types)>1: | |||
raise SetInputOrTargetException("Mixed types detected: {}.".format(list(types))) | |||
if len(dims)>1: | |||
raise SetInputOrTargetException("Mixed dimension detected: {}.".format(list(dims))) | |||
return types.pop(), dims.pop() | |||
elif isinstance(cell, torch.Tensor): | |||
return cell.dtype, cell.dim() + dim # 如果是torch.mean的结果是0 | |||
elif isinstance(cell, np.ndarray): | |||
if cell.dtype != np.dtype('O'): # 如果不是object的话说明是well-formatted的了 | |||
return cell.dtype.type, cell.ndim + dim | |||
# 否则需要继续往下iterate | |||
dim += 1 | |||
res = [_get_ele_type_and_dim(cell_i, dim) for cell_i in cell] | |||
types = set([i for i,j in res]) | |||
dims = set([j for i,j in res]) | |||
if len(types)>1: | |||
raise SetInputOrTargetException("Mixed types detected: {}.".format(list(types))) | |||
if len(dims)>1: | |||
raise SetInputOrTargetException("Mixed dimension detected: {}.".format(list(dims))) | |||
return types.pop(), dims.pop() | |||
else: # 包含tuple, set, dict以及其它的类型 | |||
raise SetInputOrTargetException(f"Cannot process type:{type(cell)}.") | |||
def _is_iterable(value): | |||
# 检查是否是iterable的, duck typing | |||
try: | |||
_ = (e for e in content) | |||
except TypeError: | |||
iter(value) | |||
return True | |||
except BaseException as e: | |||
return False | |||
return True | |||
class Padder: | |||
@@ -327,32 +279,35 @@ class Padder: | |||
所有padder都需要继承这个类,并覆盖__call__方法。 | |||
用于对batch进行padding操作。传入的element是inplace的,即直接修改element可能导致数据变化,建议inplace修改之前deepcopy一份。 | |||
.. py:function:: __call__(self, contents, field_name, field_ele_dtype): | |||
传入的是List内容。假设有以下的DataSet。 | |||
:param list(Any) contents: 传入的element是inplace的,即直接修改element可能导致数据变化,建议inplace修改之前 | |||
deepcopy一份。 | |||
:param str, field_name: field的名称。 | |||
:param np.int64,np.float64,np.str,None, field_ele_dtype: 该field的内层元素的类型。如果该field的ignore_type为True,该这个值为None。 | |||
:return: np.array([padded_element]) | |||
""" | |||
def __init__(self, pad_val=0, **kwargs): | |||
self.pad_val = pad_val | |||
def set_pad_val(self, pad_val): | |||
self.pad_val = pad_val | |||
def __call__(self, contents, field_name, field_ele_dtype): | |||
@abstractmethod | |||
def __call__(self, contents, field_name, field_ele_dtype, dim:int): | |||
""" | |||
传入的是List内容。假设有以下的DataSet。 | |||
:param list(Any) contents: 传入的element是inplace的,即直接修改element可能导致数据变化,建议inplace修改之前 | |||
deepcopy一份。 | |||
:param str, field_name: field的名称。 | |||
:param np.int64,np.float64,np.str,None, field_ele_dtype: 该field的内层元素的类型。如果该field的ignore_type为True,该这个值为None。 | |||
:param np.int64,np.float64,np.str,None, field_ele_dtype: 该field的内层元素的类型。如果该field的ignore_type为True, | |||
该这个值为None。 | |||
:param dim: 这个field的维度。当ignore_type为True时,该值为None | |||
:return: np.array([padded_element]) | |||
Example:: | |||
@@ -394,50 +349,87 @@ class AutoPadder(Padder): | |||
根据contents的数据自动判定是否需要做padding。 | |||
1 如果元素类型(元素类型是指field中最里层元素的数据类型, 可以通过FieldArray.dtype查看,比如['This', 'is', ...]的元素类 | |||
型为np.str, [[1,2], ...]的元素类型为np.int64)的数据不为(np.int64, np.float64)则不会进行pad | |||
型为str, [[1,2], ...]的元素类型为int)的数据不为数值类型则不会进行pad | |||
2 如果元素类型为数值类型,比如np.int64, np.float64, int, float, torch.int64等 | |||
2 如果元素类型为(np.int64, np.float64), | |||
2.1 如果该field的内容为数值类型(包括int, float等),比如为seq_len, 则不进行padding | |||
2.1 如果该field的内容为(np.int64, np.float64),比如为seq_len, 则不进行padding | |||
2.2 如果该field的内容等价于一维list, 那么会将Batch中的List pad为一样长。 | |||
2.2 如果该field的内容为List, 那么会将Batch中的List pad为一样长。若该List下还有里层的List需要padding,请使用其它padder。 | |||
即如果Instance中field形如[1, 2, 3, ...],则可以pad;若为[[1,2], [3,4, ...]]则不能进行pad | |||
2.3 如果该field的内容等价于二维list,那么会按照英语character padding的方式进行padding。如果是character padding建议使用 | |||
:class: fastNLP.EngChar2DPadder. | |||
2.4 如果该field的内容等价于三维list,则如果每个instance在每个维度上相等,会组成一个batch的tensor返回,这种情况应该是为图片 | |||
的情况。 | |||
3 其它情况不进行处理,返回一个np.array类型。 | |||
""" | |||
def __init__(self, pad_val=0): | |||
""" | |||
:param pad_val: int, padding的位置使用该index | |||
""" | |||
super().__init__(pad_val=pad_val) | |||
def _is_two_dimension(self, contents): | |||
""" | |||
判断contents是不是只有两个维度。[[1,2], [3]]是两个维度. [[[1,2], [3, 4, 5]], [[4,5]]]有三个维度 | |||
:param contents: | |||
:return: | |||
""" | |||
value = contents[0] | |||
if isinstance(value, (np.ndarray, list)): | |||
value = value[0] | |||
if isinstance(value, (np.ndarray, list)): | |||
return False | |||
return True | |||
return False | |||
def __call__(self, contents, field_name, field_ele_dtype): | |||
if not _is_iterable(contents[0]): | |||
array = np.array([content for content in contents], dtype=field_ele_dtype) | |||
elif field_ele_dtype in (np.int64, np.float64) and self._is_two_dimension(contents): | |||
max_len = max([len(content) for content in contents]) | |||
array = np.full((len(contents), max_len), self.pad_val, dtype=field_ele_dtype) | |||
for i, content in enumerate(contents): | |||
