Browse Source

Update vocabulary.py (#325)

strip只需要将\n去掉,否则会将一些特殊字符去掉,造成split的时候长度出错

token_type_id_rev (#329)

当activation=lambda x: x出现错误 (#330)

Co-authored-by: 路人咦 <1417954729@qq.com>

1.修改部分文档中的typo; 2.支持对transformers embedding

update import
tags/v0.6.0
Gosicfly yh_cc 4 years ago
parent
commit
9a9732a86f
8 changed files with 565 additions and 40 deletions
  1. +2
    -2
      fastNLP/core/vocabulary.py
  2. +4
    -0
      fastNLP/embeddings/__init__.py
  3. +2
    -4
      fastNLP/embeddings/bert_embedding.py
  4. +20
    -22
      fastNLP/embeddings/roberta_embedding.py
  5. +495
    -0
      fastNLP/embeddings/transformers_embedding.py
  6. +2
    -2
      fastNLP/modules/decoder/mlp.py
  7. +2
    -10
      test/embeddings/test_roberta_embedding.py
  8. +38
    -0
      test/embeddings/test_transformer_embedding.py

+ 2
- 2
fastNLP/core/vocabulary.py View File

@@ -540,7 +540,7 @@ class Vocabulary(object):

vocab = Vocabulary()
for line in f:
line = line.strip()
line = line.strip('\n')
if line:
name, value = line.split()
if name in ('max_size', 'min_freq'):
@@ -557,7 +557,7 @@ class Vocabulary(object):
no_create_entry_counter = {}
word2idx = {}
for line in f:
line = line.strip()
line = line.strip('\n')
if line:
parts = line.split('\t')
word,count,idx,no_create_entry = parts[0], int(parts[1]), int(parts[2]), int(parts[3])


+ 4
- 0
fastNLP/embeddings/__init__.py View File

@@ -16,6 +16,9 @@ __all__ = [
"RobertaEmbedding",
"RobertaWordPieceEncoder",

"TransformersEmbedding",
"TransformersWordPieceEncoder",

"GPT2Embedding",
"GPT2WordPieceEncoder",

@@ -32,6 +35,7 @@ from .static_embedding import StaticEmbedding
from .elmo_embedding import ElmoEmbedding
from .bert_embedding import BertEmbedding, BertWordPieceEncoder
from .roberta_embedding import RobertaEmbedding, RobertaWordPieceEncoder
from .transformers_embedding import TransformersEmbedding, TransformersWordPieceEncoder
from .gpt2_embedding import GPT2WordPieceEncoder, GPT2Embedding
from .char_embedding import CNNCharEmbedding, LSTMCharEmbedding
from .stack_embedding import StackEmbedding


+ 2
- 4
fastNLP/embeddings/bert_embedding.py View File

@@ -294,8 +294,7 @@ class BertWordPieceEncoder(nn.Module):
sep_mask = word_pieces.eq(self._sep_index) # batch_size x max_len
sep_mask_cumsum = sep_mask.long().flip(dims=[-1]).cumsum(dim=-1).flip(dims=[-1])
token_type_ids = sep_mask_cumsum.fmod(2)
if token_type_ids[0, 0].item(): # 如果开头是奇数,则需要flip一下结果,因为需要保证开头为0
token_type_ids = token_type_ids.eq(0).long()
token_type_ids = token_type_ids[:, :1].__xor__(token_type_ids) # 如果开头是奇数,则需要flip一下结果,因为需要保证开头为0

word_pieces = self.drop_word(word_pieces)
outputs = self.model(word_pieces, token_type_ids)
@@ -465,8 +464,7 @@ class _BertWordModel(nn.Module):
sep_mask = word_pieces.eq(self._sep_index).long() # batch_size x max_len
sep_mask_cumsum = sep_mask.flip(dims=[-1]).cumsum(dim=-1).flip(dims=[-1])
token_type_ids = sep_mask_cumsum.fmod(2)
if token_type_ids[0, 0].item(): # 如果开头是奇数,则需要flip一下结果,因为需要保证开头为0
token_type_ids = token_type_ids.eq(0).long()
token_type_ids = token_type_ids[:, :1].__xor__(token_type_ids) # 如果开头是奇数,则需要flip一下结果,因为需要保证开头为0
else:
token_type_ids = torch.zeros_like(word_pieces)
# 2. 获取hidden的结果,根据word_pieces进行对应的pool计算


