@@ -1,5 +1,4 @@ | |||
__all__ = [ | |||
'AutoCollator', | |||
'Collator' | |||
] | |||
from .collator import AutoCollator, Collator | |||
from .collator import Collator |
@@ -1,386 +1,648 @@ | |||
__all__ = [ | |||
'AutoCollator', | |||
'Collator', | |||
'Collator' | |||
] | |||
from typing import List, Union, Dict, Callable, Sequence, Mapping | |||
import os | |||
import sys | |||
import inspect | |||
from abc import ABCMeta, abstractmethod | |||
from typing import Any, Dict, List, Callable, Union, Tuple | |||
from numbers import Number | |||
import warnings | |||
from fastNLP.core.log import logger | |||
from .padders.get_padder import get_padder | |||
import numpy as np | |||
import re | |||
from fastNLP.envs.imports import _NEED_IMPORT_PADDLE, _NEED_IMPORT_TORCH | |||
from .utils import unpack_batch_mapping, unpack_batch_nested_mapping, pack_batch_nested_mapping, unpack_batch_sequence, \ | |||
pack_batch_sequence | |||
if _NEED_IMPORT_PADDLE: | |||
import paddle | |||
sequence_idx_str = re.compile(r'^_\d+$') # 形如_0, _1 | |||
SUPPORTED_BACKENDS = ['torch', 'jittor', 'paddle', 'numpy', 'raw', 'auto', None] | |||
CHECK_BACKEND = ['torch', 'jittor', 'paddle'] # backend 为 auto 时 检查是否是这些 backend | |||
if _NEED_IMPORT_TORCH: | |||
import torch | |||
class ApplyResultException(Exception): | |||
def __init__(self, msg, index=None): | |||
super().__init__(msg) | |||
self.msg = msg | |||
self.index = index # 标示在哪个数据遭遇到问题了 | |||
class SetInputOrTargetException(Exception): | |||
def __init__(self, msg, index=None, field_name=None): | |||
super().__init__(msg) | |||
self.msg = msg | |||
self.index = index # 标示在哪个数据遭遇到问题了 | |||
self.field_name = field_name # 标示当前 field 的名称 | |||
def _get_ele_type_and_dim(cell: Any, dim=0) -> Tuple[Any, int]: | |||
r""" | |||
识别cell的类别与dimension的数量 | |||
numpy scalar type:https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.scalars.html | |||
:param cell: | |||
:param dim: | |||
:return: | |||
def _get_backend() -> str: | |||
""" | |||
if isinstance(cell, (str, Number, np.bool_)): | |||
if hasattr(cell, 'dtype'): | |||
return cell.dtype.type, dim | |||
return type(cell), dim | |||
elif isinstance(cell, list): | |||
dim += 1 | |||
res = [_get_ele_type_and_dim(cell_i, dim) for cell_i in cell] | |||
types = set([i for i, j in res]) | |||
dims = set([j for i, j in res]) | |||
if len(types) > 1: | |||
raise SetInputOrTargetException("Mixed types detected: {}.".format(list(types))) | |||
elif len(types) == 0: | |||
raise SetInputOrTargetException("Empty value encountered.") | |||
if len(dims) > 1: | |||
raise SetInputOrTargetException("Mixed dimension detected: {}.".format(list(dims))) | |||
return types.pop(), dims.pop() | |||
elif isinstance(cell, torch.Tensor): | |||
return cell.dtype, cell.dim() + dim # 如果是 torch.mean 的结果是0 | |||
elif isinstance(cell, paddle.Tensor): | |||
return cell.dtype, cell.dim() + dim | |||
elif isinstance(cell, np.ndarray): | |||
if cell.dtype != np.dtype('O'): # 如果不是 object 的话说明是 well-formatted 的了 | |||
return cell.dtype.type, cell.ndim + dim # dtype.type 返回的会是 np.int32, np.float 等 | |||
# 否则需要继续往下 iterate | |||
dim += 1 | |||
res = [_get_ele_type_and_dim(cell_i, dim) for cell_i in cell] | |||
types = set([i for i, j in res]) | |||
dims = set([j for i, j in res]) | |||
if len(types) > 1: | |||
raise SetInputOrTargetException("Mixed types detected: {}.".format(list(types))) | |||
elif len(types) == 0: | |||
raise SetInputOrTargetException("Empty value encountered.") | |||
if len(dims) > 1: | |||
raise SetInputOrTargetException("Mixed dimension detected: {}.".format(list(dims))) | |||
return types.pop(), dims.pop() | |||
else: # 包含 tuple, set, dict 以及其它的类型 | |||
raise SetInputOrTargetException(f"Cannot process type:{type(cell)}.") | |||
def _get_ds_type_dim(ds: dict): | |||
# 获取数据集第一行的 field 内部函数的类型和维度 | |||
field_dtype, field_dim = {}, {} | |||
for field_name, field_content in ds.items(): | |||
type_0, dim_0 = _get_ele_type_and_dim(field_content) | |||
field_dtype[field_name], field_dim[field_name] = type_0, dim_0 | |||
return field_dtype, field_dim | |||
class Collator(metaclass=ABCMeta): | |||
r""" | |||
辅助DataLoader管理collate_fn的类 | |||
当 Collator 的 backend 为 None 的时候如何,通过这个函数自动判定其 backend 。判断方法主要为以下两个: | |||
(1)尝试通过向上寻找当前 collator 的 callee 对象,根据 callee 对象寻找。然后使用 '/site-packages/{backend}' 来寻找是否是 | |||
某个 backend 的 dataloader 。 | |||
(2)如果方式(1)没找,则通过分析 sys.modules 中的内容进行寻找。 | |||
如果都没有找到则返回 numpy 。 | |||
:return: | |||
""" | |||
def _check_module(module): | |||
""" | |||
检查该 module 是否含有 某个 backend 的特征 | |||
def __init__(self): | |||
super(Collator, self).__init__() | |||
self.collate_fn = [] | |||
@abstractmethod | |||
def __call__(self, ins_lst: List) -> Any: | |||
raise NotImplementedError | |||
@abstractmethod | |||
def set_pad_val(self, *field_names: str, value=0): | |||
raise NotImplementedError | |||
:param module: module 对象 | |||
:return: | |||
""" | |||
catch_backend = [] | |||
try: | |||
file = module.__file__ | |||
for backend in CHECK_BACKEND: | |||
if f'{os.sep}site-packages{os.sep}{backend}' in file: | |||
catch_backend = [backend, file] | |||
except: | |||
pass | |||
return catch_backend | |||
currentframe = inspect.currentframe() | |||
# 方式(1) | |||
catch_backend = [] | |||
for i in range(100): | |||
currentframe = currentframe.f_back | |||
if currentframe is not None: | |||
module = inspect.getmodule(currentframe) | |||
if module is not None: | |||
catch_backend = _check_module(module) | |||
if len(catch_backend): # 主要捕获到一个就结束吧 | |||
break | |||
else: | |||
break | |||
if len(catch_backend): | |||
logger.debug(f"Find a file named:{catch_backend[1]} from stack contains backend:{catch_backend[0]}.") | |||
return catch_backend[0] | |||
# 方式 (2) | |||
for backend in CHECK_BACKEND: | |||
if backend in sys.modules: | |||
logger.debug(f"sys.modules contains backend:{catch_backend[0]}.") | |||
return backend | |||
for key, module in sys.modules.items(): | |||
catch_backend = _check_module(module) | |||
if catch_backend: | |||
break | |||
if len(catch_backend): | |||
logger.debug(f"Find a module file named:{catch_backend[1]} from sys.modules contains backend:{catch_backend[0]}.") | |||
return catch_backend[0] | |||
return 'numpy' | |||
class Collator: | |||
def __init__(self, backend='auto'): | |||
""" | |||
用于 pad 数据的对象。会自动将所有能够 pad (由 fastNLP 根据数据判定能否 pad )的数据都进行 pad 操作,默认 pad 的值为 0。 | |||
可使用 set_pad() 函数调整。如果有些 field 不想输出,可以使用 set_ignore() 函数进行设置。Collator 在第一次进行 pad 的 | |||
时候自动根据设置以及数据情况,为每个 field 获取一个 padder ,在之后的每次调用中,都将使用对应的 Padder 给对应的 field 。 | |||
class _MultiCollator: | |||
""" | |||
管理所有collator的容器, | |||
遵循覆盖原则,后加入的collate_fn会覆盖之前处理的数据。 | |||
""" | |||
:param backend: 对于可以 pad 的 field,使用哪种 tensor,支持 ['torch','jittor','paddle','numpy','raw', auto, None]。 | |||
若为 'auto' ,则在进行 pad 的时候会根据调用的环境决定其 backend 。该参数对不能进行 pad 的数据没用影响,不能 pad | |||
的数据返回一定是 list 。 | |||
""" | |||
self.unpack_batch_func = None | |||
self.pack_batch_func = None | |||
self.ignore_fields = set() | |||
self.padders = {} | |||
self.input_fields = {} | |||
self.batch_data_type = None # 只能是 d ,s ,l 三种,分别对应输入的batch的每个sample为 dict, single,list。 | |||
self.set_backend(backend) | |||
def __call__(self, batch)->Union[List, Dict]: | |||
""" | |||
batch可能存在三种可能性 | |||
List[Dict], List[List], List[Sample] | |||
def __init__(self, collate_fns: Union[Callable, List[Callable], None]): | |||
第一步:使用 unpack_batch_func 将相同 field 的内容打包到一个 list 中。 | |||
第二步:使用每个 field 各自的 padder 进行 pad 。 | |||
第三步:根据 batch 中每个 sample 的类型,返回也保证为该类型。 | |||
if collate_fns is None: | |||
collate_fns = [] | |||
第一次调用会根据当前 batch 数据决定使用哪个 unpack_batch_func ,这个函数的作用是把不同 sample 的同一个 field 的放入到一个 | |||
list 中;同时也会决定 pack_batch_func,这个函数的作用是在返回 pad 好的 batch 之前,将 batch 恢复为 输入时一个 sample | |||
的类别。 | |||
第一次调用会根据当前 field 决定对应的 Padder 。 | |||
if isinstance(collate_fns, Callable): | |||
collate_fns = [collate_fns] | |||
""" | |||
if self.unpack_batch_func is None: | |||
# 决定使用哪个unpack_batch_func,让它都 return 回 dict 类型 | |||
if self.batch_data_type is None: | |||
if isinstance(batch[0], Mapping): | |||
self.batch_data_type = 'd' | |||
elif isinstance(batch[0], Sequence): # 这里存在误判的风险 | |||
self.batch_data_type = 'l' | |||
else: | |||
self.batch_data_type = 's' | |||
logger.debug(f"Since batch[0] has type:{type(batch[0])}, so the batch_data_type " | |||
f"is `{self.batch_data_type}`.") | |||
if self.batch_data_type == 's': | |||
self.unpack_batch_func = lambda batch, ignore_fields: {'_single': batch} # 不需要做任何调整 | |||
self.pack_batch_func = lambda x: x['_single'] | |||
elif self.batch_data_type == 'l': | |||
self.unpack_batch_func = unpack_batch_sequence | |||
self.pack_batch_func = pack_batch_sequence | |||
elif self.batch_data_type == 'd': | |||
if any([isinstance(v, Mapping) for v in batch[0].values()]): # 可能存在 nested 的dict。{'a': {'b': xx}}->{('a', 'b'): value} | |||
self.unpack_batch_func = unpack_batch_nested_mapping | |||
self.pack_batch_func = pack_batch_nested_mapping | |||
else: | |||
self.unpack_batch_func = unpack_batch_mapping | |||
self.pack_batch_func = lambda x:x | |||
self._collators: list = collate_fns | |||
if self.unpack_batch_func is unpack_batch_nested_mapping: # 比较特殊,需要防止继续往下延伸 | |||
unpack_batch: Dict = self.unpack_batch_func(batch, self.ignore_fields, set(self.input_fields.keys())) | |||
else: | |||
unpack_batch:Dict = self.unpack_batch_func(batch, self.ignore_fields) # 将各自 field 组成 batch 形式。 | |||
pad_batch = {} | |||
if len(self.padders)==0: # 第一次运行,准备 padder | |||
if self.backend == 'auto': # 如果 backend 为 auto ,则尝试通过调用栈等自动获取 backend 。 | |||
self.backend = _get_backend() | |||
for key in unpack_batch.keys(): | |||
if key not in self.input_fields and key not in self.ignore_fields: | |||
self.input_fields[key] = {'pad_val': 0, 'dtype': None, 'backend': self.backend} | |||
elif key in self.input_fields and self.input_fields[key]['backend'] == 'auto': | |||
self.input_fields[key]['backend'] = self.backend | |||
for field_name, setting in self.input_fields.items(): | |||
pad_fn = setting.get('pad_fn', None) | |||
if callable(pad_fn): | |||
padder = pad_fn | |||
else: | |||
backend = self.backend if setting['backend'] == 'auto' else setting['backend'] | |||
batch_field = unpack_batch.get(field_name) | |||
padder = get_padder(batch_field=batch_field, pad_val=setting['pad_val'], | |||
dtype=setting['dtype'], backend=backend, | |||
field_name=field_name) | |||
self.padders[field_name] = padder | |||
if self.batch_data_type == 'l': | |||
self.padders = dict(sorted(self.padders.items(), key=lambda x:int(x[0][1:]))) # sort, 这样 _0, _1 能够保持顺序 | |||
for key, padder in self.padders.items(): | |||
batch = unpack_batch.get(key) | |||
pad_batch[key] = padder(batch) | |||
return self.pack_batch_func(pad_batch) # 根据情况恢复成与输入一致的类型 | |||
def set_pad(self, field_name:Union[str, tuple], pad_val:Union[int, float, None]=0, dtype=None, backend='auto', | |||
pad_fn:Callable=None) -> "Collator": | |||
""" | |||
如果需要对某个 field 的内容进行特殊的调整,请使用这个函数。 | |||
:param field_name: 需要调整的 field 的名称。如果 Dataset 的 __getitem__ 方法返回的是 dict 类型的,则可以直接使用对应的 | |||
field 的 key 来表示,如果是 nested 的 dict,可以使用元组表示多层次的 key,例如 {'a': {'b': 1}} 中的使用 ('a', 'b'); | |||
如果 __getitem__ 返回的是 Sequence 类型的,则可以使用 '_0', '_1' 表示序列中第 0 或 1 个元素。如果该 field 在数据中没 | |||
有找到,则报错;如果 __getitem__ 返回的是就是整体内容,请使用 "_single" 。 | |||
:param pad_val: 这个 field 的默认 pad 值。如果设置为 None,则表示该 field 不需要 pad , fastNLP 默认只会对可以 pad 的 | |||
field 进行 pad,所以如果对应 field 本身就不是可以 pad 的形式,可以不需要主动设置为 None 。如果 backend 为 None ,该值 | |||
无意义。 | |||
:param dtype: 对于需要 pad 的 field ,该 field 的数据 dtype 应该是什么。 | |||
:param backend: 可选['raw', 'numpy', 'torch', 'paddle', 'jittor', 'auto'],分别代表,输出为 list, numpy.ndarray, | |||
torch.Tensor, paddle.Tensor, jittor.Var 类型。若 pad_val 为 None ,该值无意义 。 | |||
:param pad_fn: 指定当前 field 的 pad 函数,传入该函数则 pad_val, dtype, backend 等参数失效。pad_fn 的输入为当前 field 的 | |||
batch 形式。 Collator 将自动 unbatch 数据,然后将各个 field 组成各自的 batch 。pad_func 的输入即为 field 的 batch | |||
形式,输出将被直接作为结果输出。 | |||
:return: 返回 Collator 自身 | |||
""" | |||
self.padders.clear() # 重新生成 | |||
if self.batch_data_type is not None: | |||
if self.batch_data_type == 's': | |||
logger.debug("Set as single field mode.") | |||
self.input_fields.clear() | |||
elif self.batch_data_type == 'd': | |||
assert sequence_idx_str.match(field_name) is None, f"Field name:{field_name} will be recognized as list " \ | |||
f"index, but other field is set as dict mode." | |||
elif self.batch_data_type == 'l': | |||
assert sequence_idx_str.match(field_name) is not None, f"Other field is set as list mode. But the new " \ | |||
f"field name is {field_name}." | |||
if field_name == '_single': | |||
self.batch_data_type = 's' | |||
elif isinstance(field_name, str) and sequence_idx_str.match(field_name): | |||
self.batch_data_type = 'l' | |||
else: | |||
self.batch_data_type = 'd' | |||
def __call__(self, ins_lst) -> Dict: | |||
out, list_out = {}, [] | |||
for idx, _collate_fn in enumerate(self._collators): | |||
res = _collate_fn(ins_lst) | |||
if isinstance(res, Dict): | |||
out.update(res) | |||
else: | |||
list_out.append(res) | |||
# else: | |||
# raise ValueError(f"the return type of collate_fn {idx} is {type(res)}, but require is dict") | |||
if len(out) > 0 and len(list_out) > 0: | |||
raise ValueError("the return of collate_fns is not the same, must be dict or list") | |||