array[i][:len(content)] = content | |||
elif field_ele_dtype is None: | |||
array = np.array(contents) # 当ignore_type=True时,直接返回contents | |||
else: # should only be str | |||
array = np.array([content for content in contents]) | |||
return array | |||
def __call__(self, contents, field_name, field_ele_dtype, dim): | |||
if field_ele_dtype: | |||
if dim>3: | |||
return np.array(contents) | |||
if isinstance(field_ele_dtype, np.dtype) or field_ele_dtype in (float, int, bool, str): | |||
if isinstance(field_ele_dtype, np.number) or field_ele_dtype in (float, int, bool): | |||
if dim==0: | |||
array = np.array(contents, dtype=field_ele_dtype) | |||
elif dim==1: | |||
max_len = max(map(len, contents)) | |||
array = np.full((len(contents), max_len), self.pad_val, dtype=field_ele_dtype) | |||
for i, content_i in enumerate(contents): | |||
array[i, :len(content_i)] = content_i | |||
elif dim==2: | |||
max_len = max(map(len, contents)) | |||
max_word_len = max([max([len(content_ii) for content_ii in content_i]) for | |||
content_i in contents]) | |||
array = np.full((len(contents), max_len, max_word_len), self.pad_val, dtype=field_ele_dtype) | |||
for i, content_i in enumerate(contents): | |||
for j, content_ii in enumerate(content_i): | |||
array[i, j, :len(content_ii)] = content_ii | |||
else: | |||
shape = np.shape(contents) | |||
if len(shape)==4: # 说明各dimension是相同的大小 | |||
array = np.array(contents, dtype=field_ele_dtype) | |||
else: | |||
raise RuntimeError(f"Field:{field_name} has 3 dimensions, every sample should have the same shape.") | |||
return array | |||
return np.array(contents) | |||
elif str(field_ele_dtype).startswith('torch'): | |||
if dim==0: | |||
tensor = torch.tensor(contents).to(field_ele_dtype) | |||
elif dim==1: | |||
max_len = max(map(len, contents)) | |||
tensor = torch.full((len(contents), max_len), fill_value=self.pad_val, dtype=field_ele_dtype) | |||
for i, content_i in enumerate(contents): | |||
tensor[i, :len(content_i)] = torch.tensor(content_i) | |||
elif dim==2: | |||
max_len = max(map(len, contents)) | |||
max_word_len = max([max([len(content_ii) for content_ii in content_i]) for | |||
content_i in contents]) | |||
tensor = torch.full((len(contents), max_len, max_word_len), fill_value=self.pad_val, | |||
dtype=field_ele_dtype) | |||
for i, content_i in enumerate(contents): | |||
for j, content_ii in enumerate(content_i): | |||
tensor[i, j, :len(content_ii)] = torch.tensor(content_ii) | |||
else: | |||
shapes = set([np.shape(content_i) for content_i in contents]) | |||
if len(shapes)>1: | |||
raise RuntimeError(f"Field:{field_name} has 3 dimensions, every sample should have the same shape.") | |||
shape = shapes.pop() | |||
if len(shape)==3: | |||
tensor = torch.full([len(contents)]+list(shape), fill_value=self.pad_val, dtype=field_ele_dtype) | |||
for i, content_i in enumerate(contents): | |||
tensor[i] = torch.tensor(content_i, dtype=field_ele_dtype) | |||
else: | |||
raise RuntimeError(f"Field:{field_name} has 3 dimensions, every sample should have the same shape.") | |||
return tensor | |||
else: | |||
return np.array(contents) # 不进行任何操作 | |||
else: | |||
return np.array(contents) | |||
class EngChar2DPadder(Padder): | |||
@@ -463,7 +455,7 @@ class EngChar2DPadder(Padder): | |||
dataset.set_padder('chars', padder) # chars这个field的设置为了EnChar2DPadder | |||
""" | |||
def __init__(self, pad_val=0, pad_length=0): | |||
""" | |||
:param pad_val: int, pad的位置使用该index | |||
@@ -471,32 +463,10 @@ class EngChar2DPadder(Padder): | |||
都pad或截取到该长度. | |||
""" | |||
super().__init__(pad_val=pad_val) | |||
self.pad_length = pad_length | |||
def _exactly_three_dims(self, contents, field_name): | |||
""" | |||
检查传入的contents是否刚好是3维,如果不是3维就报错。理论上,第一个维度是batch,第二个维度是word,第三个维度是character | |||
:param contents: | |||
:param field_name: str | |||
:return: | |||
""" | |||
if not isinstance(contents, list): | |||
raise TypeError("contents should be a list, not {}.".format(type(contents))) | |||
value = contents[0] | |||
try: | |||
value = value[0] | |||
except: | |||
raise ValueError("Field:{} only has one dimension.".format(field_name)) | |||
try: | |||
value = value[0] | |||
except: | |||
raise ValueError("Field:{} only has two dimensions.".format(field_name)) | |||
if _is_iterable(value): | |||
raise ValueError("Field:{} has more than 3 dimension.".format(field_name)) | |||
def __call__(self, contents, field_name, field_ele_dtype): | |||
def __call__(self, contents, field_name, field_ele_dtype, dim): | |||
""" | |||
期望输入类似于 | |||
[ | |||
@@ -510,11 +480,11 @@ class EngChar2DPadder(Padder): | |||
:param field_ele_dtype | |||
:return: | |||
""" | |||
if field_ele_dtype not in (np.int64, np.float64): | |||
if field_ele_dtype not in (np.int64, np.float64, int, float): | |||