+ 20
- 22
fastNLP/embeddings/roberta_embedding.py View File

@@ -196,7 +196,7 @@ class _RobertaWordModel(nn.Module):
include_cls_sep: bool = False, pooled_cls: bool = False, auto_truncate: bool = False, min_freq=2):
super().__init__()

self.tokenzier = RobertaTokenizer.from_pretrained(model_dir_or_name)
self.tokenizer = RobertaTokenizer.from_pretrained(model_dir_or_name)
self.encoder = RobertaModel.from_pretrained(model_dir_or_name)
# 由于RobertaEmbedding中设置了padding_idx为1, 且使用了非常神奇的position计算方式,所以-2
self._max_position_embeddings = self.encoder.config.max_position_embeddings - 2
@@ -233,14 +233,14 @@ class _RobertaWordModel(nn.Module):
word = '<unk>'
elif vocab.word_count[word]<min_freq:
word = '<unk>'
word_pieces = self.tokenzier.tokenize(word)
word_pieces = self.tokenzier.convert_tokens_to_ids(word_pieces)
word_pieces = self.tokenizer.tokenize(word)
word_pieces = self.tokenizer.convert_tokens_to_ids(word_pieces)
word_to_wordpieces.append(word_pieces)
word_pieces_lengths.append(len(word_pieces))
self._cls_index = self.tokenzier.encoder['<s>']
self._sep_index = self.tokenzier.encoder['</s>']
self._cls_index = self.tokenizer.encoder['<s>']
self._sep_index = self.tokenizer.encoder['</s>']
self._word_pad_index = vocab.padding_idx
self._wordpiece_pad_index = self.tokenzier.encoder['<pad>'] # 需要用于生成word_piece
self._wordpiece_pad_index = self.tokenizer.encoder['<pad>'] # 需要用于生成word_piece
self.word_to_wordpieces = np.array(word_to_wordpieces)
self.register_buffer('word_pieces_lengths', torch.LongTensor(word_pieces_lengths))
logger.debug("Successfully generate word pieces.")
@@ -352,20 +352,19 @@ class _RobertaWordModel(nn.Module):
return outputs

def save(self, folder):
self.tokenzier.save_pretrained(folder)
self.tokenizer.save_pretrained(folder)
self.encoder.save_pretrained(folder)


class RobertaWordPieceEncoder(nn.Module):
r"""
读取bert模型,读取之后调用index_dataset方法在dataset中生成word_pieces这一列。
读取roberta模型,读取之后调用index_dataset方法在dataset中生成word_pieces这一列。

RobertaWordPieceEncoder可以支持自动下载权重,当前支持的模型:
en: roberta-base
en-large: roberta-large

"""

def __init__(self, model_dir_or_name: str = 'en', layers: str = '-1', pooled_cls: bool = False,
word_dropout=0, dropout=0, requires_grad: bool = True, **kwargs):
r"""
@@ -417,11 +416,10 @@ class RobertaWordPieceEncoder(nn.Module):

def forward(self, word_pieces, token_type_ids=None):
r"""
计算words的bert embedding表示。传入的words中应该自行包含[CLS]与[SEP]的tag。
计算words的bert embedding表示。传入的words中应该自行包含<s>与</s>>的tag。

:param words: batch_size x max_len
:param token_type_ids: batch_size x max_len, 用于区分前一句和后一句话. 如果不传入,则自动生成(大部分情况,都不需要输入),
第一个[SEP]及之前为0, 第二个[SEP]及到第一个[SEP]之间为1; 第三个[SEP]及到第二个[SEP]之间为0,依次往后推。
:param token_type_ids: batch_size x max_len, 用于区分前一句和后一句话. 如果不传入,则自动生成(大部分情况,都不需要输入)。
:return: torch.FloatTensor. batch_size x max_len x (768*len(self.layers))
"""
word_pieces = self.drop_word(word_pieces)
@@ -484,7 +482,7 @@ class _WordPieceRobertaModel(nn.Module):
def __init__(self, model_dir_or_name: str, layers: str = '-1', pooled_cls: bool=False):
super().__init__()

self.tokenzier = RobertaTokenizer.from_pretrained(model_dir_or_name)
self.tokenizer = RobertaTokenizer.from_pretrained(model_dir_or_name)
self.encoder = RobertaModel.from_pretrained(model_dir_or_name)
# 检查encoder_layer_number是否合理
encoder_layer_number = len(self.encoder.encoder.layer)
@@ -504,25 +502,25 @@ class _WordPieceRobertaModel(nn.Module):
assert layer <= encoder_layer_number, f"The layer index:{layer} is out of scope for " \
f"a RoBERTa model with {encoder_layer_number} layers."

self._cls_index = self.tokenzier.encoder['<s>']
self._sep_index = self.tokenzier.encoder['</s>']
self._wordpiece_pad_index = self.tokenzier.encoder['<pad>'] # 需要用于生成word_piece
self._wordpiece_unknown_index = self.tokenzier.encoder['<unk>']
self._cls_index = self.tokenizer.encoder['<s>']
self._sep_index = self.tokenizer.encoder['</s>']
self._wordpiece_pad_index = self.tokenizer.encoder['<pad>'] # 需要用于生成word_piece
self._wordpiece_unknown_index = self.tokenizer.encoder['<unk>']
self.pooled_cls = pooled_cls

def index_datasets(self, *datasets, field_name, add_cls_sep=True, add_prefix_space=True):
r"""
使用bert的tokenizer新生成word_pieces列加入到datasets中,并将他们设置为input。如果首尾不是
[CLS]与[SEP]会在首尾额外加入[CLS]与[SEP], 且将word_pieces这一列的pad value设置为了bert的pad value。
使用roberta的tokenizer新生成word_pieces列加入到datasets中,并将他们设置为input。如果首尾不是
<s>与</s>会在首尾额外加入<s>与</s>, 且将word_pieces这一列的pad value设置为了bert的pad value。