if len(list_out) == 1: | |||
list_out = list_out[-1] | |||
# print(list_out) | |||
return out if len(out) > 0 else list_out | |||
if field_name in self.ignore_fields: | |||
logger.warning(f"Field:{field_name} has been set as ignored before. It will not be ignored afterwards.") | |||
if backend is None: | |||
backend = self.backend | |||
else: | |||
assert backend in SUPPORTED_BACKENDS | |||
def get_collators(self): | |||
return self._collators | |||
self.input_fields[field_name] = {'pad_val': pad_val, 'dtype': dtype, 'backend': backend, 'pad_fn': pad_fn} | |||
def add_collator(self, collator: Callable): | |||
self._collators.append(collator) | |||
return self | |||
def set_as_numpy(self, as_numpy: bool): | |||
def set_backend(self, backend:str): | |||
""" | |||
存在AutoCollator时,as_numpy控制其返回值的类型 | |||
设置可以 pad 的 field 默认 pad 为什么类型的 tensor | |||
:param as_numpy: | |||
:param backend: 对于可以 pad 的 field,使用哪种 tensor,支持 ['torch','jittor','paddle','numpy','raw', 'auto', None], | |||
若为 auto ,则在进行 pad 的时候会自动根据调用的环境决定其 backend 。 | |||
:return: | |||
""" | |||
for collator in self._collators: | |||
if isinstance(collator, AutoCollator): | |||
collator.set_as_numpy(as_numpy) | |||
return self | |||
assert backend in SUPPORTED_BACKENDS | |||
self.padders.clear() | |||
self.backend = backend | |||
def set_pad_val(self, *field_names, val=0): | |||
def set_ignore(self, *field_names) -> "Collator": | |||
""" | |||
存在AutoCollator时,设置field_name的padding值 | |||
:param field_names: 数据集的field名 | |||
:param val: padding的值 | |||
:return: | |||
如果有的内容不希望输出,可以在此处进行设置,被设置的 field 将在 batch 的输出中被忽略。 | |||
Ex:: | |||
collator.set_ignore('field1', 'field2') | |||
:param field_names: 需要忽略的 field 的名称。如果 Dataset 的 __getitem__ 方法返回的是 dict 类型的,则可以直接使用对应的 | |||
field 的 key 来表示,如果是 nested 的 dict,可以使用元组来表示,例如 {'a': {'b': 1}} 中的使用 ('a', 'b'); 如果 | |||
__getitem__ 返回的是 Sequence 类型的,则可以使用 '_0', '_1' 表示序列中第 0 或 1 个元素。 | |||
:return: 返回 Collator 自身 | |||
""" | |||
flag = True | |||
for collator in self._collators: | |||
if isinstance(collator, AutoCollator): | |||
collator.set_pad_val(*field_names, val=val) | |||
flag = False | |||
if flag: | |||
warnings.warn("AutoCollator is remove, set_padding is unavailable!!") | |||
for field_name in field_names: | |||
if field_name in self.input_fields: | |||
self.input_fields.pop(field_name) | |||
logger.warning(f"Field:{field_name} has been set as input before. It will be ignored afterwards.") | |||
self.padders.pop(field_name, None) # 如果由的话,将它的 padder 扔掉。 | |||
self.ignore_fields.add(field_name) | |||
return self | |||
def set_input(self, *field_names): | |||
""" | |||
设置AutoCollator需要的field_names,未被设置默认过滤掉 | |||
:param field_names: | |||
:return: | |||
""" | |||
flag = True | |||
for collator in self._collators: | |||
if isinstance(collator, AutoCollator): | |||
collator.set_input(*field_names) | |||
flag = False | |||
if flag: | |||
warnings.warn("AutoCollator is removed, set_input is unavailable!!") | |||
return self | |||
class AutoCollator(Collator): | |||
def __init__(self, as_numpy: bool): | |||
super(AutoCollator, self).__init__() | |||
self.pad_field_value = {} # field padding 自定义的 padding 值, 默认为0 | |||
self.need_inputs = set() # 需要的 field name | |||
self.field_dtypes = None # 每列数据单元的 dtype 类型 | |||
self.field_dims = None # 每列数据单元维度 | |||
self.as_numpy = as_numpy | |||
def __call__(self, ins_lst: List[Dict]) -> dict: | |||
if len(self.need_inputs) == 0: | |||
raise ValueError({"set_inputs is None, you should use set_inputs method first!!"}) | |||
# TODO 这里应该是先 check 有哪些需要 padding,然后check这些是否是可以pad的 | |||
# 第一种情况,设置了 set_input 的值 | |||
# 第二种情况, 根据数据的类型的判断是否 padding | |||
if self.field_dtypes is None and self.field_dims is None: | |||
field_dtypes, field_dims = {}, {} | |||
for key, value in ins_lst[0].items(): | |||
if key in self.need_inputs and self.pad_field_value.get(key, 0) is not None: | |||
field_dtypes[key], field_dims[key] = _get_ele_type_and_dim(value) | |||
self.field_dtypes = field_dtypes | |||
self.field_dims = field_dims | |||
pack_ins_lst, pad_ins_lst = {field_name: [] | |||
for field_name in ins_lst[0].keys() if field_name in self.need_inputs}, {} | |||
# 将 list 列表内数据按列名打包 | |||
for per_ins in ins_lst: | |||
for field_name, _field_content in per_ins.items(): | |||
if field_name in self.need_inputs: | |||
pack_ins_lst[field_name].append(_field_content) | |||
pad_field_kv = {field_name: 0 for field_name in self.need_inputs} | |||
pad_field_kv.update(self.pad_field_value) | |||
self.pad_field_value = pad_field_kv | |||
if len(self.pad_field_value.keys()) > 0: | |||
# 去掉不需要 pad 的列,如果 set_input 的列不存在则忽略 | |||
non_pad_field_names = [] | |||
for k, v in self.pad_field_value.items(): | |||
if v is None: | |||
non_pad_field_names.append(k) | |||
# drop_field_names = list(set(list(ins_lst[0].keys())) - set(drop_fields)) | |||
for field_name in non_pad_field_names: | |||
field_array = pack_ins_lst.pop(field_name) | |||
pad_ins_lst[field_name] = np.array(field_array) | |||
for field_name, field_array in pack_ins_lst.items(): | |||
content = pad_content(field_array, field_name, self.field_dtypes[field_name], | |||
self.field_dims[field_name], | |||
self.pad_field_value[field_name], | |||
as_numpy=self.as_numpy) | |||
pad_ins_lst[field_name] = content | |||
# else: | |||
# # 取出每列的数据,根据类型判断是否能 pad | |||
# for field_name, field_array in pack_ins_lst.items(): | |||
# pad_field_array = pad_content(field_array, field_name, self.field_dtypes[field_name], | |||
# self.field_dims[field_name], | |||
# pad_val=0, as_numpy=self.as_numpy) | |||
# pad_ins_lst[field_name] = pad_field_array | |||
return pad_ins_lst | |||
def set_pad_val(self, *field_names, val=0): | |||
for field_name in field_names: | |||
self.pad_field_value[field_name] = val | |||
def set_as_numpy(self, as_numpy: bool): | |||
self.as_numpy = as_numpy | |||
def set_input(self, *field_names): | |||
for field_name in field_names: | |||
self.need_inputs.add(field_name) | |||
def pad_content(content, field_name: str, field_type, field_dim: int, pad_val: int, as_numpy: bool): | |||
if field_type: | |||
# 不处理, 返回 np.array 类型 | |||
if field_dim > 3: | |||
return np.array(content) | |||
# 元素类型为数值类型 np.int64, np.float64, int, float 等 | |||
if isinstance(field_type, type) and \ | |||
(issubclass(field_type, np.number) or issubclass(field_type, Number)): | |||
if field_dim == 0: | |||
array = np.array(content, dtype=field_type) | |||
elif field_dim == 1: | |||
max_len = max(map(len, content)) | |||
array = np.full((len(content), max_len), pad_val, dtype=field_type) | |||
for i, content_i in enumerate(content): | |||
array[i, :len(content_i)] = content_i | |||
elif field_dim == 2: | |||
max_len = max(map(len, content)) | |||
max_word_len = max([max([len(content_ii) for content_ii in content_i]) for | |||
content_i in content]) | |||
array = np.full((len(content), max_len, max_word_len), pad_val, dtype=field_type) | |||
for i, content_i in enumerate(content): | |||
for j, content_ii in enumerate(content_i): | |||
array[i, j, :len(content_ii)] = content_ii | |||
else: | |||
shape = np.shape(content) | |||
if len(shape) == 4: # 说明各 dimension 是相同的大小 | |||
array = np.array(content, dtype=field_type) | |||
else: | |||
raise RuntimeError( | |||
f"Field:{field_name} has 3 dimensions, every sample should have the same shape.") | |||
if as_numpy is False: | |||
array = torch.tensor(array) | |||
return array | |||
# 元素类型为数值类型 torch.float 等 | |||
elif str(field_type).startswith('torch'): | |||
if field_dim == 0: | |||
tensor = torch.tensor(content).to(field_type) | |||
elif field_dim == 1: | |||
max_len = max(map(len, content)) | |||
tensor = torch.full((len(content), max_len), fill_value=pad_val, dtype=field_type) | |||
for i, content_i in enumerate(content): | |||
tensor[i, :len(content_i)] = content_i.clone().detach() | |||
elif field_dim == 2: | |||
max_len = max(map(len, content)) | |||
max_word_len = max([max([len(content_ii) for content_ii in content_i]) for | |||
content_i in content]) | |||
tensor = torch.full((len(content), max_len, max_word_len), fill_value=pad_val, | |||
dtype=field_type) | |||
for i, content_i in enumerate(content): | |||
for j, content_ii in enumerate(content_i): | |||
tensor[i, j, :len(content_ii)] = content_ii.clone().detach() | |||
else: | |||
shapes = set([np.shape(content_i) for content_i in content]) | |||
if len(shapes) > 1: | |||
raise RuntimeError( | |||
f"Field:{field_name} has 3 dimensions, every sample should have the same shape.") | |||
shape = shapes.pop() | |||
if len(shape) == 3: | |||
tensor = torch.full([len(content)] + list(shape), fill_value=pad_val, | |||
dtype=field_type) | |||
for i, content_i in enumerate(content): | |||
tensor[i] = content_i.clone().detach().to(field_type) | |||
else: | |||
raise RuntimeError( | |||
f"Field:{field_name} has 3 dimensions, every sample should have the same shape.") | |||
return tensor | |||
# TODO 增加jittor/paddle? | |||
elif str(field_type).startswith('paddle'): | |||
if field_dim == 0: | |||
tensor = paddle.Tensor(content).to(field_type) | |||
elif field_dim == 1: | |||
max_len = max(map(len, content)) | |||
tensor = paddle.full((len(content), max_len), fill_value=pad_val, dtype=field_type) | |||
for i, content_i in enumerate(content): | |||
tensor[i, :len(content_i)] = content_i.clone().detach() | |||
elif field_dim == 2: | |||
max_len = max(map(len, content)) | |||
max_word_len = max([max([len(content_ii) for content_ii in content_i]) for | |||
content_i in content]) | |||
tensor = paddle.full((len(content), max_len, max_word_len), fill_value=pad_val, | |||
dtype=field_type) | |||
for i, content_i in enumerate(content): | |||
for j, content_ii in enumerate(content_i): | |||
tensor[i, j, :len(content_ii)] = content_ii.clone().detach() | |||
else: | |||
shapes = set([np.shape(content_i) for content_i in content]) | |||
if len(shapes) > 1: | |||
raise RuntimeError( | |||
f"Field:{field_name} has 3 dimensions, every sample should have the same shape.") | |||
shape = shapes.pop() | |||
if len(shape) == 3: | |||
tensor = paddle.full([len(content)] + list(shape), fill_value=pad_val, | |||
dtype=field_type) | |||
for i, content_i in enumerate(content): | |||
tensor[i] = content_i.clone().detach().to(field_type) | |||
else: | |||
raise RuntimeError( | |||
f"Field:{field_name} has 3 dimensions, every sample should have the same shape.") | |||
return tensor | |||
else: | |||
return np.array(content) # 不进行任何操作 | |||
else: | |||
return np.array(content) | |||
# | |||
# from abc import ABCMeta, abstractmethod | |||
# from typing import Any, Dict, List, Callable, Union, Tuple | |||
# from numbers import Number | |||
# import warnings | |||
# | |||
# import numpy as np | |||
# | |||
# from fastNLP.envs.imports import _NEED_IMPORT_PADDLE, _NEED_IMPORT_TORCH | |||
# | |||
# if _NEED_IMPORT_PADDLE: | |||
# import paddle | |||
# | |||
# if _NEED_IMPORT_TORCH: | |||
# import torch | |||
# | |||
# | |||
# class ApplyResultException(Exception): | |||
# def __init__(self, msg, index=None): | |||
# super().__init__(msg) | |||
# self.msg = msg | |||
# self.index = index # 标示在哪个数据遭遇到问题了 | |||
# | |||
# | |||
# class SetInputOrTargetException(Exception): | |||
# def __init__(self, msg, index=None, field_name=None): | |||
# super().__init__(msg) | |||
# self.msg = msg | |||
# self.index = index # 标示在哪个数据遭遇到问题了 | |||
# self.field_name = field_name # 标示当前 field 的名称 | |||
# | |||
# | |||
# def _get_ele_type_and_dim(cell: Any, dim=0) -> Tuple[Any, int]: | |||
# r""" | |||
# 识别cell的类别与dimension的数量 | |||
# | |||
# numpy scalar type:https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.scalars.html | |||
# :param cell: | |||
# :param dim: | |||
# :return: | |||
# """ | |||
# if isinstance(cell, (str, Number, np.bool_)): | |||
# if hasattr(cell, 'dtype'): | |||
# return cell.dtype.type, dim | |||
# return type(cell), dim | |||
# | |||
# elif isinstance(cell, list): | |||
# dim += 1 | |||
# res = [_get_ele_type_and_dim(cell_i, dim) for cell_i in cell] | |||
# types = set([i for i, j in res]) | |||
# dims = set([j for i, j in res]) | |||
# if len(types) > 1: | |||
# raise SetInputOrTargetException("Mixed types detected: {}.".format(list(types))) | |||
# elif len(types) == 0: | |||
# raise SetInputOrTargetException("Empty value encountered.") | |||
# if len(dims) > 1: | |||
# raise SetInputOrTargetException("Mixed dimension detected: {}.".format(list(dims))) | |||
# return types.pop(), dims.pop() | |||
# | |||
# elif isinstance(cell, torch.Tensor): | |||
# return cell.dtype, cell.dim() + dim # 如果是 torch.mean 的结果是0 | |||
# | |||
# elif isinstance(cell, paddle.Tensor): | |||
# return cell.dtype, cell.dim() + dim | |||
# | |||
# elif isinstance(cell, np.ndarray): | |||
# if cell.dtype != np.dtype('O'): # 如果不是 object 的话说明是 well-formatted 的了 | |||
# return cell.dtype.type, cell.ndim + dim # dtype.type 返回的会是 np.int32, np.float 等 | |||
# # 否则需要继续往下 iterate | |||
# dim += 1 | |||
# res = [_get_ele_type_and_dim(cell_i, dim) for cell_i in cell] | |||
# types = set([i for i, j in res]) | |||
# dims = set([j for i, j in res]) | |||
# if len(types) > 1: | |||
# raise SetInputOrTargetException("Mixed types detected: {}.".format(list(types))) | |||
# elif len(types) == 0: | |||
# raise SetInputOrTargetException("Empty value encountered.") | |||
# if len(dims) > 1: | |||
# raise SetInputOrTargetException("Mixed dimension detected: {}.".format(list(dims))) | |||
# return types.pop(), dims.pop() | |||
# | |||
# else: # 包含 tuple, set, dict 以及其它的类型 | |||
# raise SetInputOrTargetException(f"Cannot process type:{type(cell)}.") | |||
# | |||
# | |||
# def _get_ds_type_dim(ds: dict): | |||
# # 获取数据集第一行的 field 内部函数的类型和维度 | |||
# field_dtype, field_dim = {}, {} | |||
# for field_name, field_content in ds.items(): | |||
# type_0, dim_0 = _get_ele_type_and_dim(field_content) | |||
# field_dtype[field_name], field_dim[field_name] = type_0, dim_0 | |||
# return field_dtype, field_dim | |||
# | |||
# | |||
# class Collator(metaclass=ABCMeta): | |||
# r""" | |||
# 辅助DataLoader管理collate_fn的类 | |||
# | |||
# """ | |||
# | |||
# def __init__(self): | |||
# super(Collator, self).