raise TypeError('dtype of Field:{} should be np.int64 or np.float64 to do 2D padding, get {}.'.format( | |||
field_name, field_ele_dtype | |||
)) | |||
self._exactly_three_dims(contents, field_name) | |||
assert dim==2, f"Field:{field_name} has {dim}, EngChar2DPadder only supports input with 2 dimensions." | |||
if self.pad_length < 1: | |||
max_char_length = max([max(len(char_lst) for char_lst in word_lst) for word_lst in contents]) | |||
else: | |||
@@ -522,12 +492,12 @@ class EngChar2DPadder(Padder): | |||
max_sent_length = max(len(word_lst) for word_lst in contents) | |||
batch_size = len(contents) | |||
dtype = type(contents[0][0][0]) | |||
padded_array = np.full((batch_size, max_sent_length, max_char_length), fill_value=self.pad_val, | |||
dtype=dtype) | |||
for b_idx, word_lst in enumerate(contents): | |||
for c_idx, char_lst in enumerate(word_lst): | |||
chars = char_lst[:max_char_length] | |||
padded_array[b_idx, c_idx, :len(chars)] = chars | |||
return padded_array |
@@ -440,7 +440,7 @@ def _bio_tag_to_spans(tags, ignore_labels=None): | |||
class SpanFPreRecMetric(MetricBase): | |||
""" | |||
r""" | |||
别名::class:`fastNLP.SpanFPreRecMetric` :class:`fastNLP.core.metrics.SpanFPreRecMetric` | |||
在序列标注问题中,以span的方式计算F, pre, rec. | |||
@@ -478,7 +478,7 @@ class SpanFPreRecMetric(MetricBase): | |||
label的f1, pre, rec | |||
:param str f_type: 'micro'或'macro'. 'micro':通过先计算总体的TP,FN和FP的数量,再计算f, precision, recall; 'macro': | |||
分布计算每个类别的f, precision, recall,然后做平均(各类别f的权重相同) | |||
:param float beta: f_beta分数,:math:`f_beta = \frac{(1 + {beta}^{2})*(pre*rec)}{({beta}^{2}*pre + rec)}`. | |||
:param float beta: f_beta分数, :math:`f_{beta} = \frac{(1 + {beta}^{2})*(pre*rec)}{({beta}^{2}*pre + rec)}` . | |||
常用为beta=0.5, 1, 2. 若为0.5则精确率的权重高于召回率;若为1,则两者平等;若为2,则召回率权重高于精确率。 | |||
""" | |||
@@ -701,16 +701,16 @@ def _pred_topk(y_prob, k=1): | |||
class SQuADMetric(MetricBase): | |||
""" | |||
r""" | |||
别名::class:`fastNLP.SQuADMetric` :class:`fastNLP.core.metrics.SQuADMetric` | |||
SQuAD数据集metric | |||
:param pred1: 参数映射表中`pred1`的映射关系,None表示映射关系为`pred1`->`pred1` | |||
:param pred2: 参数映射表中`pred2`的映射关系,None表示映射关系为`pred2`->`pred2` | |||
:param target1: 参数映射表中`target1`的映射关系,None表示映射关系为`target1`->`target1` | |||
:param target2: 参数映射表中`target2`的映射关系,None表示映射关系为`target2`->`target2` | |||
:param float beta: f_beta分数,:math:`f_beta = \frac{(1 + {beta}^{2})*(pre*rec)}{({beta}^{2}*pre + rec)}`. | |||
:param pred1: 参数映射表中 `pred1` 的映射关系,None表示映射关系为 `pred1` -> `pred1` | |||
:param pred2: 参数映射表中 `pred2` 的映射关系,None表示映射关系为 `pred2` -> `pred2` | |||
:param target1: 参数映射表中 `target1` 的映射关系,None表示映射关系为 `target1` -> `target1` | |||
:param target2: 参数映射表中 `target2` 的映射关系,None表示映射关系为 `target2` -> `target2` | |||
:param float beta: f_beta分数, :math:`f_{beta} = \frac{(1 + {beta}^{2})*(pre*rec)}{({beta}^{2}*pre + rec)}` . | |||
常用为beta=0.5, 1, 2. 若为0.5则精确率的权重高于召回率;若为1,则两者平等;若为2,则召回率权重高于精确率。 | |||
:param bool right_open: right_open为true表示start跟end指针指向一个左闭右开区间,为false表示指向一个左闭右闭区间。 | |||
:param bool print_predict_stat: True则输出预测答案是否为空与正确答案是否为空的统计信息, False则不输出 | |||
@@ -532,7 +532,7 @@ class Trainer(object): | |||
self._train() | |||
self.callback_manager.on_train_end() | |||
except Exception as e: | |||
except BaseException as e: | |||
self.callback_manager.on_exception(e) | |||
if on_exception == 'auto': | |||
if not isinstance(e, (CallbackException, KeyboardInterrupt)): | |||
@@ -28,6 +28,8 @@ from ..core.instance import Instance | |||
from .file_reader import _read_csv, _read_json, _read_conll | |||
from .base_loader import DataSetLoader | |||
from .data_loader.sst import SSTLoader | |||
from ..core.const import Const | |||
class PeopleDailyCorpusLoader(DataSetLoader): | |||
""" | |||
@@ -257,9 +259,9 @@ class SNLILoader(JsonLoader): | |||
def __init__(self): | |||
fields = { | |||
'sentence1_parse': 'words1', | |||
'sentence2_parse': 'words2', | |||
'gold_label': 'target', | |||
'sentence1_parse': Const.INPUTS(0), | |||
'sentence2_parse': Const.INPUTS(1), | |||
'gold_label': Const.TARGET, | |||
} | |||
super(SNLILoader, self).__init__(fields=fields) | |||
@@ -271,10 +273,10 @@ class SNLILoader(JsonLoader): | |||
return t.leaves() | |||
ds.apply(lambda ins: parse_tree( | |||
ins['words1']), new_field_name='words1') | |||
ins[Const.INPUTS(0)]), new_field_name=Const.INPUTS(0)) | |||
ds.apply(lambda ins: parse_tree( | |||
ins['words2']), new_field_name='words2') | |||
ds.drop(lambda x: x['target'] == '-') | |||
ins[Const.INPUTS(1)]), new_field_name=Const.INPUTS(1)) | |||
ds.drop(lambda x: x[Const.TARGET] == '-') | |||
return ds | |||
@@ -107,9 +107,9 @@ class EmbedLoader(BaseLoader): | |||
:param bool normalize: 是否将每个vector归一化到norm为1 | |||
:param str error: `ignore` , `strict` ; 如果 `ignore` ,错误将自动跳过; 如果 `strict` , 错误将抛出。这里主要可能出错的地 | |||
方在于词表有空行或者词表出现了维度不一致。 | |||