:param datasets: DataSet对象
:param field_name: 基于哪一列index
:param field_name: 基于哪一列index, 这一列一般是raw_string
:param bool add_cls_sep: 是否在句首句尾添加cls和sep的index
:param bool add_prefix_space: 是否在句子开头添加空格,预训练时RoBERTa该值为True
:return:
"""

encode_func = partial(self.tokenzier.encode, add_special_tokens=add_cls_sep, add_prefix_space=add_prefix_space)
encode_func = partial(self.tokenizer.encode, add_special_tokens=add_cls_sep, add_prefix_space=add_prefix_space)

for index, dataset in enumerate(datasets):
try:
@@ -555,5 +553,5 @@ class _WordPieceRobertaModel(nn.Module):
return outputs

def save(self, folder):
self.tokenzier.save_pretrained(folder)
self.tokenizer.save_pretrained(folder)
self.encoder.save_pretrained(folder)

+ 495
- 0
fastNLP/embeddings/transformers_embedding.py View File

@@ -0,0 +1,495 @@
r"""
将transformers包中的模型封装成fastNLP中的embedding对象

"""
import os
from itertools import chain
from functools import partial

from torch import nn
import numpy as np
import torch

from .contextual_embedding import ContextualEmbedding
from ..core import logger
from ..core.vocabulary import Vocabulary


class TransformersEmbedding(ContextualEmbedding):
r"""
使用transformers中的模型对words进行编码的Embedding。建议将输入的words长度限制在430以内,而不要使用512(根据预训练模型参数,可能有变化)。这是由于
预训练的bert模型长度限制为512个token,而因为输入的word是未进行word piece分割的(word piece的分割由TransformersEmbedding在输入word
时切分),在分割之后长度可能会超过最大长度限制。

Example::

>>> import torch
>>> from fastNLP import Vocabulary
>>> from fastNLP.embeddings import TransformersEmbedding
>>> from transformers import ElectraModel, ElectraTokenizer
>>> vocab = Vocabulary().add_word_lst("The whether is good .".split())
>>> model = ElectraModel.from_pretrained("google/electra-small-generator")
>>> tokenizer = ElectraTokenizer.from_pretrained("google/electra-small-generator")
>>> embed = TransformersEmbedding(vocab, model_dir_or_name='en', requires_grad=False, layers='4,-2,-1')
>>> words = torch.LongTensor([[vocab.to_index(word) for word in "The whether is good .".split()]])
>>> outputs = embed(words)
>>> outputs.size()
>>> # torch.Size([1, 5, 2304])

"""
def __init__(self, vocab, model, tokenizer, layers='-1',
pool_method: str = 'first', word_dropout=0, dropout=0, requires_grad=True,
include_cls_sep: bool = False, auto_truncate=True, **kwargs):
r"""

:param ~fastNLP.Vocabulary vocab: 词表
:model model: transformers包中的PreTrainedModel对象
:param tokenizer: transformers包中的PreTrainedTokenizer对象
:param str,list layers: 输出embedding表示来自于哪些层,不同层的结果按照layers中的顺序在最后一维concat起来。以','隔开层数,层的序号是
从0开始,可以以负数去索引倒数几层。layer=0为embedding层(包括wordpiece embedding, position embedding)
:param str pool_method: 因为在bert中,每个word会被表示为多个word pieces, 当获取一个word的表示的时候,怎样从它的word pieces
中计算得到它对应的表示。支持 ``last`` , ``first`` , ``avg`` , ``max``。
:param float word_dropout: 以多大的概率将一个词替换为unk。这样既可以训练unk也是一定的regularize。
:param float dropout: 以多大的概率对embedding的表示进行Dropout。0.1即随机将10%的值置为0。
:param bool include_cls_sep: bool,在bert计算句子的表示的时候,需要在前面加上[CLS]和[SEP], 是否在结果中保留这两个内容。 这样
会使得word embedding的结果比输入的结果长两个token。如果该值为True,则在使用 :class::StackEmbedding 可能会与其它类型的
embedding长度不匹配。
:param bool pooled_cls: 返回的<s>是否使用预训练中的BertPool映射一下,仅在include_cls_sep时有效。如果下游任务只取<s>做预测,
一般该值为True。
:param bool requires_grad: 是否需要gradient以更新Bert的权重。
:param bool auto_truncate: 当句子words拆分为word pieces长度超过bert最大允许长度(一般为512), 自动截掉拆分后的超过510个
word pieces后的内容,并将第512个word piece置为</s>。超过长度的部分的encode结果直接全部置零。一般仅有只使用<s>
来进行分类的任务将auto_truncate置为True。
:param kwargs:
int min_freq: 小于该次数的词会被unk代替, 默认为1
"""
super().__init__(vocab, word_dropout=word_dropout, dropout=dropout)

if word_dropout > 0:
assert vocab.unknown is not None, "When word_drop > 0, Vocabulary must contain the unknown token."