__init__() | |||
# self.collate_fn = [] | |||
# | |||
# @abstractmethod | |||
# def __call__(self, ins_lst: List) -> Any: | |||
# raise NotImplementedError | |||
# | |||
# @abstractmethod | |||
# def set_pad_val(self, *field_names: str, value=0): | |||
# raise NotImplementedError | |||
# | |||
# | |||
# class _MultiCollator: | |||
# """ | |||
# 管理所有collator的容器, | |||
# 遵循覆盖原则,后加入的collate_fn会覆盖之前处理的数据。 | |||
# """ | |||
# | |||
# def __init__(self, collate_fns: Union[Callable, List[Callable], None]): | |||
# | |||
# if collate_fns is None: | |||
# collate_fns = [] | |||
# | |||
# if isinstance(collate_fns, Callable): | |||
# collate_fns = [collate_fns] | |||
# | |||
# self._collators: list = collate_fns | |||
# | |||
# def __call__(self, ins_lst) -> Dict: | |||
# out, list_out = {}, [] | |||
# for idx, _collate_fn in enumerate(self._collators): | |||
# res = _collate_fn(ins_lst) | |||
# if isinstance(res, Dict): | |||
# out.update(res) | |||
# else: | |||
# list_out.append(res) | |||
# # else: | |||
# # raise ValueError(f"the return type of collate_fn {idx} is {type(res)}, but require is dict") | |||
# if len(out) > 0 and len(list_out) > 0: | |||
# raise ValueError("the return of collate_fns is not the same, must be dict or list") | |||
# if len(list_out) == 1: | |||
# list_out = list_out[-1] | |||
# # print(list_out) | |||
# return out if len(out) > 0 else list_out | |||
# | |||
# def get_collators(self): | |||
# return self._collators | |||
# | |||
# def add_collator(self, collator: Callable): | |||
# self._collators.append(collator) | |||
# | |||
# def set_as_numpy(self, as_numpy: bool): | |||
# """ | |||
# 存在AutoCollator时,as_numpy控制其返回值的类型 | |||
# | |||
# :param as_numpy: | |||
# :return: | |||
# """ | |||
# for collator in self._collators: | |||
# if isinstance(collator, AutoCollator): | |||
# collator.set_as_numpy(as_numpy) | |||
# return self | |||
# | |||
# def set_pad_val(self, *field_names, val=0): | |||
# """ | |||
# 存在AutoCollator时,设置field_name的padding值 | |||
# | |||
# :param field_names: 数据集的field名 | |||
# :param val: padding的值 | |||
# :return: | |||
# """ | |||
# flag = True | |||
# for collator in self._collators: | |||
# if isinstance(collator, AutoCollator): | |||
# collator.set_pad_val(*field_names, val=val) | |||
# flag = False | |||
# if flag: | |||
# warnings.warn("AutoCollator is remove, set_padding is unavailable!!") | |||
# return self | |||
# | |||
# def set_input(self, *field_names): | |||
# """ | |||
# 设置AutoCollator需要的field_names,未被设置默认过滤掉 | |||
# | |||
# :param field_names: | |||
# :return: | |||
# """ | |||
# flag = True | |||
# for collator in self._collators: | |||
# if isinstance(collator, AutoCollator): | |||
# collator.set_input(*field_names) | |||
# flag = False | |||
# if flag: | |||
# warnings.warn("AutoCollator is removed, set_input is unavailable!!") | |||
# return self | |||
# | |||
# | |||
# class AutoCollator(Collator): | |||
# | |||
# def __init__(self, as_numpy: bool): | |||
# super(AutoCollator, self).__init__() | |||
# self.pad_field_value = {} # field padding 自定义的 padding 值, 默认为0 | |||
# self.need_inputs = set() # 需要的 field name | |||
# self.field_dtypes = None # 每列数据单元的 dtype 类型 | |||
# self.field_dims = None # 每列数据单元维度 | |||
# self.as_numpy = as_numpy | |||
# | |||
# def __call__(self, ins_lst: List[Dict]) -> dict: | |||
# if len(self.need_inputs) == 0: | |||
# raise ValueError({"set_inputs is None, you should use set_inputs method first!!"}) | |||
# # TODO 这里应该是先 check 有哪些需要 padding,然后check这些是否是可以pad的 | |||
# | |||
# # 第一种情况,设置了 set_input 的值 | |||
# # 第二种情况, 根据数据的类型的判断是否 padding | |||
# if self.field_dtypes is None and self.field_dims is None: | |||
# field_dtypes, field_dims = {}, {} | |||
# for key, value in ins_lst[0].items(): | |||
# if key in self.need_inputs and self.pad_field_value.get(key, 0) is not None: | |||
# field_dtypes[key], field_dims[key] = _get_ele_type_and_dim(value) | |||
# self.field_dtypes = field_dtypes | |||
# self.field_dims = field_dims | |||
# | |||
# pack_ins_lst, pad_ins_lst = {field_name: [] | |||
# for field_name in ins_lst[0].keys() if field_name in self.need_inputs}, {} | |||
# # 将 list 列表内数据按列名打包 | |||
# for per_ins in ins_lst: | |||
# for field_name, _field_content in per_ins.items(): | |||
# if field_name in self.need_inputs: | |||
# pack_ins_lst[field_name].append(_field_content) | |||
# | |||
# pad_field_kv = {field_name: 0 for field_name in self.need_inputs} | |||
# pad_field_kv.update(self.pad_field_value) | |||
# self.pad_field_value = pad_field_kv | |||
# | |||
# if len(self.pad_field_value.keys()) > 0: | |||
# # 去掉不需要 pad 的列,如果 set_input 的列不存在则忽略 | |||
# non_pad_field_names = [] | |||
# for k, v in self.pad_field_value.items(): | |||
# if v is None: | |||
# non_pad_field_names.append(k) | |||
# | |||
# # drop_field_names = list(set(list(ins_lst[0].keys())) - set(drop_fields)) | |||
# for field_name in non_pad_field_names: | |||
# field_array = pack_ins_lst.pop(field_name) | |||
# pad_ins_lst[field_name] = np.array(field_array) | |||
# | |||
# for field_name, field_array in pack_ins_lst.items(): | |||
# content = pad_content(field_array, field_name, self.field_dtypes[field_name], | |||
# self.field_dims[field_name], | |||
# self.pad_field_value[field_name], | |||
# as_numpy=self.as_numpy) | |||
# pad_ins_lst[field_name] = content | |||
# | |||
# # else: | |||
# # # 取出每列的数据,根据类型判断是否能 pad | |||
# # for field_name, field_array in pack_ins_lst.items(): | |||
# # pad_field_array = pad_content(field_array, field_name, self.field_dtypes[field_name], | |||
# # self.field_dims[field_name], | |||
# # pad_val=0, as_numpy=self.as_numpy) | |||
# # pad_ins_lst[field_name] = pad_field_array | |||
# | |||
# return pad_ins_lst | |||
# | |||
# def set_pad_val(self, *field_names, val=0): | |||
# for field_name in field_names: | |||
# self.pad_field_value[field_name] = val | |||
# | |||
# def set_as_numpy(self, as_numpy: bool): | |||
# self.as_numpy = as_numpy | |||
# | |||
# def set_input(self, *field_names): | |||
# for field_name in field_names: | |||
# self.need_inputs.add(field_name) | |||
# | |||
# | |||
# def pad_content(content, field_name: str, field_type, field_dim: int, pad_val: int, as_numpy: bool): | |||
# | |||
# if field_type: | |||
# # 不处理, 返回 np.array 类型 | |||
# if field_dim > 3: | |||
# return np.array(content) | |||
# # 元素类型为数值类型 np.int64, np.float64, int, float 等 | |||
# if isinstance(field_type, type) and \ | |||
# (issubclass(field_type, np.number) or issubclass(field_type, Number)): | |||
# if field_dim == 0: | |||
# array = np.array(content, dtype=field_type) | |||
# elif field_dim == 1: | |||
# max_len = max(map(len, content)) | |||
# array = np.full((len(content), max_len), pad_val, dtype=field_type) | |||
# for i, content_i in enumerate(content): | |||
# array[i, :len(content_i)] = content_i | |||
# elif field_dim == 2: | |||
# max_len = max(map(len, content)) | |||
# max_word_len = max([max([len(content_ii) for content_ii in content_i]) for | |||
# content_i in content]) | |||
# array = np.full((len(content), max_len, max_word_len), pad_val, dtype=field_type) | |||
# for i, content_i in enumerate(content): | |||
# for j, content_ii in enumerate(content_i): | |||
# array[i, j, :len(content_ii)] = content_ii | |||
# else: | |||
# shape = np.shape(content) | |||
# if len(shape) == 4: # 说明各 dimension 是相同的大小 | |||
# array = np.array(content, dtype=field_type) | |||
# else: | |||
# raise RuntimeError( | |||
# f"Field:{field_name} has 3 dimensions, every sample should have the same shape.") | |||
# if as_numpy is False: | |||
# array = torch.tensor(array) | |||
# return array | |||
# # 元素类型为数值类型 torch.float 等 | |||
# elif str(field_type).startswith('torch'): | |||
# if field_dim == 0: | |||
# tensor = torch.tensor(content).to(field_type) | |||
# elif field_dim == 1: | |||
# max_len = max(map(len, content)) | |||
# tensor = torch.full((len(content), max_len), fill_value=pad_val, dtype=field_type) | |||
# for i, content_i in enumerate(content): | |||
# tensor[i, :len(content_i)] = content_i.clone().detach() | |||
# elif field_dim == 2: | |||
# max_len = max(map(len, content)) | |||
# max_word_len = max([max([len(content_ii) for content_ii in content_i]) for | |||
# content_i in content]) | |||
# tensor = torch.full((len(content), max_len, max_word_len), fill_value=pad_val, | |||
# dtype=field_type) | |||
# for i, content_i in enumerate(content): | |||
# for j, content_ii in enumerate(content_i): | |||
# tensor[i, j, :len(content_ii)] = content_ii.clone().detach() | |||
# else: | |||
# shapes = set([np.shape(content_i) for content_i in content]) | |||
# if len(shapes) > 1: | |||
# raise RuntimeError( | |||
# f"Field:{field_name} has 3 dimensions, every sample should have the same shape.") | |||
# shape = shapes.pop() | |||
# if len(shape) == 3: | |||
# tensor = torch.full([len(content)] + list(shape), fill_value=pad_val, | |||
# dtype=field_type) | |||
# for i, content_i in enumerate(content): | |||
# tensor[i] = content_i.clone().detach().to(field_type) | |||
# else: | |||
# raise RuntimeError( | |||
# f"Field:{field_name} has 3 dimensions, every sample should have the same shape.") | |||
# return tensor | |||
# # TODO 增加jittor/paddle? | |||
# elif str(field_type).startswith('paddle'): | |||
# if field_dim == 0: | |||
# tensor = paddle.Tensor(content).to(field_type) | |||
# elif field_dim == 1: | |||
# max_len = max(map(len, content)) | |||
# tensor = paddle.full((len(content), max_len), fill_value=pad_val, dtype=field_type) | |||
# for i, content_i in enumerate(content): | |||
# tensor[i, :len(content_i)] = content_i.clone().detach() | |||
# elif field_dim == 2: | |||
# max_len = max(map(len, content)) | |||
# max_word_len = max([max([len(content_ii) for content_ii in content_i]) for | |||
# content_i in content]) | |||
# tensor = paddle.full((len(content), max_len, max_word_len), fill_value=pad_val, | |||
# dtype=field_type) | |||
# for i, content_i in enumerate(content): | |||
# for j, content_ii in enumerate(content_i): | |||
# tensor[i, j, :len(content_ii)] = content_ii.clone().detach() | |||
# else: | |||
# shapes = set([np.shape(content_i) for content_i in content]) | |||
# if len(shapes) > 1: | |||
# raise RuntimeError( | |||
# f"Field:{field_name} has 3 dimensions, every sample should have the same shape.") | |||
# shape = shapes.pop() | |||
# if len(shape) == 3: | |||
# tensor = paddle.full([len(content)] + list(shape), fill_value=pad_val, | |||
# dtype=field_type) | |||
# for i, content_i in enumerate(content): | |||
# tensor[i] = content_i.clone().detach().to(field_type) | |||
# else: | |||
# raise RuntimeError( | |||
# f"Field:{field_name} has 3 dimensions, every sample should have the same shape.") | |||
# return tensor | |||
# | |||
# else: | |||
# return np.array(content) # 不进行任何操作 | |||
# else: | |||
# return np.array(content) |
@@ -1,253 +0,0 @@ | |||
from typing import List, Union, Dict, Callable, Sequence, Mapping | |||
import os | |||
import sys | |||
import inspect | |||
from fastNLP.core.log import logger | |||
from .padders.get_padder import get_padder | |||
import re | |||
from .utils import unpack_batch_mapping, unpack_batch_nested_mapping, pack_batch_nested_mapping, unpack_batch_sequence, \ | |||
pack_batch_sequence | |||
sequence_idx_str = re.compile(r'^_\d+$') # 形如_0, _1 | |||
SUPPORTED_BACKENDS = ['torch', 'jittor', 'paddle', 'numpy', 'raw', 'auto', None] | |||
CHECK_BACKEND = ['torch', 'jittor', 'paddle'] # backend 为 auto 时 检查是否是这些 backend | |||
def _get_backend() -> str: | |||
""" | |||
当 Collator 的 backend 为 None 的时候如何,通过这个函数自动判定其 backend 。判断方法主要为以下两个: | |||
(1)尝试通过向上寻找当前 collator 的 callee 对象,根据 callee 对象寻找。然后使用 '/site-packages/{backend}' 来寻找是否是 | |||
某个 backend 的 dataloader 。 | |||
(2)如果方式(1)没找,则通过分析 sys.modules 中的内容进行寻找。 | |||
如果都没有找到则返回 numpy 。 | |||
:return: | |||
""" | |||
def _check_module(module): | |||
""" | |||
检查该 module 是否含有 某个 backend 的特征 | |||
:param module: module 对象 | |||
:return: | |||
""" | |||
catch_backend = [] | |||
try: | |||
file = module.__file__ | |||
for backend in CHECK_BACKEND: | |||
if f'{os.sep}site-packages{os.sep}{backend}' in file: | |||
catch_backend = [backend, file] | |||
except: | |||
pass | |||
return catch_backend | |||
currentframe = inspect.currentframe() | |||
# 方式(1) | |||
catch_backend = [] | |||
for i in range(100): | |||