:return numpy.ndarray: shape为 [len(vocab), dimension], dimension由pretrain的embedding决定。 | |||
:return numpy.ndarray: Vocabulary Embedding的shape是[词表大小+x, 词表维度], "词表大小+x"是由于最终的大小还取决与 | |||
:return (numpy.ndarray, Vocabulary): Embedding的shape是[词表大小+x, 词表维度], "词表大小+x"是由于最终的大小还取决与 | |||
是否使用padding, 以及unknown有没有在词表中找到对应的词。 Vocabulary中的词的顺序与Embedding的顺序是一一对应的。 | |||
""" | |||
vocab = Vocabulary(padding=padding, unknown=unknown) | |||
vec_dict = {} | |||
@@ -2,43 +2,28 @@ | |||
这里复现了在fastNLP中实现的模型,旨在达到与论文中相符的性能。 | |||
复现的模型有: | |||
- Star-Transformer | |||
- [Star-Transformer](Star_transformer/) | |||
- ... | |||
# 任务复现 | |||
## Text Classification (文本分类) | |||
- still in progress | |||
## Matching (自然语言推理/句子匹配) | |||
- still in progress | |||
## Sequence Labeling (序列标注) | |||
- still in progress | |||
## Coreference resolution (指代消解) | |||
- still in progress | |||
## Summarization (摘要) | |||
- still in progress | |||
## Star-Transformer | |||
[reference](https://arxiv.org/abs/1902.09113) | |||
### Performance (still in progress) | |||
|任务| 数据集 | SOTA | 模型表现 | | |||
|------|------| ------| ------| | |||
|Pos Tagging|CTB 9.0|-|ACC 92.31| | |||
|Pos Tagging|CONLL 2012|-|ACC 96.51| | |||
|Named Entity Recognition|CONLL 2012|-|F1 85.66| | |||
|Text Classification|SST|-|49.18| | |||
|Natural Language Inference|SNLI|-|83.76| | |||
### Usage | |||
``` python | |||
# for sequence labeling(ner, pos tagging, etc) | |||
from fastNLP.models.star_transformer import STSeqLabel | |||
model = STSeqLabel( | |||
vocab_size=10000, num_cls=50, | |||
emb_dim=300) | |||
# for sequence classification | |||
from fastNLP.models.star_transformer import STSeqCls | |||
model = STSeqCls( | |||
vocab_size=10000, num_cls=50, | |||
emb_dim=300) | |||
# for natural language inference | |||
from fastNLP.models.star_transformer import STNLICls | |||
model = STNLICls( | |||
vocab_size=10000, num_cls=50, | |||
emb_dim=300) | |||
``` | |||
## ... |
@@ -0,0 +1,34 @@ | |||
# Star-Transformer | |||
paper: [Star-Transformer](https://arxiv.org/abs/1902.09113) | |||
## Performance (still in progress) | |||
|任务| 数据集 | SOTA | 模型表现 | | |||
|------|------| ------| ------| | |||
|Pos Tagging|CTB 9.0|-|ACC 92.31| | |||
|Pos Tagging|CONLL 2012|-|ACC 96.51| | |||
|Named Entity Recognition|CONLL 2012|-|F1 85.66| | |||
|Text Classification|SST|-|49.18| | |||
|Natural Language Inference|SNLI|-|83.76| | |||
## Usage | |||
``` python | |||
# for sequence labeling(ner, pos tagging, etc) | |||
from fastNLP.models.star_transformer import STSeqLabel | |||
model = STSeqLabel( | |||
vocab_size=10000, num_cls=50, | |||
emb_dim=300) | |||
# for sequence classification | |||
from fastNLP.models.star_transformer import STSeqCls | |||
model = STSeqCls( | |||
vocab_size=10000, num_cls=50, | |||
emb_dim=300) | |||
# for natural language inference | |||
from fastNLP.models.star_transformer import STNLICls | |||
model = STNLICls( | |||
vocab_size=10000, num_cls=50, | |||
emb_dim=300) | |||
``` |
@@ -0,0 +1,6 @@ | |||
from fastNLP.io.dataset_loader import SNLILoader | |||
# TODO: still in progress | |||
@@ -0,0 +1,41 @@ | |||
import torch | |||
import torch.nn as nn | |||
from fastNLP.core.const import Const | |||
from fastNLP.models import BaseModel | |||
from fastNLP.modules.encoder.bert import BertModel | |||
class BertForNLI(BaseModel): | |||
# TODO: still in progress | |||
def __init__(self, class_num=3, bert_dir=None): | |||
super(BertForNLI, self).__init__() | |||
if bert_dir is not None: | |||
self.bert = BertModel.from_pretrained(bert_dir) | |||
else: | |||
self.bert = BertModel() | |||
hidden_size = self.bert.pooler.dense._parameters['bias'].size(-1) | |||
self.classifier = nn.Linear(hidden_size, class_num) | |||
def forward(self, words, seq_len1, seq_len2, target=None): | |||
""" | |||
:param torch.Tensor words: [batch_size, seq_len] input_ids | |||
:param torch.Tensor seq_len1: [batch_size, seq_len] token_type_ids | |||
:param torch.Tensor seq_len2: [batch_size, seq_len] attention_mask | |||
:param torch.Tensor target: [batch] | |||
:return: | |||
""" | |||
_, pooled_output = self.bert(words, seq_len1, seq_len2) | |||
logits = self.classifier(pooled_output) | |||
if target is not None: | |||
loss_func = torch.nn.CrossEntropyLoss() | |||
loss = loss_func(logits, target) | |||
return {Const.OUTPUT: logits, Const.LOSS: loss} | |||
return {Const.OUTPUT: logits} | |||
def predict(self, words, seq_len1, seq_len2, target=None): | |||
return self.forward(words, seq_len1, seq_len2) | |||
@@ -0,0 +1,97 @@ | |||
import os | |||
import torch | |||
from fastNLP.core import Vocabulary, DataSet, Trainer, Tester, Const, Adam, AccuracyMetric | |||
from reproduction.matching.data.SNLIDataLoader import SNLILoader | |||
from legacy.component.bert_tokenizer import BertTokenizer | |||