self._word_sep_index = -100
if tokenizer.sep_token in vocab:
self._word_sep_index = vocab[tokenizer.sep_token]

self._word_cls_index = -100
if tokenizer.cls_token in vocab:
self._word_cls_index = vocab[tokenizer.cls_token]

min_freq = kwargs.get('min_freq', 1)
self._min_freq = min_freq

self.model = _TransformersWordModel(tokenizer=tokenizer, model=model, vocab=vocab, layers=layers,
pool_method=pool_method, include_cls_sep=include_cls_sep,
auto_truncate=auto_truncate, min_freq=min_freq)

self.requires_grad = requires_grad
self._embed_size = len(self.model.layers) * model.config.hidden_size

def forward(self, words):
r"""
计算words的roberta embedding表示。计算之前会在每句话的开始增加<s>在结束增加</s>, 并根据include_cls_sep判断要不要
删除这两个token的表示。

:param torch.LongTensor words: [batch_size, max_len]
:return: torch.FloatTensor. batch_size x max_len x (768*len(self.layers))
"""
words = self.drop_word(words)
outputs = self._get_sent_reprs(words)
if outputs is not None:
return self.dropout(outputs)
outputs = self.model(words)
outputs = torch.cat([*outputs], dim=-1)

return self.dropout(outputs)

def drop_word(self, words):
r"""
按照设定随机将words设置为unknown_index。

:param torch.LongTensor words: batch_size x max_len
:return:
"""
if self.word_dropout > 0 and self.training:
with torch.no_grad():
mask = torch.full_like(words, fill_value=self.word_dropout, dtype=torch.float, device=words.device)
mask = torch.bernoulli(mask).eq(1) # dropout_word越大,越多位置为1
pad_mask = words.ne(self._word_pad_index)
mask = pad_mask.__and__(mask) # pad的位置不为unk
if self._word_sep_index!=-100:
not_sep_mask = words.ne(self._word_sep_index)
mask = mask.__and__(not_sep_mask)
if self._word_cls_index!=-100:
not_cls_mask = words.ne(self._word_cls_index)
mask = mask.__and__(not_cls_mask)
words = words.masked_fill(mask, self._word_unk_index)
return words

def save(self, folder):
"""
保存tokenizer和model到folder文件夹。model保存在`folder/{model_name}`, tokenizer在`folder/{tokenizer_name}`下
:param str folder: 保存地址
:return:
"""
os.makedirs(folder, exist_ok=True)
self.model.save(folder)


class TransformersWordPieceEncoder(nn.Module):
r"""
读取roberta模型,读取之后调用index_dataset方法在dataset中生成word_pieces这一列。

RobertaWordPieceEncoder可以支持自动下载权重,当前支持的模型:
en: roberta-base
en-large: roberta-large

"""
def __init__(self, model, tokenizer, layers: str = '-1',
word_dropout=0, dropout=0, requires_grad: bool = True, **kwargs):
r"""

:param model: transformers的model
:param tokenizer: transformer的tokenizer
:param str layers: 最终结果中的表示。以','隔开层数,可以以负数去索引倒数几层。layer=0为embedding层(包括wordpiece embedding,
position embedding)
:param float word_dropout: 以多大的概率将一个词替换为unk。这样既可以训练unk也是一定的regularize。
:param float dropout: 以多大的概率对embedding的表示进行Dropout。0.1即随机将10%的值置为0。
:param bool requires_grad: 是否需要gradient。
"""
super().__init__()

self.model = _WordPieceTransformersModel(model=model, tokenizer=tokenizer, layers=layers)
self._sep_index = self.model._sep_index
self._cls_index = self.model._cls_index
self._wordpiece_pad_index = self.model._wordpiece_pad_index
self._wordpiece_unk_index = self.model._wordpiece_unknown_index
self._embed_size = len(self.model.layers) * self.model.config.hidden_size
self.requires_grad = requires_grad
self.word_dropout = word_dropout
self.dropout_layer = nn.Dropout(dropout)

@property
def embed_size(self):
return self._embed_size

@property
def embedding_dim(self):
return self._embed_size

@property
def num_embedding(self):
return self.model.encoder.config.vocab_size

def index_datasets(self, *datasets, field_name, **kwargs):
r"""
使用bert的tokenizer新生成word_pieces列加入到datasets中,并将他们设置为input,且将word_pieces这一列的pad value设置为了
bert的pad value。