currentframe = currentframe.f_back | |||
if currentframe is not None: | |||
module = inspect.getmodule(currentframe) | |||
if module is not None: | |||
catch_backend = _check_module(module) | |||
if len(catch_backend): # 主要捕获到一个就结束吧 | |||
break | |||
else: | |||
break | |||
if len(catch_backend): | |||
logger.debug(f"Find a file named:{catch_backend[1]} from stack contains backend:{catch_backend[0]}.") | |||
return catch_backend[0] | |||
# 方式 (2) | |||
for key, module in sys.modules.items(): | |||
catch_backend = _check_module(module) | |||
if catch_backend: | |||
break | |||
if len(catch_backend): | |||
logger.debug(f"Find a file named:{catch_backend[1]} from sys.modules contains backend:{catch_backend[0]}.") | |||
return catch_backend[0] | |||
return 'numpy' | |||
class Collator: | |||
def __init__(self, backend='auto'): | |||
""" | |||
用于 pad 数据的对象。会自动将所有能够 pad (由 fastNLP 根据数据判定能否 pad )的数据都进行 pad 操作,默认 pad 的值为 0。 | |||
可使用 set_pad() 函数调整。如果有些 field 不想输出,可以使用 set_ignore() 函数进行设置。Collator 在第一次进行 pad 的 | |||
时候自动根据设置以及数据情况,为每个 field 获取一个 padder ,在之后的每次调用中,都将使用对应的 Padder 给对应的 field 。 | |||
:param backend: 对于可以 pad 的 field,使用哪种 tensor,支持 ['torch','jittor','paddle','numpy','raw', auto, None]。 | |||
若为 'auto' ,则在进行 pad 的时候会根据调用的环境决定其 backend 。该参数对不能进行 pad 的数据没用影响,不能 pad | |||
的数据返回一定是 list 。 | |||
""" | |||
self.unpack_batch_func = None | |||
self.pack_batch_func = None | |||
self.ignore_fields = set() | |||
self.padders = {} | |||
self.input_fields = {} | |||
self.batch_data_type = None # 只能是 d ,s ,l 三种,分别对应输入的batch的每个sample为 dict, single,list。 | |||
self.set_backend(backend) | |||
def __call__(self, batch)->Union[List, Dict]: | |||
""" | |||
batch可能存在三种可能性 | |||
List[Dict], List[List], List[Sample] | |||
第一步:使用 unpack_batch_func 将相同 field 的内容打包到一个 list 中。 | |||
第二步:使用每个 field 各自的 padder 进行 pad 。 | |||
第三步:根据 batch 中每个 sample 的类型,返回也保证为该类型。 | |||
第一次调用会根据当前 batch 数据决定使用哪个 unpack_batch_func ,这个函数的作用是把不同 sample 的同一个 field 的放入到一个 | |||
list 中;同时也会决定 pack_batch_func,这个函数的作用是在返回 pad 好的 batch 之前,将 batch 恢复为 输入时一个 sample | |||
的类别。 | |||
第一次调用会根据当前 field 决定对应的 Padder 。 | |||
""" | |||
if self.unpack_batch_func is None: | |||
# 决定使用哪个unpack_batch_func,让它都 return 回 dict 类型 | |||
if self.batch_data_type is None: | |||
if isinstance(batch[0], Mapping): | |||
self.batch_data_type = 'd' | |||
elif isinstance(batch[0], Sequence): # 这里存在误判的风险 | |||
self.batch_data_type = 'l' | |||
else: | |||
self.batch_data_type = 's' | |||
logger.debug(f"Since batch[0] has type:{type(batch[0])}, so the batch_data_type " | |||
f"is `{self.batch_data_type}`.") | |||
if self.batch_data_type == 's': | |||
self.unpack_batch_func = lambda batch, ignore_fields: {'_single': batch} # 不需要做任何调整 | |||
self.pack_batch_func = lambda x: x['_single'] | |||
elif self.batch_data_type == 'l': | |||
self.unpack_batch_func = unpack_batch_sequence | |||
self.pack_batch_func = pack_batch_sequence | |||
elif self.batch_data_type == 'd': | |||
if any([isinstance(v, Mapping) for v in batch[0].values()]): # 可能存在 nested 的dict。{'a': {'b': xx}}->{('a', 'b'): value} | |||
self.unpack_batch_func = unpack_batch_nested_mapping | |||
self.pack_batch_func = pack_batch_nested_mapping | |||
else: | |||
self.unpack_batch_func = unpack_batch_mapping | |||
self.pack_batch_func = lambda x:x | |||
if self.unpack_batch_func is unpack_batch_nested_mapping: # 比较特殊,需要防止继续往下延伸 | |||
unpack_batch: Dict = self.unpack_batch_func(batch, self.ignore_fields, set(self.input_fields.keys())) | |||
else: | |||
unpack_batch:Dict = self.unpack_batch_func(batch, self.ignore_fields) # 将各自 field 组成 batch 形式。 | |||
pad_batch = {} | |||
if len(self.padders)==0: # 第一次运行,准备 padder | |||
if self.backend == 'auto': # 如果 backend 为 auto ,则尝试通过调用栈等自动获取 backend 。 | |||
self.backend = _get_backend() | |||
for key in unpack_batch.keys(): | |||
if key not in self.input_fields and key not in self.ignore_fields: | |||
self.input_fields[key] = {'pad_val': 0, 'dtype': None, 'backend': self.backend} | |||
elif key in self.input_fields and self.input_fields[key]['backend'] == 'auto': | |||
self.input_fields[key]['backend'] = self.backend | |||
for field_name, setting in self.input_fields.items(): | |||
pad_fn = setting.get('pad_fn', None) | |||
if callable(pad_fn): | |||
padder = pad_fn | |||
else: | |||
backend = self.backend if setting['backend'] == 'auto' else setting['backend'] | |||
batch_field = unpack_batch.get(field_name) | |||
padder = get_padder(batch_field=batch_field, pad_val=setting['pad_val'], | |||
dtype=setting['dtype'], backend=backend, | |||
field_name=field_name) | |||
self.padders[field_name] = padder | |||
if self.batch_data_type == 'l': | |||
self.padders = dict(sorted(self.padders.items(), key=lambda x:int(x[0][1:]))) # sort, 这样 _0, _1 能够保持顺序 | |||
for key, padder in self.padders.items(): | |||
batch = unpack_batch.get(key) | |||
pad_batch[key] = padder(batch) | |||
return self.pack_batch_func(pad_batch) # 根据情况恢复成与输入一致的类型 | |||
def set_pad(self, field_name:Union[str, tuple], pad_val:Union[int, float, None]=0, dtype=None, backend='auto', | |||
pad_fn:Callable=None) -> "Collator": | |||
""" | |||
如果需要对某个 field 的内容进行特殊的调整,请使用这个函数。 | |||
:param field_name: 需要调整的 field 的名称。如果 Dataset 的 __getitem__ 方法返回的是 dict 类型的,则可以直接使用对应的 | |||
field 的 key 来表示,如果是 nested 的 dict,可以使用元组表示多层次的 key,例如 {'a': {'b': 1}} 中的使用 ('a', 'b'); | |||
如果 __getitem__ 返回的是 Sequence 类型的,则可以使用 '_0', '_1' 表示序列中第 0 或 1 个元素。如果该 field 在数据中没 | |||
有找到,则报错;如果 __getitem__ 返回的是就是整体内容,请使用 "_single" 。 | |||
:param pad_val: 这个 field 的默认 pad 值。如果设置为 None,则表示该 field 不需要 pad , fastNLP 默认只会对可以 pad 的 | |||
field 进行 pad,所以如果对应 field 本身就不是可以 pad 的形式,可以不需要主动设置为 None 。如果 backend 为 None ,该值 | |||
无意义。 | |||
:param dtype: 对于需要 pad 的 field ,该 field 的数据 dtype 应该是什么。 | |||
:param backend: 可选['raw', 'numpy', 'torch', 'paddle', 'jittor', 'auto'],分别代表,输出为 list, numpy.ndarray, | |||
torch.Tensor, paddle.Tensor, jittor.Var 类型。若 pad_val 为 None ,该值无意义 。 | |||
:param pad_fn: 指定当前 field 的 pad 函数,传入该函数则 pad_val, dtype, backend 等参数失效。pad_fn 的输入为当前 field 的 | |||
batch 形式。 Collator 将自动 unbatch 数据,然后将各个 field 组成各自的 batch 。pad_func 的输入即为 field 的 batch | |||
形式,输出将被直接作为结果输出。 | |||
:return: 返回 Collator 自身 | |||
""" | |||
self.padders.clear() # 重新生成 | |||
if self.batch_data_type is not None: | |||
if self.batch_data_type == 's': | |||
logger.debug("Set as single field mode.") | |||
self.input_fields.clear() | |||
elif self.batch_data_type == 'd': | |||
assert sequence_idx_str.match(field_name) is None, f"Field name:{field_name} will be recognized as list " \ | |||
f"index, but other field is set as dict mode." | |||
elif self.batch_data_type == 'l': | |||
assert sequence_idx_str.match(field_name) is not None, f"Other field is set as list mode. But the new " \ | |||
f"field name is {field_name}." | |||
if field_name == '_single': | |||
self.batch_data_type = 's' | |||
elif isinstance(field_name, str) and sequence_idx_str.match(field_name): | |||
self.batch_data_type = 'l' | |||
else: | |||
self.batch_data_type = 'd' | |||
if field_name in self.ignore_fields: | |||
logger.warning(f"Field:{field_name} has been set as ignored before. It will not be ignored afterwards.") | |||
if backend is None: | |||
backend = self.backend | |||
else: | |||
assert backend in SUPPORTED_BACKENDS | |||
self.input_fields[field_name] = {'pad_val': pad_val, 'dtype': dtype, 'backend': backend, 'pad_fn': pad_fn} | |||
return self | |||
def set_backend(self, backend:str): | |||
""" | |||
设置可以 pad 的 field 默认 pad 为什么类型的 tensor | |||
:param backend: 对于可以 pad 的 field,使用哪种 tensor,支持 ['torch','jittor','paddle','numpy','raw', 'auto', None], | |||
若为 auto ,则在进行 pad 的时候会根据调用的环境决定其 backend 。 | |||
:return: | |||
""" | |||
assert backend in SUPPORTED_BACKENDS | |||
self.padders.clear() | |||
self.backend = backend | |||
def set_ignore(self, *field_names) -> "Collator": | |||
""" | |||
如果有的内容不希望输出,可以在此处进行设置,被设置的 field 将在 batch 的输出中被忽略。 | |||
Ex:: | |||
collator.set_ignore('field1', 'field2') | |||
:param field_names: 需要忽略的 field 的名称。如果 Dataset 的 __getitem__ 方法返回的是 dict 类型的,则可以直接使用对应的 | |||
field 的 key 来表示,如果是 nested 的 dict,可以使用元组来表示,例如 {'a': {'b': 1}} 中的使用 ('a', 'b'); 如果 | |||
__getitem__ 返回的是 Sequence 类型的,则可以使用 '_0', '_1' 表示序列中第 0 或 1 个元素。 | |||
:return: 返回 Collator 自身 | |||
""" | |||
for field_name in field_names: | |||
if field_name in self.input_fields: | |||
self.input_fields.pop(field_name) | |||
logger.warning(f"Field:{field_name} has been set as input before. It will be ignored afterwards.") | |||
self.padders.pop(field_name, None) # 如果由的话,将它的 padder 扔掉。 | |||
self.ignore_fields.add(field_name) | |||
return self | |||
@@ -13,6 +13,7 @@ from .padder import Padder, NullPadder | |||
from .numpy_padder import NumpyNumberPadder, NumpySequencePadder, NumpyTensorPadder | |||
from .torch_padder import TorchNumberPadder, TorchSequencePadder, TorchTensorPadder | |||
from .raw_padder import RawNumberPadder, RawSequencePadder | |||
from .paddle_padder import PaddleTensorPadder, PaddleSequencePadder, PaddleNumberPadder | |||
from .exceptions import * | |||
@@ -27,7 +28,8 @@ def get_padder(batch_field:Sequence[Any], pad_val, dtype, backend, field_name)-> | |||
:param field_name: 方便报错的。 | |||
:return: | |||
""" | |||
logger.debug(f"The content in the field:`{field_name}` is:\n"+str(batch_field)) | |||
logger.debug(f"The content in the field:`{field_name}` is:\n" + str(batch_field)) | |||
if pad_val is None: | |||
logger.debug(f"The pad_val for field:{field_name} is None, not padding this field.") | |||
return NullPadder() | |||
@@ -89,6 +91,8 @@ def get_padder(batch_field:Sequence[Any], pad_val, dtype, backend, field_name)-> | |||
return NumpyNumberPadder(pad_val=pad_val, ele_dtype=ele_dtype, dtype=dtype) | |||
elif backend == 'torch': | |||
return TorchNumberPadder(pad_val=pad_val, ele_dtype=ele_dtype, dtype=dtype) | |||
elif backend == 'paddle': | |||
return PaddleNumberPadder(pad_val=pad_val, ele_dtype=ele_dtype, dtype=dtype) | |||
if depth > 1 and shape_len == 0: # 形如 [[0, 1], [2]] 这种 | |||
if backend == 'raw': | |||
@@ -97,12 +101,16 @@ def get_padder(batch_field:Sequence[Any], pad_val, dtype, backend, field_name)-> | |||
return NumpySequencePadder(pad_val=pad_val, ele_dtype=ele_dtype, dtype=dtype) | |||
elif backend == 'torch': | |||
return TorchSequencePadder(pad_val=pad_val, ele_dtype=ele_dtype, dtype=dtype) | |||
elif backend == 'paddle': | |||
return PaddleSequencePadder(pad_val=pad_val, ele_dtype=ele_dtype, dtype=dtype) | |||
if depth == 1 and shape_len != 0: | |||
if backend == 'numpy': | |||
return NumpyTensorPadder(pad_val=pad_val, ele_dtype=ele_dtype, dtype=dtype) | |||
elif backend == 'torch': | |||
return TorchTensorPadder(pad_val=pad_val, ele_dtype=ele_dtype, dtype=dtype) | |||
elif backend == 'paddle': | |||
return PaddleTensorPadder(pad_val=pad_val, ele_dtype=ele_dtype, dtype=dtype) | |||
if shape_len != 0 and depth>1: | |||
msg = "Does not support pad tensor under nested list. If you need this, please report." | |||
@@ -0,0 +1,178 @@ | |||
__all__ = [ | |||
"PaddleNumberPadder", | |||
"PaddleTensorPadder", | |||
"PaddleSequencePadder" | |||
] | |||
from inspect import isclass | |||
import numpy as np | |||
from fastNLP.envs.imports import _NEED_IMPORT_PADDLE | |||
if _NEED_IMPORT_PADDLE: | |||
import paddle | |||
numpy_to_paddle_dtype_dict = { | |||
np.bool_: 'bool', | |||
np.uint8: 'uint8', | |||
np.int8: "int8", | |||
np.int16: "int16", | |||
np.int32: "int32", | |||
np.int64: "int64", | |||
np.float16: "float16", | |||
np.float32: 'float32', | |||
np.float64: 'float32', # 这里都统一为到 float32 吧,这是由于 numpy 大部分时候都默认 float64 了 | |||
np.complex64: 'complex64', | |||
np.complex128: "complex128" | |||
} | |||
number_to_paddle_dtype_dict = { | |||
float: 'float32', # 因为 paddle.tensor([1], dtype=float)是paddle.float64 | |||
int: 'int64', | |||
bool: 'bool' | |||
} | |||
from .padder import Padder | |||
from .utils import is_number_or_numpy_number, is_number, is_numpy_number_dtype, get_shape, is_numpy_generic_class | |||
from .exceptions import * | |||
def is_paddle_tensor(dtype): | |||
if not isclass(dtype) and isinstance(dtype, paddle.dtype): | |||
return True | |||
return False | |||
def is_paddle_dtype_str(dtype): | |||
try: | |||
if isinstance(dtype, str) and dtype in {'bool', 'float16', 'uint16', 'float32', 'float64', 'int8', | |||
'int16', 'int32', 'int64', 'uint8', 'complex64', 'complex128', | |||
u'bool', u'float16', u'uint16', u'float32', u'float64', u'int8', | |||
u'int16', u'int32', u'int64', u'uint8', u'complex64', | |||
u'complex128'}: | |||
return True | |||
except: | |||
pass | |||
return False | |||
def _get_dtype(ele_dtype, dtype, class_name): | |||
if not (is_number_or_numpy_number(ele_dtype) or is_paddle_tensor(ele_dtype) or is_paddle_dtype_str(ele_dtype)): | |||
raise EleDtypeUnsupportedError(f"`{class_name}` only supports padding python numbers " | |||
f"or numpy numbers or paddle.Tensor but get `{ele_dtype}`.") | |||
if dtype is not None: | |||
if not (is_paddle_tensor(dtype) or is_number(dtype) or is_paddle_dtype_str(dtype)): | |||
raise DtypeUnsupportedError(f"The dtype of `{class_name}` only supports python numbers " | |||
f"or paddle.dtype but get `{dtype}`.") | |||
dtype = number_to_paddle_dtype_dict.get(dtype, dtype) | |||
else: | |||
if (is_number(ele_dtype) or is_paddle_tensor(ele_dtype)): | |||