from reproduction.matching.model.bert import BertForNLI | |||
def preprocess_data(data: DataSet, bert_dir): | |||
""" | |||
preprocess data set to bert-need data set. | |||
:param data: | |||
:param bert_dir: | |||
:return: | |||
""" | |||
tokenizer = BertTokenizer.from_pretrained(os.path.join(bert_dir, 'vocab.txt')) | |||
vocab = Vocabulary(padding=None, unknown=None) | |||
with open(os.path.join(bert_dir, 'vocab.txt')) as f: | |||
lines = f.readlines() | |||
vocab_list = [] | |||
for line in lines: | |||
vocab_list.append(line.strip()) | |||
vocab.add_word_lst(vocab_list) | |||
vocab.build_vocab() | |||
vocab.padding = '[PAD]' | |||
vocab.unknown = '[UNK]' | |||
for i in range(2): | |||
data.apply(lambda x: tokenizer.tokenize(" ".join(x[Const.INPUTS(i)])), | |||
new_field_name=Const.INPUTS(i)) | |||
data.apply(lambda x: ['[CLS]'] + x[Const.INPUTS(0)] + ['[SEP]'] + x[Const.INPUTS(1)] + ['[SEP]'], | |||
new_field_name=Const.INPUT) | |||
data.apply(lambda x: [0] * (len(x[Const.INPUTS(0)]) + 2) + [1] * (len(x[Const.INPUTS(1)]) + 1), | |||
new_field_name=Const.INPUT_LENS(0)) | |||
data.apply(lambda x: [1] * len(x[Const.INPUT_LENS(0)]), new_field_name=Const.INPUT_LENS(1)) | |||
max_len = 512 | |||
data.apply(lambda x: x[Const.INPUT][: max_len], new_field_name=Const.INPUT) | |||
data.apply(lambda x: [vocab.to_index(w) for w in x[Const.INPUT]], new_field_name=Const.INPUT) | |||
data.apply(lambda x: x[Const.INPUT_LENS(0)][: max_len], new_field_name=Const.INPUT_LENS(0)) | |||
data.apply(lambda x: x[Const.INPUT_LENS(1)][: max_len], new_field_name=Const.INPUT_LENS(1)) | |||
target_vocab = Vocabulary(padding=None, unknown=None) | |||
target_vocab.add_word_lst(['neutral', 'contradiction', 'entailment']) | |||
target_vocab.build_vocab() | |||
data.apply(lambda x: target_vocab.to_index(x[Const.TARGET]), new_field_name=Const.TARGET) | |||
data.set_input(Const.INPUT, Const.INPUT_LENS(0), Const.INPUT_LENS(1), Const.TARGET) | |||
data.set_target(Const.TARGET) | |||
return data | |||
bert_dirs = 'path/to/bert/dir' | |||
# load raw data set | |||
train_data = SNLILoader().load('./data/snli/snli_1.0_train.jsonl') | |||
dev_data = SNLILoader().load('./data/snli/snli_1.0_dev.jsonl') | |||
test_data = SNLILoader().load('./data/snli/snli_1.0_test.jsonl') | |||
print('successfully load data sets!') | |||
train_data = preprocess_data(train_data, bert_dirs) | |||
dev_data = preprocess_data(dev_data, bert_dirs) | |||
test_data = preprocess_data(test_data, bert_dirs) | |||
model = BertForNLI(bert_dir=bert_dirs) | |||
trainer = Trainer( | |||
train_data=train_data, | |||
model=model, | |||
optimizer=Adam(lr=2e-5, model_params=model.parameters()), | |||
batch_size=torch.cuda.device_count() * 12, | |||
n_epochs=4, | |||
print_every=-1, | |||
dev_data=dev_data, | |||
metrics=AccuracyMetric(), | |||
metric_key='acc', | |||
device=[i for i in range(torch.cuda.device_count())], | |||
check_code_level=-1 | |||
) | |||
trainer.train(load_best_model=True) | |||
tester = Tester( | |||
data=test_data, | |||
model=model, | |||
metrics=AccuracyMetric(), | |||
batch_size=torch.cuda.device_count() * 12, | |||
device=[i for i in range(torch.cuda.device_count())], | |||
) | |||
tester.test() | |||
@@ -0,0 +1,10 @@ | |||
import unittest | |||
from ..data import SNLIDataLoader | |||
from fastNLP.core.vocabulary import Vocabulary | |||
class TestCWSDataLoader(unittest.TestCase): | |||
def test_case1(self): | |||
snli_loader = SNLIDataLoader() | |||
# TODO: still in progress | |||
@@ -1,7 +1,7 @@ | |||
import unittest | |||
from reproduction.seqence_labelling.cws.data.CWSDataLoader import SigHanLoader | |||
from ..data.CWSDataLoader import SigHanLoader | |||
from fastNLP.core.vocabulary import VocabularyOption | |||
@@ -0,0 +1 @@ | |||
# TODO |
@@ -0,0 +1 @@ | |||
# TODO |
@@ -0,0 +1 @@ | |||
# TODO |
@@ -12,6 +12,7 @@ from fastNLP import AccuracyMetric | |||
from fastNLP import SGD | |||
from fastNLP import Trainer | |||
from fastNLP.models.base_model import NaiveClassifier | |||
from fastNLP.core.callback import EarlyStopError | |||
def prepare_env(): | |||
@@ -1,8 +1,55 @@ | |||
import unittest | |||
import numpy as np | |||
import torch | |||
from fastNLP import FieldArray | |||
from fastNLP.core.field import _get_ele_type_and_dim | |||
from fastNLP import AutoPadder | |||
class TestFieldArrayTyepDimDetect(unittest.TestCase): | |||
""" | |||
检测FieldArray能否正确识别type与ndim | |||
""" | |||
def test_case1(self): | |||
# 1.1 常规类型测试 | |||
for value in [1, True, 1.0, 'abc']: | |||
type_ = type(value) | |||
_type, _dim = _get_ele_type_and_dim(cell=value) | |||
self.assertListEqual([_type, _dim], [type_, 0]) | |||
# 1.2 mix类型报错 | |||
with self.assertRaises(Exception): | |||
value = [1, 2, 1.0] | |||
self.assertRaises(_get_ele_type_and_dim(value)) | |||