:param ~fastNLP.DataSet datasets: DataSet对象
:param str field_name: 基于哪一列的内容生成word_pieces列。这一列中每个数据应该是raw_string的形式。
:param kwargs: 传递给tokenizer的参数
:return:
"""
self.model.index_datasets(*datasets, field_name=field_name, **kwargs)

def forward(self, word_pieces, token_type_ids=None):
r"""
计算words的bert embedding表示。传入的words中应该自行包含[CLS]与[SEP]的tag。

:param words: batch_size x max_len
:param token_type_ids: batch_size x max_len, 用于区分前一句和后一句话. 如果不传入,则自动生成(大部分情况,都不需要输入),
第一个[SEP]及之前为0, 第二个[SEP]及到第一个[SEP]之间为1; 第三个[SEP]及到第二个[SEP]之间为0,依次往后推。
:return: torch.FloatTensor. batch_size x max_len x (768*len(self.layers))
"""
word_pieces = self.drop_word(word_pieces)
outputs = self.model(word_pieces)
outputs = torch.cat([*outputs], dim=-1)

return self.dropout_layer(outputs)

def drop_word(self, words):
r"""
按照设定随机将words设置为unknown_index。

:param torch.LongTensor words: batch_size x max_len
:return:
"""
if self.word_dropout > 0 and self.training:
with torch.no_grad():
not_sep_mask = words.ne(self._sep_index)
not_cls_mask = words.ne(self._cls_index)
replaceable_mask = not_sep_mask.__and__(not_cls_mask)
mask = torch.full_like(words, fill_value=self.word_dropout, dtype=torch.float, device=words.device)
mask = torch.bernoulli(mask).eq(1) # dropout_word越大,越多位置为1
pad_mask = words.ne(self._wordpiece_pad_index)
mask = pad_mask.__and__(mask).__and__(replaceable_mask) # pad的位置不为unk
words = words.masked_fill(mask, self._wordpiece_unk_index)
return words

def save(self, folder):
os.makedirs(folder, exist_ok=True)
self.model.save(os.path.join(folder, folder))
logger.debug(f"TransformersWordPieceEncoder has been saved in {folder}")


class _TransformersWordModel(nn.Module):
def __init__(self, tokenizer, model, vocab: Vocabulary, layers: str = '-1', pool_method: str = 'first',
include_cls_sep: bool = False, auto_truncate: bool = False, min_freq=2):
super().__init__()

self.tokenizer = tokenizer
self.encoder = model
self.config = model.config
self.only_last_layer = True
if not (isinstance(layers, str) and (layers=='-1' or int(layers)==self.encoder.config.num_hidden_layers)):
assert self.encoder.config.output_hidden_states == True, \
f"You have to output all hidden states if you want to" \
f" access the middle output of `{model.__class__.__name__}` "
self.only_last_layer = False

self._max_position_embeddings = self.encoder.config.max_position_embeddings - 2
# 检查encoder_layer_number是否合理
encoder_layer_number = len(self.encoder.encoder.layer)
self.encoder_layer_number = encoder_layer_number
if isinstance(layers, list):
self.layers = [int(l) for l in layers]
elif isinstance(layers, str):
self.layers = list(map(int, layers.split(',')))
else:
raise TypeError("`layers` only supports str or list[int]")

for layer in self.layers:
if layer < 0:
assert -layer <= encoder_layer_number, f"The layer index:{layer} is out of scope for " \
f"a {model.__class__.__name__} model with {encoder_layer_number} layers."
else:
assert layer <= encoder_layer_number, f"The layer index:{layer} is out of scope for " \
f"a {model.__class__.__name__} model with {encoder_layer_number} layers."

assert pool_method in ('avg', 'max', 'first', 'last')
self.pool_method = pool_method
self.include_cls_sep = include_cls_sep
self.auto_truncate = auto_truncate

word_to_wordpieces = []
word_pieces_lengths = []
for word, index in vocab:
if index == vocab.padding_idx: # pad是个特殊的符号
word = tokenizer.pad_token
elif index == vocab.unknown_idx:
word = tokenizer.unk_token
elif vocab.word_count[word]<min_freq:
word = tokenizer.unk_token
word_pieces = self.tokenizer.tokenize(word)
word_pieces = self.tokenizer.convert_tokens_to_ids(word_pieces)
word_to_wordpieces.append(word_pieces)
word_pieces_lengths.append(len(word_pieces))
self._cls_index = self.tokenizer.cls_token_id
self._sep_index = self.tokenizer.sep_token_id
self._word_pad_index = vocab.padding_idx
self._wordpiece_pad_index = self.tokenizer.pad_token_id # 需要用于生成word_piece
self.word_to_wordpieces = np.array(word_to_wordpieces)
self.register_buffer('word_pieces_lengths', torch.LongTensor(word_pieces_lengths))
logger.debug("Successfully generate word pieces.")