ele_dtype = number_to_paddle_dtype_dict.get(ele_dtype, ele_dtype) | |||
dtype = ele_dtype | |||
elif is_numpy_number_dtype(ele_dtype): # 存在一个转换的问题了 | |||
dtype = numpy_to_paddle_dtype_dict.get(ele_dtype.type) | |||
elif is_numpy_generic_class(ele_dtype): | |||
dtype = numpy_to_paddle_dtype_dict.get(ele_dtype) | |||
else: | |||
dtype = ele_dtype | |||
return dtype | |||
class PaddleNumberPadder(Padder): | |||
def __init__(self, ele_dtype, pad_val=0, dtype=None): | |||
# 仅当 ele_dtype 是 python number/ numpy number 或者 tensor | |||
dtype = _get_dtype(ele_dtype, dtype, class_name=self.__class__.__name__) | |||
super().__init__(pad_val=pad_val, dtype=dtype) | |||
@staticmethod | |||
def pad(batch_field, pad_val, dtype): | |||
return paddle.to_tensor(batch_field, dtype=dtype) | |||
class PaddleSequencePadder(Padder): | |||
def __init__(self, ele_dtype, pad_val=0, dtype=None): | |||
dtype = _get_dtype(ele_dtype, dtype, class_name=self.__class__.__name__) | |||
super().__init__(pad_val=pad_val, dtype=dtype) | |||
@staticmethod | |||
def pad(batch_field, pad_val, dtype): | |||
tensor = get_padded_paddle_tensor(batch_field, dtype=dtype, pad_val=pad_val) | |||
return tensor | |||
class PaddleTensorPadder(Padder): | |||
def __init__(self, ele_dtype, pad_val=0, dtype=None): | |||
""" | |||
目前仅支持 [paddle.tensor([3, 2], paddle.tensor([1])] 类似的 | |||
:param ele_dtype: | |||
:param pad_val: | |||
:param dtype: | |||
""" | |||
dtype = _get_dtype(ele_dtype, dtype, class_name=self.__class__.__name__) | |||
super().__init__(pad_val=pad_val, dtype=dtype) | |||
@staticmethod | |||
def pad(batch_field, pad_val, dtype): | |||
shapes = [field.shape for field in batch_field] | |||
max_shape = [len(batch_field)] + [max(*_) for _ in zip(*shapes)] | |||
if isinstance(dtype, np.dtype): | |||
print(dtype) | |||
tensor = paddle.full(max_shape, fill_value=pad_val, dtype=dtype) | |||
for i, field in enumerate(batch_field): | |||
slices = (i, ) + tuple(slice(0, s) for s in shapes[i]) | |||
if isinstance(field, np.ndarray): | |||
field = paddle.to_tensor(field) | |||
tensor[slices] = field | |||
return tensor | |||
def fill_tensor(batch_field, padded_batch, dtype): | |||
""" | |||
将 batch_field 中的值填入到 tensor 中。 | |||
:param batch_field: 需要填充进入 array 中的内容 | |||
:param padded_batch: 待填充的 tensor | |||
:param dtype: 数据的类别 | |||
:return: | |||
""" | |||
if padded_batch.ndim == 2: | |||
for i, content_i in enumerate(batch_field): | |||
padded_batch[i, :len(content_i)] = paddle.to_tensor(content_i, dtype=dtype) | |||
elif padded_batch.ndim == 3: | |||
for i, content_i in enumerate(batch_field): | |||
for j, content_ii in enumerate(content_i): | |||
padded_batch[i, j, :len(content_ii)] = paddle.to_tensor(content_ii, dtype=dtype) | |||
elif padded_batch.ndim == 4: | |||
try: # 应该是图像,所以直接应该就 ok 了。 | |||
padded_batch = np.array(batch_field) | |||
except: | |||
for i, content_i in enumerate(batch_field): | |||
for j, content_ii in enumerate(content_i): | |||
for k, content_iii in enumerate(content_ii): | |||
padded_batch[i, j, k, :len(content_iii)] = paddle.to_tensor(content_iii, dtype=dtype) | |||
elif padded_batch.ndim == 1: | |||
padded_batch[:] = paddle.to_tensor(batch_field, dtype=dtype) | |||
else: | |||
raise RuntimeError("fastNLP does not support padding for more than 3 dimensions. If you need this, please " | |||
"report.") | |||
return padded_batch | |||
def get_padded_paddle_tensor(batch_field, dtype=None, pad_val=0): | |||
""" | |||
例如: | |||
[[1,2], [3]] -> paddle.LongTensor([[1, 2], [3, 0]]) | |||
:param batch_field: 需要 pad 的对象。需要保证应该是可以进行 pad 的。支持 1d(多为句子长度)/2d(多为文本序列)/3d(多为字符序列) | |||
/4d(多为图片)。 | |||
:param dtype: 目标类别是什么 | |||
:param pad_val: pad 的 value | |||
:return: | |||
""" | |||
shapes = get_shape(batch_field) | |||
tensor = paddle.to_tensor(np.full(shape=shapes, fill_value=pad_val), dtype=dtype) | |||
tensor = fill_tensor(batch_field, tensor, dtype=dtype) | |||
return tensor |
@@ -440,6 +440,7 @@ class Trainer(TrainerEventTrigger): | |||
""" | |||
_own_callbacks: List = copy.deepcopy(self._custom_callbacks["all"]) | |||
_own_callbacks.extend(self._custom_callbacks[None]) | |||
logger.debug(f"Get {len(_own_callbacks)} callback fns through Trainer.on().") | |||
self._custom_callbacks[None] = [] | |||
if self.marker is not None: | |||
if len(self._custom_callbacks[self.marker]) == 0: | |||
@@ -3,17 +3,18 @@ __all__ = [ | |||
'prepare_jittor_dataloader' | |||
] | |||
from typing import Callable, Optional, List | |||
from typing import Callable, Optional, List, Union | |||
from fastNLP.envs.imports import _NEED_IMPORT_JITTOR | |||
if _NEED_IMPORT_JITTOR: | |||
from jittor.dataset.utils import collate_batch | |||
from jittor.dataset import Dataset | |||
else: | |||
from fastNLP.core.dataset import DataSet as Dataset | |||
from fastNLP.core.utils.jittor_utils import jittor_collate_wraps | |||
from fastNLP.core.collators import AutoCollator | |||
from fastNLP.core.utils.utils import indice_collate_wrapper | |||
from fastNLP.core.collators import Collator | |||
from fastNLP.core.dataloaders.utils import indice_collate_wrapper | |||
from fastNLP.core.dataset import DataSet as FDataSet | |||
@@ -48,7 +49,7 @@ class JittorDataLoader: | |||
def __init__(self, dataset, batch_size: int = 16, shuffle: bool = False, | |||
drop_last: bool = False, num_workers: int = 0, buffer_size: int = 512 * 1024 * 1024, | |||
stop_grad: bool = True, keep_numpy_array: bool = False, endless: bool = False, | |||
collate_fn: Callable = None) -> None: | |||
collate_fn: Union[None, str, Callable] = "auto") -> None: | |||
""" | |||
:param dataset: 实现__getitem__和__len__的dataset | |||
@@ -66,11 +67,20 @@ class JittorDataLoader: | |||
# TODO 支持fastnlp dataset | |||
# TODO 验证支持replacesampler (以后完成) | |||
# 是否为 jittor 类型的 dataset | |||
if isinstance(dataset, FDataSet): | |||
collator = dataset.get_collator().set_as_numpy(as_numpy=True) | |||
if isinstance(collate_fn, str): | |||
if collate_fn == "auto": | |||
if isinstance(dataset, FDataSet): | |||
self._collate_fn = dataset.collator | |||
self._collate_fn.set_backend(backend="jittor") | |||
else: | |||
self._collate_fn = Collator(backend="jittor") | |||
else: | |||
raise ValueError(f"collate_fn: {collate_fn} must be 'auto'") | |||
elif isinstance(collate_fn, Callable): | |||
if collate_fn is not collate_batch: | |||
self._collate_fn = collate_fn | |||
else: | |||
collator = None | |||
self._collate_fn = collate_batch | |||
self.dataset = _JittorDataset(dataset) | |||
@@ -80,17 +90,13 @@ class JittorDataLoader: | |||
if isinstance(self.dataset.dataset, Dataset): | |||
self.dataset.dataset.set_attrs(batch_size=1) | |||
# 用户提供了 collate_fn,则会自动代替 jittor 提供 collate_batch 函数 | |||
self.collate_fn = collate_fn | |||
if self.collate_fn is None: | |||
self.collate_fn = collate_batch | |||
self.auto_collator = collator | |||
self.cur_batch_indices = None | |||
# self._collate_fn = _collate_fn | |||
def __iter__(self): | |||
# TODO 第一次迭代后不能设置collate_fn,设置是无效的 | |||
self.collate_fn = self._collate_fn | |||
if self.cur_batch_indices is None: | |||
self.dataset.set_attrs(collate_batch=indice_collate_wrapper(jittor_collate_wraps(self.collate_fn, | |||
self.auto_collator))) | |||
self.dataset.set_attrs(collate_batch=indice_collate_wrapper(self.collate_fn)) | |||
for indices, data in self.dataset.__iter__(): | |||
self.cur_batch_indices = indices | |||
yield data | |||
@@ -100,39 +106,56 @@ class JittorDataLoader: | |||
return len(self.dataset) // self.dataset.batch_size | |||
return (len(self.dataset) - 1) // self.dataset.batch_size + 1 | |||
def set_pad_val(self, *field_names, val: Optional[int] = 0) -> None: | |||
def set_pad(self, field_name:Union[str, tuple], pad_val:Union[int, float, None]=0, dtype=None, backend=None, | |||
pad_fn:Callable=None) -> Collator: | |||
""" | |||
设置每个field_name的padding值,默认为0,只有当autocollate存在时该方法有效, 若没有则会添加auto_collator函数 | |||
当val=None时,意味着给定的field_names都不需要尝试padding | |||
:param field_names: | |||
:param val: padding值,默认为0 | |||
:return: | |||
如果需要对某个 field 的内容进行特殊的调整,请使用这个函数。 | |||
:param field_name: 需要调整的 field 的名称。如果 Dataset 的 __getitem__ 方法返回的是 dict 类型的,则可以直接使用对应的 | |||
field 的 key 来表示,如果是 nested 的 dict,可以使用元组表示多层次的 key,例如 {'a': {'b': 1}} 中的使用 ('a', 'b'); | |||
如果 __getitem__ 返回的是 Sequence 类型的,则可以使用 '_0', '_1' 表示序列中第 0 或 1 个元素。如果该 field 在数据中没 | |||
有找到,则报错;如果 __getitem__ 返回的是就是整体内容,请使用 "_single" 。 | |||
:param pad_val: 这个 field 的默认 pad 值。如果设置为 None,则表示该 field 不需要 pad , fastNLP 默认只会对可以 pad 的 | |||
field 进行 pad,所以如果对应 field 本身就不是可以 pad 的形式,可以不需要主动设置为 None 。如果 backend 为 None ,该值 | |||
无意义。 | |||
:param dtype: 对于需要 pad 的 field ,该 field 的数据 dtype 应该是什么。 | |||
:param backend: 可选['raw', 'numpy', 'torch', 'paddle', 'jittor', 'auto'],分别代表,输出为 list, numpy.ndarray, | |||
torch.Tensor, paddle.Tensor, jittor.Var 类型。若 pad_val 为 None ,该值无意义 。 | |||
:param pad_fn: 指定当前 field 的 pad 函数,传入该函数则 pad_val, dtype, backend 等参数失效。pad_fn 的输入为当前 field 的 | |||
batch 形式。 Collator 将自动 unbatch 数据,然后将各个 field 组成各自的 batch 。pad_func 的输入即为 field 的 batch | |||
形式,输出将被直接作为结果输出。 | |||
:return: 返回 Collator 自身 | |||
""" | |||
if self.auto_collator is None: | |||
self.auto_collator = AutoCollator(as_numpy=True) | |||
self.auto_collator.set_pad_val(*field_names, val=val) | |||
if isinstance(self._collate_fn, Collator): | |||
self._collate_fn.set_pad(field_name=field_name, pad_val=pad_val, dtype=dtype, pad_fn=pad_fn, backend=backend) | |||
return self._collate_fn | |||
else: | |||
raise ValueError(f"Only when the collate_fn is a fastNLP Collator, set_pad() is allowed.") | |||
def set_input(self, *field_names) -> None: | |||
def set_ignore(self, *field_names) -> Collator: | |||
""" | |||
被设置为inputs的field_names,会输入到AutoCollator中,未被设置默认过滤掉 | |||
:param field_names: | |||
:return: | |||
如果有的内容不希望输出,可以在此处进行设置,被设置的 field 将在 batch 的输出中被忽略。 | |||
Ex:: | |||
collator.set_ignore('field1', 'field2') | |||
:param field_names: 需要忽略的 field 的名称。如果 Dataset 的 __getitem__ 方法返回的是 dict 类型的,则可以直接使用对应的 | |||
field 的 key 来表示,如果是 nested 的 dict,可以使用元组来表示,例如 {'a': {'b': 1}} 中的使用 ('a', 'b'); 如果 | |||
__getitem__ 返回的是 Sequence 类型的,则可以使用 '_0', '_1' 表示序列中第 0 或 1 个元素。 | |||
:return: 返回 Collator 自身 | |||
""" | |||
if self.auto_collator is None: | |||
self.auto_collator = AutoCollator(as_numpy=True) | |||
self.auto_collator.set_input(*field_names) | |||
if isinstance(self._collate_fn, Collator): | |||
self._collate_fn.set_ignore(*field_names) | |||
return self._collate_fn | |||
else: | |||
raise ValueError(f"Only when the collate_fn is a fastNLP Collator, set_ignore() is allowed.") | |||
def get_batch_indices(self) -> List[int]: | |||
""" | |||
获取当前数据的idx | |||
获取当前 batch 的 idx | |||
:return: | |||
""" | |||
return self.cur_batch_indices | |||
def prepare_jittor_dataloader(): | |||
... |
@@ -6,6 +6,7 @@ __all__ = [ | |||
from typing import Callable, List, Optional, Union, Dict, Sequence | |||
from fastNLP.envs.imports import _NEED_IMPORT_PADDLE | |||
if _NEED_IMPORT_PADDLE: | |||
from paddle.io import DataLoader, Dataset | |||
from paddle.fluid.dataloader.collate import default_collate_fn | |||
@@ -13,9 +14,10 @@ else: | |||
from fastNLP.core.utils.dummy_class import DummyClass as Dataset | |||
from fastNLP.core.utils.dummy_class import DummyClass as DataLoader | |||
from fastNLP.core.collators.collator import _MultiCollator | |||
from fastNLP.core.utils.utils import indice_collate_wrapper | |||
from fastNLP.core.collators.collator import Collator | |||
from fastNLP.core.dataloaders.utils import indice_collate_wrapper | |||
from fastNLP.core.dataset import DataSet as FDataSet | |||
from fastNLP.core.samplers import ReproducibleBatchSampler, RandomBatchSampler | |||
class _PaddleDataset(Dataset): | |||
@@ -45,7 +47,7 @@ class PaddleDataLoader(DataLoader): | |||
def __init__(self, dataset, feed_list=None, places=None, | |||
return_list: bool = True, batch_sampler=None, | |||
batch_size: int = 1, shuffle: bool = False, | |||
drop_last: bool = False, collate_fn: Callable = None, | |||
drop_last: bool = False, collate_fn: Union[str, Callable, None] = 'auto', | |||
num_workers: int = 0, use_buffer_reader: bool = True, | |||
use_shared_memory: bool = True, timeout: int = 0, | |||
worker_init_fn: Callable = None, persistent_workers=False) -> None: | |||
@@ -53,6 +55,10 @@ class PaddleDataLoader(DataLoader): | |||
if not isinstance(dataset, _PaddleDataset): | |||
dataset = _PaddleDataset(dataset) | |||
if batch_sampler is None: | |||
batch_sampler = RandomBatchSampler(dataset, batch_size=batch_size, shuffle=shuffle, | |||
drop_last=drop_last) | |||
super(PaddleDataLoader, self).__init__(dataset=dataset, feed_list=feed_list, places=places, | |||
return_list=return_list, batch_sampler=batch_sampler, | |||
batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, | |||
@@ -60,13 +66,21 @@ class PaddleDataLoader(DataLoader): | |||
use_buffer_reader=use_buffer_reader, use_shared_memory=use_shared_memory, | |||
timeout=timeout, worker_init_fn=worker_init_fn, | |||
persistent_workers=persistent_workers) | |||
if isinstance(dataset.dataset, FDataSet): | |||
self._collate_fn = dataset.dataset.get_collator() | |||
self._collate_fn.set_as_numpy(as_numpy=True) | |||
if collate_fn is not None: | |||
self._collate_fn.add_collator(collate_fn) | |||