# 带有numpy的测试 | |||
# 2.1 | |||
value = np.array([1, 2, 3]) | |||
type_ = value.dtype | |||
dim_ = 1 | |||
self.assertSequenceEqual(_get_ele_type_and_dim(cell=value), [type_, dim_]) | |||
# 2.2 | |||
value = np.array([[1, 2], [3, 4, 5]]) # char embedding的场景 | |||
self.assertSequenceEqual([int, 2], _get_ele_type_and_dim(value)) | |||
# 2.3 | |||
value = np.zeros((3, 4)) | |||
self.assertSequenceEqual([value.dtype, 2], _get_ele_type_and_dim(value)) | |||
# 2.4 测试错误的dimension | |||
with self.assertRaises(Exception): | |||
value = np.array([[1, 2], [3, [1]]]) | |||
_get_ele_type_and_dim(value) | |||
# 2.5 测试混合类型 | |||
with self.assertRaises(Exception): | |||
value = np.array([[1, 2], [3.0]]) | |||
_get_ele_type_and_dim(value) | |||
# 带有tensor的测试 | |||
# 3.1 word embedding的场景 | |||
value = torch.zeros(3, 10) | |||
self.assertSequenceEqual([value.dtype, 2], _get_ele_type_and_dim(value)) | |||
# 3.2 char embedding/image的场景 | |||
value = torch.zeros(3, 32, 32) | |||
self.assertSequenceEqual([value.dtype, 3], _get_ele_type_and_dim(value)) | |||
class TestFieldArrayInit(unittest.TestCase): | |||
@@ -31,12 +78,6 @@ class TestFieldArrayInit(unittest.TestCase): | |||
# 三维list | |||
fa = FieldArray("x", [[[1, 2], [3, 4]], [[1, 2], [3, 4]]], is_input=True) | |||
def test_init_v7(self): | |||
# list of array | |||
fa = FieldArray("x", [np.array([[1, 2], [3, 4]]), np.array([[1, 2], [3, 4]])], is_input=True) | |||
self.assertEqual(fa.pytype, int) | |||
self.assertEqual(fa.dtype, np.int) | |||
def test_init_v4(self): | |||
# 一维list | |||
val = [1, 2, 3, 4] | |||
@@ -56,6 +97,11 @@ class TestFieldArrayInit(unittest.TestCase): | |||
fa.append(val) | |||
def test_init_v7(self): | |||
# list of array | |||
fa = FieldArray("x", [np.array([[1, 2], [3, 4]]), np.array([[1, 2], [3, 4]])], is_input=True) | |||
self.assertEqual(fa.dtype, np.array([1]).dtype) | |||
def test_init_v8(self): | |||
# 二维list | |||
val = np.array([[1, 2], [3, 4]]) | |||
fa = FieldArray("x", [val], is_input=True) | |||
@@ -79,33 +125,23 @@ class TestFieldArray(unittest.TestCase): | |||
self.assertListEqual(list(fa.get([0, 1, 2])), [1, 2, 3]) | |||
def test_type_conversion(self): | |||
fa = FieldArray("x", [1.2, 2.2, 3, 4, 5], is_input=True) | |||
self.assertEqual(fa.pytype, float) | |||
self.assertEqual(fa.dtype, np.float64) | |||
fa = FieldArray("x", [1, 2, 3, 4, 5], is_input=True) | |||
fa.append(1.3333) | |||
self.assertEqual(fa.pytype, float) | |||
self.assertEqual(fa.dtype, np.float64) | |||
self.assertEqual(fa.dtype, int) | |||
fa = FieldArray("y", [1.1, 2.2, 3.3, 4.4, 5.5], is_input=True) | |||
fa.append(10) | |||
self.assertEqual(fa.pytype, float) | |||
self.assertEqual(fa.dtype, np.float64) | |||
fa.append(10.0) | |||
self.assertEqual(fa.dtype, float) | |||
fa = FieldArray("y", ["a", "b", "c", "d"], is_input=True) | |||
fa.append("e") | |||
self.assertEqual(fa.dtype, np.str) | |||
self.assertEqual(fa.pytype, str) | |||
self.assertEqual(fa.dtype, str) | |||
def test_support_np_array(self): | |||
fa = FieldArray("y", np.array([[1.1, 2.2, 3.3, 4.4, 5.5]]), is_input=True) | |||
self.assertEqual(fa.dtype, np.float64) | |||
self.assertEqual(fa.pytype, float) | |||
fa.append(np.array([1.1, 2.2, 3.3, 4.4, 5.5])) | |||
self.assertEqual(fa.dtype, np.float64) | |||
self.assertEqual(fa.pytype, float) | |||
fa = FieldArray("my_field", np.random.rand(3, 5), is_input=True) | |||
# in this case, pytype is actually a float. We do not care about it. | |||
@@ -113,11 +149,10 @@ class TestFieldArray(unittest.TestCase): | |||
def test_nested_list(self): | |||
fa = FieldArray("y", [[1.1, 2.2, 3.3, 4.4, 5.5], [1.1, 2.2, 3.3, 4.4, 5.5]], is_input=True) | |||
self.assertEqual(fa.pytype, float) | |||
self.assertEqual(fa.dtype, np.float64) | |||
self.assertEqual(fa.dtype, float) | |||
def test_getitem_v1(self): | |||
fa = FieldArray("y", [[1.1, 2.2, 3.3, 4.4, 5.5], [1, 2, 3, 4, 5]], is_input=True) | |||
fa = FieldArray("y", [[1.1, 2.2, 3.3, 4.4, 5.5], [1.0, 2.0, 3.0, 4.0, 5.0]], is_input=True) | |||
self.assertEqual(fa[0], [1.1, 2.2, 3.3, 4.4, 5.5]) | |||
ans = fa[[0, 1]] | |||
self.assertTrue(isinstance(ans, np.ndarray)) | |||
@@ -150,7 +185,7 @@ class TestFieldArray(unittest.TestCase): | |||
fa = FieldArray("y", [[1.1, 2.2, 3.3, 4.4, 5.5], [1, 2, 3, 4, 5]], is_input=True) | |||
fa.append(["str", 0, 0, 0, 1.89]) | |||
fa = FieldArray("y", [[1.1, 2.2, 3.3, 4.4, 5.5], [1, 2, 3, 4, 5]], is_input=True) | |||
fa = FieldArray("y", [[1.1, 2.2, 3.3, 4.4, 5.5], [1.0, 2.0, 3.0, 4.0, 5.0]], is_input=True) | |||
fa.append([1.2, 2.3, 3.4, 4.5, 5.6]) | |||
self.assertEqual(len(fa), 3) | |||
self.assertEqual(fa[2], [1.2, 2.3, 3.4, 4.5, 5.6]) | |||
@@ -163,33 +198,86 @@ class TestFieldArray(unittest.TestCase): | |||
fa = FieldArray("y", [(1, "1"), (2, "2"), (3, "3"), (4, "4")], is_target=True, ignore_type=True) | |||