def forward(self, words):
r"""

:param words: torch.LongTensor, batch_size x max_len
:return: num_layers x batch_size x max_len x hidden_size或者num_layers x batch_size x (max_len+2) x hidden_size
"""
with torch.no_grad():
batch_size, max_word_len = words.size()
word_mask = words.ne(self._word_pad_index) # 为1的地方有word
seq_len = word_mask.sum(dim=-1)
batch_word_pieces_length = self.word_pieces_lengths[words].masked_fill(word_mask.eq(False), 0) # batch_size x max_len
word_pieces_lengths = batch_word_pieces_length.sum(dim=-1) # batch_size
max_word_piece_length = batch_word_pieces_length.sum(dim=-1).max().item() # 表示word piece的长度(包括padding)
if max_word_piece_length + 2 > self._max_position_embeddings:
if self.auto_truncate:
word_pieces_lengths = word_pieces_lengths.masked_fill(
word_pieces_lengths + 2 > self._max_position_embeddings, self._max_position_embeddings - 2)
else:
raise RuntimeError(
"After split words into word pieces, the lengths of word pieces are longer than the "
f"maximum allowed sequence length:{self._max_position_embeddings} of bert. You can set "
f"`auto_truncate=True` for BertEmbedding to automatically truncate overlong input.")

# +2是由于需要加入<s>与</s>
word_pieces = words.new_full((batch_size, min(max_word_piece_length + 2, self._max_position_embeddings)),
fill_value=self._wordpiece_pad_index)
attn_masks = torch.zeros_like(word_pieces)
# 1. 获取words的word_pieces的id,以及对应的span范围
word_indexes = words.cpu().numpy()
for i in range(batch_size):
word_pieces_i = list(chain(*self.word_to_wordpieces[word_indexes[i, :seq_len[i]]]))
if self.auto_truncate and len(word_pieces_i) > self._max_position_embeddings - 2:
word_pieces_i = word_pieces_i[:self._max_position_embeddings - 2]
word_pieces[i, 1:word_pieces_lengths[i] + 1] = torch.LongTensor(word_pieces_i)
attn_masks[i, :word_pieces_lengths[i] + 2].fill_(1)
word_pieces[:, 0].fill_(self._cls_index)
batch_indexes = torch.arange(batch_size).to(words)
word_pieces[batch_indexes, word_pieces_lengths + 1] = self._sep_index
token_type_ids = torch.zeros_like(word_pieces)
# 2. 获取hidden的结果,根据word_pieces进行对应的pool计算
# all_outputs: [batch_size x max_len x hidden_size, batch_size x max_len x hidden_size, ...]
all_outputs = self.encoder(input_ids=word_pieces, token_type_ids=token_type_ids,
attention_mask=attn_masks)
if not self.only_last_layer:
for _ in all_outputs:
if isinstance(_, (tuple, list)) and len(_)==self.encoder_layer_number:
bert_outputs = _
break
else:
bert_outputs = all_outputs[:1]
# output_layers = [self.layers] # len(self.layers) x batch_size x real_word_piece_length x hidden_size

if self.include_cls_sep:
s_shift = 1
outputs = bert_outputs[-1].new_zeros(len(self.layers), batch_size, max_word_len + 2,
bert_outputs[-1].size(-1))

else:
s_shift = 0
outputs = bert_outputs[-1].new_zeros(len(self.layers), batch_size, max_word_len,
bert_outputs[-1].size(-1))
batch_word_pieces_cum_length = batch_word_pieces_length.new_zeros(batch_size, max_word_len + 1)
batch_word_pieces_cum_length[:, 1:] = batch_word_pieces_length.cumsum(dim=-1) # batch_size x max_len

if self.pool_method == 'first':
batch_word_pieces_cum_length = batch_word_pieces_cum_length[:, :seq_len.max()]
batch_word_pieces_cum_length.masked_fill_(batch_word_pieces_cum_length.ge(max_word_piece_length), 0)
_batch_indexes = batch_indexes[:, None].expand((batch_size, batch_word_pieces_cum_length.size(1)))
elif self.pool_method == 'last':
batch_word_pieces_cum_length = batch_word_pieces_cum_length[:, 1:seq_len.max() + 1] - 1
batch_word_pieces_cum_length.masked_fill_(batch_word_pieces_cum_length.ge(max_word_piece_length), 0)
_batch_indexes = batch_indexes[:, None].expand((batch_size, batch_word_pieces_cum_length.size(1)))