if isinstance(collate_fn, str): | |||
if collate_fn == 'auto': | |||
if isinstance(dataset.dataset, FDataSet): | |||
self._collate_fn = dataset.dataset.collator | |||
self._collate_fn.set_backend(backend="paddle") | |||
else: | |||
self._collate_fn = Collator(backend="paddle") | |||
else: | |||
raise ValueError(f"collate_fn: {collate_fn} must be 'auto'") | |||
elif isinstance(collate_fn, Callable): | |||
if collate_fn is not default_collate_fn: | |||
self._collate_fn = collate_fn | |||
else: | |||
self._collate_fn = _MultiCollator(collate_fn) | |||
self._collate_fn = default_collate_fn | |||
# _collate_fn = _MultiCollator(AutoCollator(as_numpy=True)) | |||
# if collate_fn is not None: | |||
# _collate_fn.add_collator(collate_fn) | |||
@@ -75,68 +89,60 @@ class PaddleDataLoader(DataLoader): | |||
def __iter__(self): | |||
# 如果没有auto_collator 也没有自定义collate_fn, 那么此时采用dataloader自带的collate_fn, 将数据打包即可。 | |||
if len(self._collate_fn.get_collators()) == 0: | |||
self._collate_fn.add_collator(default_collate_fn) | |||
# self._collate_fn = default_collate_fn | |||
# if len(self._collate_fn.get_collators()) == 0: | |||
# self._collate_fn.add_collator(default_collate_fn) | |||
# self._collate_fn = default_collate_fn | |||
self.collate_fn = indice_collate_wrapper(self._collate_fn) | |||
for indices, data in super().__iter__(): | |||
self.cur_batch_indices = indices | |||
yield data | |||
def __getattr__(self, item): | |||
def set_pad(self, field_name:Union[str, tuple], pad_val:Union[int, float, None]=0, dtype=None, backend=None, | |||
pad_fn:Callable=None) -> Collator: | |||
""" | |||
为FDataLoader提供dataset的方法和属性,实现该方法后,用户可以在FDataLoader实例化后使用apply等dataset的方法 | |||
:param item: | |||
:return: | |||
如果需要对某个 field 的内容进行特殊的调整,请使用这个函数。 | |||
:param field_name: 需要调整的 field 的名称。如果 Dataset 的 __getitem__ 方法返回的是 dict 类型的,则可以直接使用对应的 | |||
field 的 key 来表示,如果是 nested 的 dict,可以使用元组表示多层次的 key,例如 {'a': {'b': 1}} 中的使用 ('a', 'b'); | |||
如果 __getitem__ 返回的是 Sequence 类型的,则可以使用 '_0', '_1' 表示序列中第 0 或 1 个元素。如果该 field 在数据中没 | |||
有找到,则报错;如果 __getitem__ 返回的是就是整体内容,请使用 "_single" 。 | |||
:param pad_val: 这个 field 的默认 pad 值。如果设置为 None,则表示该 field 不需要 pad , fastNLP 默认只会对可以 pad 的 | |||
field 进行 pad,所以如果对应 field 本身就不是可以 pad 的形式,可以不需要主动设置为 None 。如果 backend 为 None ,该值 | |||
无意义。 | |||
:param dtype: 对于需要 pad 的 field ,该 field 的数据 dtype 应该是什么。 | |||
:param backend: 可选['raw', 'numpy', 'torch', 'paddle', 'jittor', 'auto'],分别代表,输出为 list, numpy.ndarray, | |||
torch.Tensor, paddle.Tensor, jittor.Var 类型。若 pad_val 为 None ,该值无意义 。 | |||
:param pad_fn: 指定当前 field 的 pad 函数,传入该函数则 pad_val, dtype, backend 等参数失效。pad_fn 的输入为当前 field 的 | |||
batch 形式。 Collator 将自动 unbatch 数据,然后将各个 field 组成各自的 batch 。pad_func 的输入即为 field 的 batch | |||
形式,输出将被直接作为结果输出。 | |||
:return: 返回 Collator 自身 | |||
""" | |||
try: | |||
return self.dataset.__getattr__(item) | |||
except AttributeError as e: | |||
raise e | |||
def set_pad_val(self, *field_names, val: Optional[int] = 0) -> None: | |||
""" | |||
设置每个field_name的padding值,默认为0,只有当autocollate存在时该方法有效, 若没有则会添加auto_collator函数 | |||
当val=None时,意味着给定的field_names都不需要尝试padding | |||
:param field_names: | |||
:param val: padding值,默认为0 | |||
:return: | |||
""" | |||
for field_name in field_names: | |||
self._collate_fn.set_pad_val(field_name, val=val) | |||
def set_input(self, *field_names) -> None: | |||
""" | |||
被设置为inputs的field_names,会输入到AutoCollator中,未被设置默认过滤掉 | |||
:param field_names: | |||
:return: | |||
""" | |||
self._collate_fn.set_input(*field_names) | |||
def set_collator(self, collator: Callable) -> None: | |||
""" | |||
设置collate_fn函数,调用该函数后覆盖当前所有的collate_fn,包括Auto_Collate | |||
:param collator: 用户自定义的Callable函数 | |||
:return: | |||
""" | |||
self._collate_fn = _MultiCollator(collator) | |||
if isinstance(self._collate_fn, Collator): | |||
self._collate_fn.set_pad(field_name=field_name, pad_val=pad_val, dtype=dtype, pad_fn=pad_fn, backend=backend) | |||
return self._collate_fn | |||
else: | |||
raise ValueError(f"Only when the collate_fn is a fastNLP Collator, set_pad() is allowed.") | |||
def add_collator(self, collator) -> None: | |||
def set_ignore(self, *field_names) -> Collator: | |||
""" | |||
添加collate_fn函数,调用该函数后会将其添加到已有的collate_fn后面 | |||
:param collator: | |||
:return: | |||
如果有的内容不希望输出,可以在此处进行设置,被设置的 field 将在 batch 的输出中被忽略。 | |||
Ex:: | |||
collator.set_ignore('field1', 'field2') | |||
:param field_names: 需要忽略的 field 的名称。如果 Dataset 的 __getitem__ 方法返回的是 dict 类型的,则可以直接使用对应的 | |||
field 的 key 来表示,如果是 nested 的 dict,可以使用元组来表示,例如 {'a': {'b': 1}} 中的使用 ('a', 'b'); 如果 | |||
__getitem__ 返回的是 Sequence 类型的,则可以使用 '_0', '_1' 表示序列中第 0 或 1 个元素。 | |||
:return: 返回 Collator 自身 | |||
""" | |||
self._collate_fn.add_collator(collator) | |||
if isinstance(self._collate_fn, Collator): | |||
self._collate_fn.set_ignore(*field_names) | |||
return self._collate_fn | |||
else: | |||
raise ValueError(f"Only when the collate_fn is a fastNLP Collator, set_ignore() is allowed.") | |||
def get_batch_indices(self) -> List[int]: | |||
""" | |||
获取当前数据的idx | |||
获取当前 batch 的 idx | |||
:return: | |||
""" | |||
@@ -144,20 +150,22 @@ class PaddleDataLoader(DataLoader): | |||
def prepare_paddle_dataloader(ds_or_db, feed_list=None, places=None, | |||
return_list: bool = True, batch_sampler=None, | |||
train_batch_size: int = 1, shuffle: bool = False, | |||
drop_last: bool = False, collate_fn: Callable = None, | |||
num_workers: int = 0, use_buffer_reader: bool = True, | |||
use_shared_memory: bool = True, timeout: int = 0, | |||
worker_init_fn: Callable = None, persistent_workers=False, | |||
non_train_batch_size: int = 16, | |||
input_fields: Union[List[str], str] = None)\ | |||
-> Union[Sequence[PaddleDataLoader], Dict[str, PaddleDataLoader], PaddleDataLoader]: | |||
if isinstance(input_fields, str): | |||
input_fields = [input_fields] | |||
return_list: bool = True, | |||
batch_sampler: Union["Sampler[Sequence[int]]", ReproducibleBatchSampler] = None, | |||
train_batch_size: int = 1, shuffle: bool = False, | |||
drop_last: bool = False, collate_fn: Union[Callable, str, None] = None, | |||
num_workers: int = 0, use_buffer_reader: bool = True, | |||
use_shared_memory: bool = True, timeout: int = 0, | |||
worker_init_fn: Callable = None, persistent_workers=False, | |||
non_train_batch_size: int = 16) \ | |||
-> Union[Sequence[PaddleDataLoader], Dict[str, PaddleDataLoader], PaddleDataLoader]: | |||
if isinstance(ds_or_db, Dataset): | |||
... | |||
dl = PaddleDataLoader(ds_or_db, feed_list=feed_list, places=places, return_list=return_list, | |||
batch_sampler=batch_sampler, batch_size=train_batch_size, shuffle=shuffle, | |||
drop_last=drop_last, collate_fn=collate_fn, num_workers=num_workers, | |||
use_shared_memory=use_shared_memory, use_buffer_reader=use_buffer_reader, | |||
timeout=timeout, worker_init_fn=worker_init_fn, persistent_workers=persistent_workers) | |||
return dl | |||
elif isinstance(ds_or_db, Sequence): | |||
ds_seq = [] | |||
for ds in ds_or_db: | |||
@@ -166,7 +174,6 @@ def prepare_paddle_dataloader(ds_or_db, feed_list=None, places=None, | |||
drop_last=drop_last, collate_fn=collate_fn, num_workers=num_workers, | |||
use_shared_memory=use_shared_memory, use_buffer_reader=use_buffer_reader, | |||
timeout=timeout, worker_init_fn=worker_init_fn, persistent_workers=persistent_workers) | |||
dl.set_input(*input_fields) | |||
ds_seq.append(dl) | |||
return ds_seq | |||
@@ -178,14 +185,15 @@ def prepare_paddle_dataloader(ds_or_db, feed_list=None, places=None, | |||
batch_sampler=batch_sampler, batch_size=train_batch_size, shuffle=shuffle, | |||
drop_last=drop_last, collate_fn=collate_fn, num_workers=num_workers, | |||
use_shared_memory=use_shared_memory, use_buffer_reader=use_buffer_reader, | |||
timeout=timeout, worker_init_fn=worker_init_fn, persistent_workers=persistent_workers) | |||
timeout=timeout, worker_init_fn=worker_init_fn, | |||
persistent_workers=persistent_workers) | |||
else: | |||
dl = PaddleDataLoader(ds, feed_list=feed_list, places=places, return_list=return_list, | |||
batch_sampler=batch_sampler, batch_size=non_train_batch_size, shuffle=shuffle, | |||
drop_last=drop_last, collate_fn=collate_fn, num_workers=num_workers, | |||
use_shared_memory=use_shared_memory, use_buffer_reader=use_buffer_reader, | |||
timeout=timeout, worker_init_fn=worker_init_fn, persistent_workers=persistent_workers) | |||
dl.set_input(*input_fields) | |||
timeout=timeout, worker_init_fn=worker_init_fn, | |||
persistent_workers=persistent_workers) | |||
ds_dict[name] = dl | |||
return ds_dict | |||
else: | |||
@@ -3,15 +3,14 @@ __all__ = [ | |||
'prepare_torch_dataloader' | |||
] | |||
from typing import Optional, Callable, Sequence, List, Union, Tuple, Dict, Mapping | |||
from typing import Optional, Callable, Sequence, Union, Tuple, Dict, Mapping | |||
from fastNLP.core.dataset import DataSet | |||
from fastNLP.core.collators import AutoCollator | |||
from fastNLP.core.collators.collator import _MultiCollator | |||
from fastNLP.core.utils.utils import indice_collate_wrapper | |||
from fastNLP.core.collators import Collator | |||
from fastNLP.core.dataloaders.utils import indice_collate_wrapper | |||
from fastNLP.io.data_bundle import DataBundle | |||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH | |||
from fastNLP.core.samplers import ReproducibleBatchSampler, ReproducibleSampler, UnrepeatedSampler | |||
from fastNLP.core.samplers import ReproducibleBatchSampler, ReproducibleSampler, UnrepeatedSampler, RandomSampler | |||
if _NEED_IMPORT_TORCH: | |||
from torch.utils.data import DataLoader, Sampler | |||
@@ -51,11 +50,11 @@ class TorchDataLoader(DataLoader): | |||
def __init__(self, dataset, batch_size: int = 1, | |||
shuffle: bool = False, sampler: Union["Sampler[int]", ReproducibleSampler, UnrepeatedSampler] = None, | |||
batch_sampler: Union["Sampler[Sequence[int]]", ReproducibleBatchSampler] = None, | |||
num_workers: int = 0, collate_fn: Optional[Callable] = None, | |||
num_workers: int = 0, collate_fn: Union[Callable, str, None] = 'auto', | |||
pin_memory: bool = False, drop_last: bool = False, | |||
timeout: float = 0, worker_init_fn: Optional[Callable] = None, | |||
multiprocessing_context=None, generator=None, prefetch_factor: int = 2, | |||
persistent_workers: bool = False, as_numpy: bool = False, **kwargs) -> None: | |||
persistent_workers: bool = False, **kwargs) -> None: | |||
""" | |||
:param dataset: 实现了__getitem__和__len__的数据容器 | |||
@@ -64,7 +63,7 @@ class TorchDataLoader(DataLoader): | |||
:param sampler: sampler实例化对象 | |||
:param batch_sampler: batch_sampler实例化对象,其能迭代返回一个list的index数据 | |||
:param num_workers: 进程的数量,当num_worker=0时不开启多进程 | |||
:param collate_fn: 对取得到的数据进行打包的callable函数。[None, auto, callable] | |||
:param collate_fn: [None, 'auto', callable] 对取得到的数据进行打包的callable函数 | |||
:param pin_memory: | |||
:param drop_last: 是否去掉最后一个不符合batch_size的数据 | |||
:param timeout: | |||
@@ -73,133 +72,99 @@ class TorchDataLoader(DataLoader): | |||
:param generator: | |||
:param prefetch_factor: | |||
:param persistent_workers: | |||
:param as_numpy: 返回数据是否设置为numpy类型,否则为torch.tensor类型 | |||
""" | |||
if not isinstance(dataset, _FDataSet): | |||
dataset = _FDataSet(dataset) | |||
if sampler is None and batch_sampler is None: | |||
sampler = RandomSampler(dataset, shuffle=shuffle) | |||
super().__init__(dataset=dataset, batch_size=batch_size, shuffle=shuffle, sampler=sampler, | |||
batch_sampler=batch_sampler, num_workers=num_workers, collate_fn=None, | |||
pin_memory=pin_memory, drop_last=drop_last, timeout=timeout, worker_init_fn=worker_init_fn, | |||
multiprocessing_context=multiprocessing_context, generator=generator, | |||
prefetch_factor=prefetch_factor, | |||
persistent_workers=persistent_workers) | |||
if isinstance(dataset.dataset, DataSet): # 使用了 fastnlp dataset | |||
self._collate_fn = dataset.dataset.get_collator() | |||
self._collate_fn.set_as_numpy(as_numpy) | |||
if collate_fn is not None and collate_fn is not default_collate: | |||
# 防止ddp重新初始化时候将torch dataloader的默认collate加进来 | |||
self._collate_fn.add_collator(collate_fn) | |||
if isinstance(collate_fn, str): | |||
if collate_fn == 'auto': | |||
if isinstance(dataset.dataset, DataSet): # 使用了 fastnlp dataset | |||
self._collate_fn = dataset.dataset.collator | |||
self._collate_fn.set_backend(backend="torch") | |||
else: | |||
self._collate_fn = Collator(backend="torch") | |||
else: | |||
raise ValueError(f"collate_fn: {collate_fn} must be 'auto'") | |||
elif isinstance(collate_fn, Callable): | |||
if collate_fn is not default_collate: | |||
self._collate_fn = collate_fn | |||
else: | |||
self._collate_fn = _MultiCollator(collate_fn) | |||
self._collate_fn = default_collate | |||
self.cur_indices_batch = None | |||
self.as_numpy = as_numpy | |||
def __getattr__(self, item): | |||
""" | |||
为FDataLoader提供dataset的方法和属性,实现该方法后,用户可以在FDataLoader实例化后使用apply等dataset的方法 | |||
:param item: | |||
:return: | |||
""" | |||
try: | |||
return self.dataset.__getattr__(item) | |||
except AttributeError as e: | |||
raise e | |||
def __iter__(self): | |||
# 如果没有auto_collator 也没有自定义collate_fn, 那么此时采用dataloader自带的collate_fn, 将数据打包即可。 | |||
if len(self._collate_fn.get_collators()) == 0: | |||
self._collate_fn.add_collator(self.collate_fn) | |||