class TestPadder(unittest.TestCase): | |||
class TestAutoPadder(unittest.TestCase): | |||
def test00(self): | |||
padder = AutoPadder() | |||
# 没有类型时 | |||
contents = [(1, 2), ('str', 'a')] | |||
padder(contents, None, None, None) | |||
def test01(self): | |||
""" | |||
测试AutoPadder能否正常工作 | |||
:return: | |||
""" | |||
from fastNLP import AutoPadder | |||
# 测试使用多维的bool, int, str, float的情况 | |||
# str | |||
padder = AutoPadder() | |||
content = ['This is a str', 'this is another str'] | |||
self.assertListEqual(content, padder(content, None, np.str).tolist()) | |||
self.assertListEqual(content, padder(content, None, str, 0).tolist()) | |||
content = [1, 2] | |||
self.assertListEqual(content, padder(content, None, np.int64).tolist()) | |||
content = [[1,2], [3], [4]] | |||
self.assertListEqual([[1,2], [3, 0], [4, 0]], | |||
padder(content, None, np.int64).tolist()) | |||
# 1维int | |||
content = [[1, 2, 3], [4,], [5, 6, 7, 8]] | |||
padded_content = [[1, 2, 3, 0], [4, 0, 0, 0], [5, 6, 7, 8]] | |||
self.assertListEqual(padder(content, None, int, 1).tolist(), padded_content) | |||
# 二维int | |||
padded_content = [[[1, 2, 3, 0], [4, 5, 0, 0], [7, 8, 9, 10]], [[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]] | |||
content = [ | |||
[[1, 2, 3], [4, 5], [7,8,9,10]], | |||
[[1]] | |||
] | |||
self.assertListEqual(content, | |||
padder(content, None, np.int64).tolist()) | |||
[[1, 2, 3], [4, 5], [7, 8, 9, 10]], | |||
[[1]] | |||
] | |||
self.assertListEqual(padder(content, None, int, 2).tolist(), padded_content) | |||
# 3维图片 | |||
contents = [np.random.rand(3, 4, 4).tolist() for _ in range(5)] | |||
self.assertTrue(padder(contents, None, float, 3).shape==(5, 3, 4, 4)) | |||
# 更高维度直接返回 | |||
contents = [np.random.rand(24, 3, 4, 4).tolist() for _ in range(5)] | |||
self.assertTrue(isinstance(padder(contents, None, float, 4), np.ndarray)) | |||
def test02(self): | |||
padder = AutoPadder() | |||
# 测试numpy的情况 | |||
# 0维 | |||
contents = np.arange(12) | |||
self.assertListEqual(padder(contents, None, contents.dtype, 0).tolist(), contents.tolist()) | |||
# 1维 | |||
contents = np.arange(12).reshape((3, 4)) | |||
self.assertListEqual(padder(contents, None, contents.dtype, 1).tolist(), contents.tolist()) | |||
# 2维 | |||
contents = np.ones((3, 10, 5)) | |||
self.assertListEqual(padder(contents, None, contents.dtype, 2).tolist(), contents.tolist()) | |||
# 3维 | |||
contents = [np.random.rand(3, 4, 4) for _ in range(5)] | |||
l_contents = [content.tolist() for content in contents] | |||
self.assertListEqual(padder(contents, None, contents[0].dtype, 3).tolist(), l_contents) | |||
def test03(self): | |||
padder = AutoPadder() | |||
# 测试tensor的情况 | |||
# 0维 | |||
contents = torch.arange(12) | |||
r_contents = padder(contents, None, contents.dtype, 0) | |||
self.assertSequenceEqual(r_contents.tolist(), contents.tolist()) | |||
self.assertTrue(r_contents.dtype==contents.dtype) | |||
# 0维 | |||
contents = [torch.tensor(1) for _ in range(10)] | |||
self.assertSequenceEqual(padder(contents, None, torch.int64, 0).tolist(), contents) | |||
# 1维 | |||
contents = torch.randn(3, 4) | |||
padder(contents, None, torch.float64, 1) | |||
# 3维 | |||
contents = [torch.randn(3, 4, 4) for _ in range(5)] | |||
padder(contents, None, torch.float64, 3) | |||
class TestEngChar2DPadder(unittest.TestCase): | |||
def test01(self): | |||
""" | |||
测试EngChar2DPadder能不能正确使用 | |||
:return: | |||
@@ -198,38 +286,31 @@ class TestPadder(unittest.TestCase): | |||
padder = EngChar2DPadder(pad_length=0) | |||
contents = [1, 2] | |||
# 不能是1维 | |||
with self.assertRaises(ValueError): | |||
padder(contents, None, np.int64) | |||
# 不能是0维 | |||
with self.assertRaises(Exception): | |||
padder(contents, None, np.int64, 0) | |||
contents = [[1, 2]] | |||
# 不能是2维 | |||
with self.assertRaises(ValueError): | |||
padder(contents, None, np.int64) | |||
contents = [[[[1, 2]]]] | |||
# 不能是1维 | |||
with self.assertRaises(Exception): | |||
padder(contents, None, np.int64, 1) | |||
contents = [ | |||
[[[[1, 2]]]] | |||
] | |||
# 不能是3维以上 | |||
with self.assertRaises(ValueError): | |||
padder(contents, None, np.int64) | |||
with self.assertRaises(Exception): | |||
padder(contents, None, np.int64, 3) | |||
contents = [ | |||
[[1, 2, 3], [4, 5], [7,8,9,10]], | |||
[[1]] | |||
] | |||
self.assertListEqual([[[1, 2, 3, 0], [4, 5, 0, 0], [7, 8, 9, 10]], [[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]], | |||
padder(contents, None, np.int64).tolist()) | |||
padder(contents, None, np.int64, 2).tolist()) | |||
padder = EngChar2DPadder(pad_length=5, pad_val=-100) | |||
self.assertListEqual( | |||
[[[1, 2, 3, -100, -100], [4, 5, -100, -100, -100], [7, 8, 9, 10, -100]], | |||
[[1, -100, -100, -100, -100], [-100, -100, -100, -100, -100], [-100, -100, -100, -100, -100]]], | |||