for l_index, l in enumerate(self.layers):
output_layer = bert_outputs[l]
real_word_piece_length = output_layer.size(1) - 2
if max_word_piece_length > real_word_piece_length: # 如果实际上是截取出来的
paddings = output_layer.new_zeros(batch_size,
max_word_piece_length - real_word_piece_length,
output_layer.size(2))
output_layer = torch.cat((output_layer, paddings), dim=1).contiguous()
# 从word_piece collapse到word的表示
truncate_output_layer = output_layer[:, 1:-1] # 删除<s>与</s> batch_size x len x hidden_size
if self.pool_method == 'first':
tmp = truncate_output_layer[_batch_indexes, batch_word_pieces_cum_length]
tmp = tmp.masked_fill(word_mask[:, :batch_word_pieces_cum_length.size(1), None].eq(False), 0)
outputs[l_index, :, s_shift:batch_word_pieces_cum_length.size(1) + s_shift] = tmp

elif self.pool_method == 'last':
tmp = truncate_output_layer[_batch_indexes, batch_word_pieces_cum_length]
tmp = tmp.masked_fill(word_mask[:, :batch_word_pieces_cum_length.size(1), None].eq(False), 0)
outputs[l_index, :, s_shift:batch_word_pieces_cum_length.size(1) + s_shift] = tmp
elif self.pool_method == 'max':
for i in range(batch_size):
for j in range(seq_len[i]):
start, end = batch_word_pieces_cum_length[i, j], batch_word_pieces_cum_length[i, j + 1]
outputs[l_index, i, j + s_shift], _ = torch.max(truncate_output_layer[i, start:end], dim=-2)
else:
for i in range(batch_size):
for j in range(seq_len[i]):
start, end = batch_word_pieces_cum_length[i, j], batch_word_pieces_cum_length[i, j + 1]
outputs[l_index, i, j + s_shift] = torch.mean(truncate_output_layer[i, start:end], dim=-2)
if self.include_cls_sep:
outputs[l_index, :, 0] = output_layer[:, 0]
outputs[l_index, batch_indexes, seq_len + s_shift] = output_layer[batch_indexes, word_pieces_lengths + s_shift]

# 3. 最终的embedding结果
return outputs

def save(self, folder):
self.tokenzier.save_pretrained(folder)
self.encoder.save_pretrained(folder)


class _WordPieceTransformersModel(nn.Module):
def __init__(self, model, tokenizer, layers: str = '-1'):
super().__init__()

self.tokenizer = tokenizer
self.encoder = model
self.config = self.encoder.config
# 检查encoder_layer_number是否合理
encoder_layer_number = len(self.encoder.encoder.layer)
self.only_last_layer = True
if not (isinstance(layers, str) and (layers=='-1' or int(layers)==self.encoder.config.num_hidden_layers)):
assert self.encoder.config.output_hidden_states == True, \
f"You have to output all hidden states if you want to" \
f" access the middle output of `{model.__class__.__name__}` "
self.only_last_layer = False

if isinstance(layers, list):
self.layers = [int(l) for l in layers]
elif isinstance(layers, str):
self.layers = list(map(int, layers.split(',')))
else:
raise TypeError("`layers` only supports str or list[int]")

for layer in self.layers:
if layer < 0:
assert -layer <= encoder_layer_number, f"The layer index:{layer} is out of scope for " \
f"a RoBERTa model with {encoder_layer_number} layers."
else:
assert layer <= encoder_layer_number, f"The layer index:{layer} is out of scope for " \
f"a RoBERTa model with {encoder_layer_number} layers."

self._cls_index = self.tokenizer.cls_token_id
self._sep_index = self.tokenizer.sep_token_id
self._wordpiece_pad_index = self.tokenizer.pad_token_id # 需要用于生成word_piece
self._wordpiece_unknown_index = self.tokenizer.unk_token_id

def index_datasets(self, *datasets, field_name, **kwargs):
r"""
使用bert的tokenizer新生成word_pieces列加入到datasets中,并将他们设置为input。如果首尾不是
[CLS]与[SEP]会在首尾额外加入[CLS]与[SEP], 且将word_pieces这一列的pad value设置为了bert的pad value。

:param datasets: DataSet对象
:param field_name: 基于哪一列index
:param kwargs: 传递给tokenizer的参数
:return:
"""
kwargs['add_special_tokens'] = kwargs.get('add_special_tokens', True)

encode_func = partial(self.tokenizer.encode, **kwargs)

for index, dataset in enumerate(datasets):
try:
dataset.apply_field(encode_func, field_name=field_name, new_field_name='word_pieces',
is_input=True)
dataset.set_pad_val('word_pieces', self._wordpiece_pad_index)
except Exception as e:
logger.error(f"Exception happens when processing the {index} dataset.")
raise e

def forward(self, word_pieces):
r"""