# if len(self._collate_fn.get_collators()) == 0: | |||
# self._collate_fn.add_collator(self.collate_fn) | |||
self.collate_fn = indice_collate_wrapper(self._collate_fn) | |||
for indices, data in super().__iter__(): | |||
self.cur_batch_indices = indices | |||
yield data | |||
def set_pad_val(self, *field_names, val: Optional[int] = 0) -> None: | |||
""" | |||
设置每个field_name的padding值,默认为0,只有当autocollate存在时该方法有效, 若没有则会添加auto_collator函数 | |||
当val=None时,意味着给定的field_names都不需要尝试padding | |||
:param field_names: | |||
:param val: padding值,默认为0 | |||
:return: | |||
def set_pad(self, field_name:Union[str, tuple], pad_val:Union[int, float, None]=0, dtype=None, backend=None, | |||
pad_fn:Callable=None) -> Collator: | |||
""" | |||
flag = False | |||
for collator in self._collate_fn.get_collators(): | |||
if isinstance(collator, AutoCollator): | |||
flag = True | |||
break | |||
if flag is False: | |||
self._collate_fn.add_collator(AutoCollator(self.as_numpy)) | |||
for field_name in field_names: | |||
self._collate_fn.set_pad_val(field_name, val=val) | |||
def set_input(self, *field_names) -> None: | |||
""" | |||
被设置为inputs的field_names,会输入到AutoCollator中,未被设置默认过滤掉 | |||
:param field_names: | |||
:return: | |||
如果需要对某个 field 的内容进行特殊的调整,请使用这个函数。 | |||
:param field_name: 需要调整的 field 的名称。如果 Dataset 的 __getitem__ 方法返回的是 dict 类型的,则可以直接使用对应的 | |||
field 的 key 来表示,如果是 nested 的 dict,可以使用元组表示多层次的 key,例如 {'a': {'b': 1}} 中的使用 ('a', 'b'); | |||
如果 __getitem__ 返回的是 Sequence 类型的,则可以使用 '_0', '_1' 表示序列中第 0 或 1 个元素。如果该 field 在数据中没 | |||
有找到,则报错;如果 __getitem__ 返回的是就是整体内容,请使用 "_single" 。 | |||
:param pad_val: 这个 field 的默认 pad 值。如果设置为 None,则表示该 field 不需要 pad , fastNLP 默认只会对可以 pad 的 | |||
field 进行 pad,所以如果对应 field 本身就不是可以 pad 的形式,可以不需要主动设置为 None 。如果 backend 为 None ,该值 | |||
无意义。 | |||
:param dtype: 对于需要 pad 的 field ,该 field 的数据 dtype 应该是什么。 | |||
:param backend: 可选['raw', 'numpy', 'torch', 'paddle', 'jittor', 'auto'],分别代表,输出为 list, numpy.ndarray, | |||
torch.Tensor, paddle.Tensor, jittor.Var 类型。若 pad_val 为 None ,该值无意义 。 | |||
:param pad_fn: 指定当前 field 的 pad 函数,传入该函数则 pad_val, dtype, backend 等参数失效。pad_fn 的输入为当前 field 的 | |||
batch 形式。 Collator 将自动 unbatch 数据,然后将各个 field 组成各自的 batch 。pad_func 的输入即为 field 的 batch | |||
形式,输出将被直接作为结果输出。 | |||
:return: 返回 Collator 自身 | |||
""" | |||
flag = False | |||
for collator in self._collate_fn.get_collators(): | |||
if isinstance(collator, AutoCollator): | |||
flag = True | |||
break | |||
if flag is False: | |||
self._collate_fn.add_collator(AutoCollator(self.as_numpy)) | |||
self._collate_fn.set_input(*field_names) | |||
def set_collator(self, collator: Callable) -> None: | |||
""" | |||
设置collate_fn函数,调用该函数后覆盖当前所有的collate_fn,包括Auto_Collate | |||
:param collator: 用户自定义的Callable函数 | |||
:return: | |||
""" | |||
self._collate_fn = _MultiCollator(collator) | |||
def add_collator(self, collator) -> None: | |||
""" | |||
添加collate_fn函数,调用该函数后会将其添加到已有的collate_fn后面 | |||
if isinstance(self._collate_fn, Collator): | |||
self._collate_fn.set_pad(field_name=field_name, pad_val=pad_val, dtype=dtype, pad_fn=pad_fn, backend=backend) | |||
return self._collate_fn | |||
else: | |||
raise ValueError(f"Only when the collate_fn is a fastNLP Collator, set_pad() is allowed.") | |||
:param collator: | |||
:return: | |||
def set_ignore(self, *field_names) -> Collator: | |||
""" | |||
self._collate_fn.add_collator(collator) | |||
def get_batch_indices(self) -> List[int]: | |||
如果有的内容不希望输出,可以在此处进行设置,被设置的 field 将在 batch 的输出中被忽略。 | |||
Ex:: | |||
collator.set_ignore('field1', 'field2') | |||
:param field_names: 需要忽略的 field 的名称。如果 Dataset 的 __getitem__ 方法返回的是 dict 类型的,则可以直接使用对应的 | |||
field 的 key 来表示,如果是 nested 的 dict,可以使用元组来表示,例如 {'a': {'b': 1}} 中的使用 ('a', 'b'); 如果 | |||
__getitem__ 返回的是 Sequence 类型的,则可以使用 '_0', '_1' 表示序列中第 0 或 1 个元素。 | |||
:return: 返回 Collator 自身 | |||
""" | |||
获取当前数据的idx | |||
:return: | |||
""" | |||
return self.cur_batch_indices | |||
def set_pad(self): | |||
pass | |||
def set_ignore(self): | |||
pass | |||
def set_backend(self): | |||
pass | |||
if isinstance(self._collate_fn, Collator): | |||
self._collate_fn.set_ignore(*field_names) | |||
return self._collate_fn | |||
else: | |||
raise ValueError(f"Only when the collate_fn is a fastNLP Collator, set_ignore() is allowed.") | |||
def prepare_torch_dataloader(ds_or_db: Union[DataSet, DataBundle, Sequence[DataSet], Mapping[str, DataSet]], | |||
batch_size: int = 1, | |||
shuffle: bool = False, sampler: Optional["Sampler[int]"] = None, | |||
batch_sampler: Optional["Sampler[Sequence[int]]"] = None, | |||
num_workers: int = 0, collate_fn: Optional[Callable] = None, | |||
shuffle: bool = False, sampler: Union["Sampler[int]", ReproducibleSampler, UnrepeatedSampler] = None, | |||
batch_sampler: Union["Sampler[Sequence[int]]", ReproducibleBatchSampler] = None, | |||
num_workers: int = 0, collate_fn: Union[str, Callable, None] = None, | |||
pin_memory: bool = False, drop_last: bool = False, | |||
timeout: float = 0, worker_init_fn: Optional[Callable] = None, | |||
multiprocessing_context=None, generator=None, prefetch_factor: int = 2, | |||
persistent_workers: bool = False, non_train_sampler: Optional["Sampler[int]"] = None, | |||
non_train_batch_size: int = 16, as_numpy: bool = False, | |||
input_fields: Union[List, str, None] = None) \ | |||
non_train_batch_size: int = 16) \ | |||
-> Union[TorchDataLoader, Dict[str, TorchDataLoader], Sequence[TorchDataLoader]]: | |||
""" | |||
传入dataset或者data_bundle后,将其处理返回相对应的FdataLoader实例化对象 | |||
@@ -211,7 +176,7 @@ def prepare_torch_dataloader(ds_or_db: Union[DataSet, DataBundle, Sequence[DataS | |||
:param sampler: sampler实例化对象 | |||
:param batch_sampler: batch_sampler实例化对象,其能迭代返回一个list的index数据 | |||
:param num_workers: 进程的数量,当num_worker=0时不开启多进程 | |||
:param collate_fn: 对取得到的数据进行打包的callable函数 | |||
:param collate_fn: ['auto', None, callable]对取得到的数据进行打包的callable函数 | |||
:param pin_memory: | |||
:param drop_last: 是否去掉最后一个不符合batch_size的数据 | |||
:param timeout: | |||
@@ -222,11 +187,7 @@ def prepare_torch_dataloader(ds_or_db: Union[DataSet, DataBundle, Sequence[DataS | |||
:param persistent_workers: | |||
:param non_train_sampler: 非 'train' 数据使用的 Sampler, 以及Sequence的第二个以上的ds使用的 Sampler | |||
:param non_train_batch_size: | |||
:param as_numpy: 返回数据是否设置为numpy类型,否则根据情况设置为 torch.tensor 类型。 | |||
""" | |||
# TODO dict, sequence情况下需要提供 | |||
if isinstance(input_fields, str): | |||
input_fields = [input_fields] | |||
if isinstance(ds_or_db, DataSet): | |||
dl = TorchDataLoader(dataset=ds_or_db, batch_size=batch_size, | |||
@@ -235,9 +196,7 @@ def prepare_torch_dataloader(ds_or_db: Union[DataSet, DataBundle, Sequence[DataS | |||
drop_last=drop_last, timeout=timeout, worker_init_fn=worker_init_fn, | |||
multiprocessing_context=multiprocessing_context, generator=generator, | |||
prefetch_factor=prefetch_factor, persistent_workers=persistent_workers, | |||
as_numpy=as_numpy) | |||
if input_fields: | |||
dl.set_input(*input_fields) | |||
) | |||
return dl | |||
elif isinstance(ds_or_db, DataBundle): | |||
@@ -251,7 +210,7 @@ def prepare_torch_dataloader(ds_or_db: Union[DataSet, DataBundle, Sequence[DataS | |||
multiprocessing_context=multiprocessing_context, generator=generator, | |||
prefetch_factor=prefetch_factor, | |||
persistent_workers=persistent_workers, | |||
as_numpy=as_numpy) | |||
) | |||
else: | |||
dl_bundle[name] = TorchDataLoader(dataset=ds, batch_size=non_train_batch_size, | |||
shuffle=shuffle, sampler=non_train_sampler, | |||
@@ -261,9 +220,7 @@ def prepare_torch_dataloader(ds_or_db: Union[DataSet, DataBundle, Sequence[DataS | |||
multiprocessing_context=multiprocessing_context, generator=generator, | |||
prefetch_factor=prefetch_factor, | |||
persistent_workers=persistent_workers, | |||
as_numpy=as_numpy) | |||
if input_fields: | |||
dl_bundle[name].set_input(*input_fields) | |||
) | |||
return dl_bundle | |||
elif isinstance(ds_or_db, Sequence): | |||
@@ -277,7 +234,7 @@ def prepare_torch_dataloader(ds_or_db: Union[DataSet, DataBundle, Sequence[DataS | |||
drop_last=drop_last, timeout=timeout, worker_init_fn=worker_init_fn, | |||
multiprocessing_context=multiprocessing_context, generator=generator, | |||
prefetch_factor=prefetch_factor, persistent_workers=persistent_workers, | |||
as_numpy=as_numpy) | |||
) | |||
) | |||
else: | |||
dl_bundle.append( | |||
@@ -287,11 +244,8 @@ def prepare_torch_dataloader(ds_or_db: Union[DataSet, DataBundle, Sequence[DataS | |||
drop_last=drop_last, timeout=timeout, worker_init_fn=worker_init_fn, | |||
multiprocessing_context=multiprocessing_context, generator=generator, | |||
prefetch_factor=prefetch_factor, persistent_workers=persistent_workers, | |||
as_numpy=as_numpy) | |||
) | |||
) | |||
if input_fields: | |||
for dl in dl_bundle: | |||
dl.set_input(*input_fields) | |||
return dl_bundle | |||
elif isinstance(ds_or_db, Mapping): | |||
@@ -305,7 +259,7 @@ def prepare_torch_dataloader(ds_or_db: Union[DataSet, DataBundle, Sequence[DataS | |||
multiprocessing_context=multiprocessing_context, generator=generator, | |||
prefetch_factor=prefetch_factor, | |||
persistent_workers=persistent_workers, | |||
as_numpy=as_numpy) | |||
) | |||
else: | |||
dl_bundle[name] = TorchDataLoader(dataset=ds, batch_size=non_train_batch_size, | |||
shuffle=shuffle, sampler=non_train_sampler, | |||
@@ -315,10 +269,7 @@ def prepare_torch_dataloader(ds_or_db: Union[DataSet, DataBundle, Sequence[DataS | |||
multiprocessing_context=multiprocessing_context, generator=generator, | |||
prefetch_factor=prefetch_factor, | |||
persistent_workers=persistent_workers, | |||
as_numpy=as_numpy) | |||
if input_fields: | |||
dl_bundle[name].set_input(*input_fields) | |||
) | |||
return dl_bundle | |||
else: | |||
@@ -0,0 +1,16 @@ | |||
def indice_collate_wrapper(func): | |||
""" | |||
其功能是封装一层collate_fn,将dataset取到的tuple数据分离开,将idx打包为indices。 | |||
:param func: 需要修饰的函数 | |||
:return: | |||
""" | |||
def wrapper(tuple_data): | |||
indice, ins_list = [], [] | |||
for idx, ins in tuple_data: | |||
indice.append(idx) | |||
ins_list.append(ins) | |||
return indice, func(ins_list) | |||
return wrapper |
@@ -23,9 +23,8 @@ except: | |||
from .field import FieldArray | |||
from .instance import Instance | |||
from fastNLP.core.utils.utils import pretty_table_printer, deprecated | |||
from fastNLP.core.collators import AutoCollator | |||
from fastNLP.core.collators import Collator | |||
from fastNLP.core.utils.rich_progress import f_rich_progress | |||
from fastNLP.core.collators.collator import _MultiCollator | |||
class ApplyResultException(Exception): | |||
@@ -114,7 +113,7 @@ class DataSet: | |||
每个元素应该为具有相同field的 :class:`~fastNLP.Instance` 。 | |||
""" | |||
self.field_arrays = {} | |||
self.collate_fns: _MultiCollator = _MultiCollator(AutoCollator(as_numpy=False)) | |||
self._collator = Collator(backend="numpy") | |||
if data is not None: | |||
if isinstance(data, Dict): | |||
length_set = set() | |||
@@ -181,7 +180,7 @@ class DataSet: | |||
dataset = DataSet() | |||
for field_name, field in self.field_arrays.items(): | |||
dataset.add_field(field_name=field_name, fields=field.content[idx]) | |||
dataset.collate_fns = deepcopy(self.collate_fns) | |||
dataset._collator = deepcopy(self.collator) | |||
return dataset | |||
elif isinstance(idx, str): | |||
if idx not in self: | |||
@@ -193,7 +192,7 @@ class DataSet: | |||
assert isinstance(i, int), "Only int index allowed." | |||
instance = self[i] | |||
dataset.append(instance) | |||
dataset.collate_fns = deepcopy(self.collate_fns) | |||
dataset._collator = deepcopy(self.collator) | |||
return dataset | |||
else: | |||
raise KeyError("Unrecognized type {} for idx in __getitem__ method".format(type(idx))) | |||
@@ -676,8 +675,8 @@ class DataSet: | |||
dev_set.append(self[idx]) | |||
for idx in train_indices: | |||
train_set.append(self[idx]) | |||
dev_set.collate_fns = deepcopy(self.collate_fns) | |||
train_set.collate_fns = deepcopy(self.collate_fns) | |||
dev_set._collator = deepcopy(self.collator) | |||
train_set._collator = deepcopy(self.collator) | |||
return dev_set, train_set | |||
@@ -771,67 +770,17 @@ class DataSet: | |||
df = self.to_pandas() | |||
return df.to_csv(path, encoding="utf-8") | |||
def add_collate_fn(self, collate_fn: Callable) -> None: | |||
""" | |||
添加collate_fn函数,调用该函数后会将其添加到已有的collate_fn后面 | |||
:param collate_fn: Callable的函数 | |||
:return: | |||
""" | |||
self.collate_fns.add_collator(collate_fn) | |||
def set_collate_fn(self, collate_fn: Callable) -> None: | |||
""" | |||
设置collate_fn函数,调用该函数后覆盖当前所有的collate_fn,包括Auto_Collate | |||
:param collate_fn: | |||
:return: | |||
""" | |||
self.collate_fns = _MultiCollator(collate_fn) | |||
def set_pad_val(self, *field_names, val: Optional[int] = 0) -> None: | |||
""" | |||
设置每个field_name的padding值,默认为0,只有当AutoCollator存在时该方法有效 | |||
当val=None时,意味着给定的field_names都不需要尝试padding | |||
:param field_names: dataset存在的field_name | |||
:param val: 默认为0。如果为 None ,则为不对 field 进行 padding 。 | |||
:return: | |||
""" | |||
# TODO 不能为空 | |||
for field_name in field_names: | |||
self.collate_fns.set_pad_val(field_name, val=val) | |||
def set_input(self, *field_names) -> None: | |||
""" | |||
被设置为inputs的field_names,会输入到AutoCollator中,未被设置默认过滤掉 | |||
:param field_names: | |||
:return: | |||
""" | |||
# | |||
self.collate_fns.set_input(*field_names) | |||