padder(contents, None, np.int64).tolist() | |||
padder(contents, None, np.int64, 2).tolist() | |||
) | |||
def test_None_dtype(self): | |||
from fastNLP import AutoPadder | |||
padder = AutoPadder() | |||
content = [ | |||
[[1, 2, 3], [4, 5], [7, 8, 9, 10]], | |||
[[1]] | |||
] | |||
ans = padder(content, None, None).tolist() | |||
self.assertListEqual(content, ans) |
@@ -18,7 +18,7 @@ class Model(nn.Module): | |||
self.param = nn.Parameter(torch.zeros(0)) | |||
class TestMoveModelDeivce(unittest.TestCase): | |||
class TestMoveModelDevice(unittest.TestCase): | |||
def test_case1(self): | |||
# 测试str | |||
model = Model() | |||
@@ -1,7 +1,7 @@ | |||
import unittest | |||
import os | |||
from fastNLP.io import Conll2003Loader, PeopleDailyCorpusLoader, CSVLoader, SNLILoader, JsonLoader | |||
from fastNLP.io.dataset_loader import SSTLoader | |||
class TestDatasetLoader(unittest.TestCase): | |||
@@ -28,3 +28,34 @@ class TestDatasetLoader(unittest.TestCase): | |||
def test_JsonLoader(self): | |||
ds = JsonLoader().load('test/data_for_tests/sample_snli.jsonl') | |||
assert len(ds) == 3 | |||
def test_SST(self): | |||
train_data = """(3 (2 (2 The) (2 Rock)) (4 (3 (2 is) (4 (2 destined) (2 (2 (2 (2 (2 to) (2 (2 be) (2 (2 the) (2 (2 21st) (2 (2 (2 Century) (2 's)) (2 (3 new) (2 (2 ``) (2 Conan)))))))) (2 '')) (2 and)) (3 (2 that) (3 (2 he) (3 (2 's) (3 (2 going) (3 (2 to) (4 (3 (2 make) (3 (3 (2 a) (3 splash)) (2 (2 even) (3 greater)))) (2 (2 than) (2 (2 (2 (2 (1 (2 Arnold) (2 Schwarzenegger)) (2 ,)) (2 (2 Jean-Claud) (2 (2 Van) (2 Damme)))) (2 or)) (2 (2 Steven) (2 Segal))))))))))))) (2 .))) | |||
(4 (4 (4 (2 The) (4 (3 gorgeously) (3 (2 elaborate) (2 continuation)))) (2 (2 (2 of) (2 ``)) (2 (2 The) (2 (2 (2 Lord) (2 (2 of) (2 (2 the) (2 Rings)))) (2 (2 '') (2 trilogy)))))) (2 (3 (2 (2 is) (2 (2 so) (2 huge))) (2 (2 that) (3 (2 (2 (2 a) (2 column)) (2 (2 of) (2 words))) (2 (2 (2 (2 can) (1 not)) (3 adequately)) (2 (2 describe) (2 (3 (2 (2 co-writer\/director) (2 (2 Peter) (3 (2 Jackson) (2 's)))) (3 (2 expanded) (2 vision))) (2 (2 of) (2 (2 (2 J.R.R.) (2 (2 Tolkien) (2 's))) (2 Middle-earth))))))))) (2 .))) | |||
(3 (3 (2 (2 (2 (2 (2 Singer\/composer) (2 (2 Bryan) (2 Adams))) (2 (2 contributes) (2 (2 (2 a) (2 slew)) (2 (2 of) (2 songs))))) (2 (2 --) (2 (2 (2 (2 a) (2 (2 few) (3 potential))) (2 (2 (2 hits) (2 ,)) (2 (2 (2 a) (2 few)) (1 (1 (2 more) (1 (2 simply) (2 intrusive))) (2 (2 to) (2 (2 the) (2 story))))))) (2 --)))) (2 but)) (3 (4 (2 the) (3 (2 whole) (2 package))) (2 (3 certainly) (3 (2 captures) (2 (1 (2 the) (2 (2 (2 intended) (2 (2 ,) (2 (2 er) (2 ,)))) (3 spirit))) (2 (2 of) (2 (2 the) (2 piece)))))))) (2 .)) | |||
(2 (2 (2 You) (2 (2 'd) (2 (2 think) (2 (2 by) (2 now))))) (2 (2 America) (2 (2 (2 would) (1 (2 have) (2 (2 (2 had) (1 (2 enough) (2 (2 of) (2 (2 plucky) (2 (2 British) (1 eccentrics)))))) (4 (2 with) (4 (3 hearts) (3 (2 of) (3 gold))))))) (2 .)))) | |||
""" | |||
test_data = """(3 (2 Yet) (3 (2 (2 the) (2 act)) (3 (4 (3 (2 is) (3 (2 still) (4 charming))) (2 here)) (2 .)))) | |||
(4 (2 (2 Whether) (2 (2 (2 (2 or) (1 not)) (3 (2 you) (2 (2 're) (3 (3 enlightened) (2 (2 by) (2 (2 any) (2 (2 of) (2 (2 Derrida) (2 's))))))))) (2 (2 lectures) (2 (2 on) (2 (2 ``) (2 (2 (2 (2 (2 (2 the) (2 other)) (2 '')) (2 and)) (2 ``)) (2 (2 the) (2 self)))))))) (3 (2 ,) (3 (2 '') (3 (2 Derrida) (3 (3 (2 is) (4 (2 an) (4 (4 (2 undeniably) (3 (4 (3 fascinating) (2 and)) (4 playful))) (2 fellow)))) (2 .)))))) | |||
(4 (3 (2 (2 Just) (2 (2 the) (2 labour))) (3 (2 involved) (3 (2 in) (4 (2 creating) (3 (3 (2 the) (3 (3 layered) (2 richness))) (3 (2 of) (3 (2 (2 the) (2 imagery)) (2 (2 in) (3 (2 (2 this) (2 chiaroscuro)) (2 (2 of) (2 (2 (2 madness) (2 and)) (2 light)))))))))))) (3 (3 (2 is) (4 astonishing)) (2 .))) | |||
(3 (3 (2 Part) (3 (2 of) (4 (2 (2 the) (3 charm)) (2 (2 of) (2 (2 Satin) (2 Rouge)))))) (3 (3 (2 is) (3 (2 that) (3 (2 it) (2 (1 (2 avoids) (2 (2 the) (1 obvious))) (3 (2 with) (3 (3 (3 humour) (2 and)) (2 lightness))))))) (2 .))) | |||
(4 (2 (2 a) (2 (2 screenplay) (2 more))) (3 (4 ingeniously) (2 (2 constructed) (2 (2 (2 (2 than) (2 ``)) (2 Memento)) (2 ''))))) | |||
(3 (2 ``) (3 (2 (2 Extreme) (2 Ops)) (3 (2 '') (4 (4 (3 exceeds) (2 expectations)) (2 .))))) | |||
""" | |||
train, test = 'train--', 'test--' | |||
with open(train, 'w', encoding='utf-8') as f: | |||
f.write(train_data) | |||
with open(test, 'w', encoding='utf-8') as f: | |||
f.write(test_data) | |||
loader = SSTLoader() | |||
info = loader.process( | |||
{train: train, test: test}, | |||
train_ds=[train], | |||
src_vocab_op=dict(min_freq=2) | |||
) | |||
assert len(list(info.vocabs.items())) == 2 | |||
assert len(list(info.datasets.items())) == 2 | |||
print(info.vocabs) | |||
print(info.datasets) | |||
os.remove(train), os.remove(test) |