:param word_pieces: torch.LongTensor, batch_size x max_len
:return: num_layers x batch_size x max_len x hidden_size或者num_layers x batch_size x (max_len+2) x hidden_size
"""
batch_size, max_len = word_pieces.size()

attn_masks = word_pieces.ne(self._wordpiece_pad_index)
all_outputs = self.encoder(word_pieces, token_type_ids=torch.zeros_like(word_pieces),
attention_mask=attn_masks)
if not self.only_last_layer:
for _ in all_outputs:
if isinstance(_, (tuple, list)) and len(_)==self.encoder_layer_number:
roberta_outputs = _
break
else:
roberta_outputs = all_outputs[:1]
# output_layers = [self.layers] # len(self.layers) x batch_size x max_word_piece_length x hidden_size
outputs = roberta_outputs[0].new_zeros((len(self.layers), batch_size, max_len, roberta_outputs[0].size(-1)))
for l_index, l in enumerate(self.layers):
roberta_output = roberta_outputs[l]
outputs[l_index] = roberta_output
return outputs

def save(self, folder):
self.tokenizer.save_pretrained(folder)
self.encoder.save_pretrained(folder)

+ 2
- 2
fastNLP/modules/decoder/mlp.py View File

@@ -71,8 +71,8 @@ class MLP(nn.Module):
f"the length of activation function list except {len(size_layer) - 2} but got {len(activation)}!")
self.hidden_active = []
for func in activation:
if callable(activation):
self.hidden_active.append(activation)
if callable(func):
self.hidden_active.append(func)
elif func.lower() in actives:
self.hidden_active.append(actives[func])
else:


+ 2
- 10
test/embeddings/test_roberta_embedding.py View File

@@ -214,16 +214,8 @@ class TestRobertaEmbedding(unittest.TestCase):
result = embed(words)
self.assertEqual(result.size(), (1, 4, 16))

embed = RobertaEmbedding(vocab, model_dir_or_name=weight_path, word_dropout=0.1,
only_use_pretrain_bpe=True)
embed.eval()
words = torch.LongTensor([[2, 3, 4, 1]])
result = embed(words)
self.assertEqual(result.size(), (1, 4, 16))

# 自动截断而不报错
embed = RobertaEmbedding(vocab, model_dir_or_name=weight_path, word_dropout=0.1,
only_use_pretrain_bpe=True, auto_truncate=True)
embed = RobertaEmbedding(vocab, model_dir_or_name=weight_path, word_dropout=0.1, auto_truncate=True)
words = torch.LongTensor([[2, 3, 4, 1]*10,
[2, 3]+[0]*38])
result = embed(words)
@@ -234,7 +226,7 @@ class TestRobertaEmbedding(unittest.TestCase):
Embedding = RobertaEmbedding
weight_path = 'test/data_for_tests/embedding/small_roberta'
vocab = Vocabulary().add_word_lst("this is a texta and".split())
embed1 = Embedding(vocab, model_dir_or_name=weight_path,layers=list(range(3)),
embed1 = Embedding(vocab, model_dir_or_name=weight_path, layers=list(range(3)),
only_use_pretrain_bpe=True, truncate_embed=True, min_freq=1)
# embed_bpe_vocab_size = len(vocab)-1 + 2 # 排除NotInBERT, 额外加##a, [CLS]
# self.assertEqual(embed_bpe_vocab_size, len(embed1.model.tokenzier.vocab))


+ 38
- 0
test/embeddings/test_transformer_embedding.py View File

@@ -0,0 +1,38 @@
import unittest

import torch
import os

from fastNLP import DataSet, Vocabulary
from fastNLP.embeddings.transformers_embedding import TransformersEmbedding, TransformersWordPieceEncoder


class TransformersEmbeddingTest(unittest.TestCase):
@unittest.skipIf('TRAVIS' in os.environ, "Skip in travis")
def test_transformers_embedding_1(self):
from transformers import ElectraModel, ElectraTokenizer
weight_path = "google/electra-small-generator"
vocab = Vocabulary().add_word_lst("this is a test . [SEP] NotInRoberta".split())
model = ElectraModel.from_pretrained(weight_path)
tokenizer = ElectraTokenizer.from_pretrained(weight_path)

embed = TransformersEmbedding(vocab, model, tokenizer, word_dropout=0.1)

words = torch.LongTensor([[2, 3, 4, 1]])
result = embed(words)
self.assertEqual(result.size(), (1, 4, model.config.hidden_size))


class TransformersWordPieceEncoderTest(unittest.TestCase):
@unittest.skipIf('TRAVIS' in os.environ, "Skip in travis")
def test_transformers_embedding_1(self):
from transformers import ElectraModel, ElectraTokenizer
weight_path = "google/electra-small-generator"
model = ElectraModel.from_pretrained(weight_path)
tokenizer = ElectraTokenizer.from_pretrained(weight_path)
encoder = TransformersWordPieceEncoder(model, tokenizer)
ds = DataSet({'words': ["this is a test . [SEP]".split()]})
encoder.index_datasets(ds, field_name='words')
self.assertTrue(ds.has_field('word_pieces'))
result = encoder(torch.LongTensor([[1,2,3,4]]))
self.assertEqual(result.size(), (1, 4, model.config.hidden_size))

Loading…
Cancel
Save