def get_collator(self) -> _MultiCollator: | |||
""" | |||
获取dataset绑定的collate_fn,其中包括auto_collate | |||
:return: | |||
""" | |||
return self.collate_fns | |||
@deprecated() | |||
def set_target(self, *field_names) -> None: | |||
def set_ignore(self, *field_names) -> None: | |||
""" | |||
被设置为inputs的field_names,会输入到AutoCollator中,未被设置默认过滤掉 | |||
:param field_names: | |||
:return: | |||
""" | |||
self.collate_fns.set_input(*field_names) | |||
self.collator.set_ignore(*field_names) | |||
@property | |||
def collator(self): | |||
def collator(self) -> Collator: | |||
if self._collator is None: | |||
self._collator = Collator() | |||
return self._collator |
@@ -22,7 +22,7 @@ from fastNLP.core.utils import ( | |||
rank_zero_rm | |||
) | |||
from fastNLP.core.samplers import ( | |||
RandomBatchSampler, | |||
ReproduceBatchSampler, | |||
ReproducibleSampler, | |||
ReproducibleBatchSampler, | |||
RandomSampler, | |||
@@ -485,7 +485,7 @@ class PaddleFleetDriver(PaddleDriver): | |||
return self.model, model.forward | |||
def set_dist_repro_dataloader(self, dataloader, dist: Optional[Union[str, ReproducibleSampler, RandomBatchSampler]], | |||
def set_dist_repro_dataloader(self, dataloader, dist: Optional[Union[str, ReproducibleSampler, ReproduceBatchSampler]], | |||
reproducible: bool = False): | |||
r""" | |||
根据输入的 dataloader 得到一个 支持分布式 (distributed) 与 可复现的 (reproducible) 的 dataloader。 | |||
@@ -22,7 +22,7 @@ from fastNLP.core.log import logger | |||
from fastNLP.core.samplers import ( | |||
ReproducibleBatchSampler, | |||
ReproducibleSampler, | |||
RandomBatchSampler, | |||
ReproduceBatchSampler, | |||
RandomSampler, | |||
) | |||
@@ -345,7 +345,7 @@ class PaddleDriver(Driver): | |||
raise RuntimeError("It is not allowed to use checkpoint retraining when you do not use our or " | |||
"`ReproducibleSampler`.") | |||
else: | |||
sampler = RandomBatchSampler( | |||
sampler = ReproduceBatchSampler( | |||
batch_sampler=dataloader_args.batch_sampler if dataloader_args.batch_sampler is not None else dataloader_args.sampler, | |||
batch_size=dataloader_args.batch_size, | |||
drop_last=dataloader_args.drop_last | |||
@@ -476,7 +476,7 @@ class PaddleDriver(Driver): | |||
res.shuffle = True | |||
else: | |||
res.shuffle = False | |||
# RandomBatchSampler 的情况 | |||
# ReproduceBatchSampler 的情况 | |||
elif hasattr(dataloader.batch_sampler, "batch_sampler"): | |||
batch_sampler = dataloader.batch_sampler.batch_sampler | |||
res.sampler = batch_sampler.sampler | |||
@@ -14,7 +14,7 @@ from fastNLP.core.utils import ( | |||
from fastNLP.core.utils.utils import _get_fun_msg | |||
from fastNLP.core.samplers import ( | |||
ReproducibleBatchSampler, | |||
RandomBatchSampler, | |||
ReproduceBatchSampler, | |||
ReproducibleSampler, | |||
RandomSampler, | |||
re_instantiate_sampler, | |||
@@ -177,7 +177,7 @@ class PaddleSingleDriver(PaddleDriver): | |||
logger.debug("Replace paddle RandomSampler into fastNLP RandomSampler.") | |||
return replace_sampler(dataloader, sampler) | |||
else: | |||
batch_sampler = RandomBatchSampler( | |||
batch_sampler = ReproduceBatchSampler( | |||
batch_sampler=args.batch_sampler, | |||
batch_size=args.batch_size, | |||
drop_last=args.drop_last | |||
@@ -15,7 +15,7 @@ from .torch_driver import TorchDriver | |||
from fastNLP.core.drivers.torch_driver.utils import replace_sampler, replace_batch_sampler | |||
from fastNLP.core.utils import auto_param_call | |||
from fastNLP.core.utils.utils import _get_fun_msg | |||
from fastNLP.core.samplers import ReproducibleBatchSampler, ReproducibleSampler, re_instantiate_sampler, RandomBatchSampler | |||
from fastNLP.core.samplers import ReproducibleBatchSampler, ReproducibleSampler, re_instantiate_sampler, ReproduceBatchSampler | |||
from fastNLP.core.samplers import RandomSampler | |||
from fastNLP.core.log import logger | |||
@@ -113,7 +113,7 @@ class TorchSingleDriver(TorchDriver): | |||
logger.debug("Replace torch RandomSampler into fastNLP RandomSampler.") | |||
return replace_sampler(dataloader, sampler) | |||
else: | |||
batch_sampler = RandomBatchSampler( | |||
batch_sampler = ReproduceBatchSampler( | |||
batch_sampler=args.batch_sampler, | |||
batch_size=args.batch_size, | |||
drop_last=args.drop_last | |||
@@ -31,7 +31,7 @@ from fastNLP.core.utils import apply_to_collection, torch_move_data_to_device | |||
from fastNLP.envs import rank_zero_call | |||
from fastNLP.envs import FASTNLP_SEED_WORKERS, FASTNLP_GLOBAL_RANK, FASTNLP_MODEL_FILENAME, FASTNLP_CHECKPOINT_FILENAME | |||
from fastNLP.core.log import logger | |||
from fastNLP.core.samplers import ReproducibleBatchSampler, ReproducibleSampler, RandomBatchSampler, RandomSampler | |||
from fastNLP.core.samplers import ReproducibleBatchSampler, ReproducibleSampler, ReproduceBatchSampler, RandomSampler | |||
class TorchDriver(Driver): | |||
@@ -293,7 +293,7 @@ class TorchDriver(Driver): | |||
raise RuntimeError("It is not allowed to use checkpoint retraining when you do not use our or " | |||
"`ReproducibleSampler`.") | |||
else: | |||
sampler = RandomBatchSampler( | |||
sampler = ReproduceBatchSampler( | |||
batch_sampler=dataloader_args.batch_sampler if dataloader_args.batch_sampler is not None else dataloader_args.sampler, | |||
batch_size=dataloader_args.batch_size, | |||
drop_last=dataloader_args.drop_last | |||
@@ -407,7 +407,7 @@ class TorchDriver(Driver): | |||
res.shuffle = True | |||
else: | |||
res.shuffle = False | |||
# RandomBatchSampler 的情况 | |||
# ReproduceBatchSampler 的情况 | |||
elif hasattr(dataloader.batch_sampler, "batch_sampler"): | |||
batch_sampler = dataloader.batch_sampler.batch_sampler | |||
res.sampler = batch_sampler.sampler | |||
@@ -14,9 +14,10 @@ __all__ = [ | |||
"UnrepeatedSortedSampler", | |||
"UnrepeatedSequentialSampler", | |||
"RandomBatchSampler", | |||
"ReproduceBatchSampler", | |||
"BucketedBatchSampler", | |||
"ReproducibleBatchSampler", | |||
"RandomBatchSampler", | |||
"re_instantiate_sampler" | |||
] | |||
@@ -26,5 +27,5 @@ from .mix_sampler import MixSampler, DopedSampler, MixSequentialSampler, Polling | |||
from .reproducible_sampler import ReproducibleSampler, RandomSampler, SequentialSampler, SortedSampler | |||
from .utils import re_instantiate_sampler | |||
from .conversion_utils import conversion_between_reproducible_and_unrepeated_sampler | |||
from .reproducible_batch_sampler import RandomBatchSampler, BucketedBatchSampler, ReproducibleBatchSampler | |||
from .reproducible_batch_sampler import ReproduceBatchSampler, BucketedBatchSampler, ReproducibleBatchSampler, RandomBatchSampler | |||
@@ -1,5 +1,6 @@ | |||
__all__ = [ | |||
'BucketedBatchSampler', | |||
"ReproduceBatchSampler", | |||
"RandomBatchSampler" | |||
] | |||
@@ -54,13 +55,13 @@ class ReproducibleBatchSampler: | |||
raise NotImplementedError("Each specific batch_sampler should implement its own `batch_idx_in_epoch` property.") | |||
class RandomBatchSampler(ReproducibleBatchSampler): | |||
class ReproduceBatchSampler(ReproducibleBatchSampler): | |||
# 这两个参数的值应当交给 driver 的 get_dataloader_args 函数去拿; | |||
def __init__(self, batch_sampler, batch_size: int, drop_last: bool, **kwargs): | |||
""" | |||
可以使得 batch_sampler 对象状态恢复的 wrapper 。 | |||
:param batch_sampler: 可迭代出 数字 或 数字列表 的可迭代对象。RandomBatchSampler 将首先遍历一边该对象,然后将迭代 | |||
:param batch_sampler: 可迭代出 数字 或 数字列表 的可迭代对象。ReproduceBatchSampler 将首先遍历一边该对象,然后将迭代 | |||
出来的序号暂存起来,使用时按照 batch_size 的 batch 大小吐出序号列表。 | |||
:param batch_size: 每个 batch 的大小是多少。 | |||
:param drop_last: 如果最后一个 batch 无法构成 batch_size 那么多个 sample ,是否丢掉。 | |||
@@ -143,7 +144,7 @@ class RandomBatchSampler(ReproducibleBatchSampler): | |||
self.need_reinitialize = False | |||
def set_distributed(self, num_replicas, rank, pad=True): | |||
raise RuntimeError(f"RandomBatchSampler does not support to change to distributed training.") | |||
raise RuntimeError(f"ReproduceBatchSampler does not support to change to distributed training.") | |||
def set_epoch(self, epoch): | |||
if hasattr(self.batch_sampler, "sampler") and hasattr(self.batch_sampler.sampler, 'set_epoch') and callable(self.batch_sampler.sampler.set_epoch): | |||
@@ -158,6 +159,211 @@ class RandomBatchSampler(ReproducibleBatchSampler): | |||
(len(self.index_list) - self.num_consumed_samples + self.batch_size - 1) // self.batch_size | |||
class RandomBatchSampler(ReproducibleBatchSampler): | |||
def __init__(self, dataset, batch_size:int = 32, shuffle: bool = True, | |||
drop_last: bool = False, seed: int = 0, **kwargs): | |||
""" | |||
随机分 batch 的 batch_sampler 。 | |||
:param dataset: 实现了 __len__ 方法的数据容器。 | |||
:param batch_size: 每个 batch 的大小 | |||
:param shuffle: 如果为 True,将不进行 shuffle,实际上数据会以从长到短的方式输出。 | |||
:param drop_last: 如果最后一个 batch 的 sample 数量无法凑齐 batch_size 这么多,是否需要丢掉。 | |||
:param seed: 设置的随机数种子 | |||
:param kwargs: fastNLP 保留使用 | |||
""" | |||
super().__init__() | |||
self.dataset = dataset | |||
self.batch_size = batch_size | |||
self.shuffle = shuffle | |||
self.drop_last = drop_last | |||
self.seed = seed | |||
self.num_consumed_samples = kwargs.get("num_consumed_samples", 0) # 总共迭代了多少数据了,包括多卡情况下的其它卡上的输出的数量 | |||
# 多卡的相关的参数 | |||
self.num_replicas = kwargs.get("num_replicas", 1) | |||
self.rank = kwargs.get("rank", 0) | |||
self.epoch = kwargs.get("epoch", -1) | |||
self.pad = kwargs.get("pad", False) # 该参数在单卡上不具有任何意义; | |||
# 是否处于iteration之间,为True不允许调用 set_distributed()和load_state_dict() | |||
self.during_iter = kwargs.get("during_iter", False) | |||
# 以下变量为内部使用恢复状态的变量。 | |||
self.old_batch_size = kwargs.get('old_batch_size', self.batch_size) | |||
def set_distributed(self, num_replicas, rank, pad=True): | |||
assert self.during_iter is False, "Cannot set the sampler to be distributed when it is " \ | |||
"during an unfinished iteration." | |||
assert num_replicas > 0 and isinstance(num_replicas, int) | |||
assert isinstance(rank, int) and 0 <= rank < num_replicas | |||
# 注意初始化该函数时,所有的状态都应当默认是一个 epoch 刚开始训练的状态; | |||
self.num_replicas = num_replicas | |||
self.rank = rank | |||
self.pad = pad | |||
return self | |||
def __iter__(self): | |||
if self.during_iter: # 如果发现_during_iter为True,说明之前的还没结束,只有强制重新初始化了 | |||
self.num_consumed_samples = 0 | |||
self.during_iter = True | |||
indices = list(range(len(self.dataset))) | |||
if self.shuffle: | |||
if self.num_consumed_samples > 0: # 需要先按照原来的排序,删掉多余的 | |||
_batches = [] | |||
for _i in range(self.old_num_replicas): | |||
_indices = indices[_i:len(indices):self.old_num_replicas] | |||
__batches = self.batchify(_indices, self.old_batch_size, seed=self.seed + self.epoch) | |||
_batches.append(__batches) | |||
batches = list(chain(*[_ for _ in zip(*_batches)])) | |||
indices = list(chain(*batches)) | |||
indices = indices[self.num_consumed_samples:] | |||
# 取出这个 rank , | |||
indices = indices[self.rank:len(indices):self.num_replicas] | |||
batches = self.batchify(indices, self.batch_size, seed=self.seed + self.epoch) | |||
batches = list(map(list, batches)) | |||
else: | |||
indices = indices[self.num_consumed_samples:] | |||
indices = indices[self.rank:len(indices):self.num_replicas] | |||
_num_batches = len(indices) // self.batch_size | |||
if _num_batches == 0: | |||
batches = [indices] | |||
else: | |||
batches = list(map(list, np.array_split(indices[:_num_batches*self.batch_size], _num_batches))) | |||
if len(indices)%self.batch_size!=0: | |||
batches.append(indices[_num_batches*self.batch_size:]) | |||
need_pad_num = (len(self.dataset)-self.num_consumed_samples) % self.num_replicas | |||
if self.pad and need_pad_num !=0 and need_pad_num<=self.rank: | |||
if len(batches) > 0: | |||
if len(batches[-1])<self.batch_size: | |||
batches[-1].append(batches[-1][0]) # 这里可以保证这个bucket的长度没被破坏。 | |||
else: | |||
batches.append([batches[-1][0]]) | |||
elif self.pad is False and need_pad_num !=0 and need_pad_num>self.rank: | |||
if len(batches): | |||
batches[-1].pop(-1) | |||
if len(batches[-1])==0: | |||
batches.pop(-1) | |||
assert sum(map(len, batches)) == self.num_left_samples | |||
if self.drop_last and len(batches) >= 1 and len(batches[-1]) < self.batch_size: | |||
batches = batches[:-1] | |||
for batch in batches: | |||
self.num_consumed_samples += self.num_replicas * len(batch) | |||
yield list(map(int, batch)) | |||
self.during_iter = False | |||
self.num_consumed_samples = 0 | |||
self.old_batch_size = self.batch_size | |||
self.old_num_replicas = self.num_replicas | |||
if self.epoch < 0: # 防止用户没有修改epoch,导致每个epoch都一样了 | |||
self.epoch -= 1 | |||
def batchify(self, indices, batch_size, seed): | |||
""" | |||
将 indices 分为 batches | |||
:param sorted_indices: List[int] | |||
:param batch_size: int | |||
:param seed: int | |||
:return: List[List[int]] | |||
""" | |||
# 实际的 bucket 大小 | |||
rng = np.random.default_rng(abs(seed)) | |||
rng.shuffle(indices) | |||
num_samples = 0 | |||
batches = [] | |||
while num_samples<len(indices): | |||
batches.append(indices[num_samples:num_samples+batch_size]) | |||
num_samples += batch_size | |||
return batches | |||
def set_epoch(self, epoch): | |||
self.epoch = epoch | |||
@property | |||
def batch_idx_in_epoch(self): | |||
if self.drop_last: | |||
return len(self.dataset) // self.num_replicas // self.batch_size - self.num_left_samples // self.batch_size | |||
else: | |||
return (len(self.dataset) // self.num_replicas + self.batch_size - 1) // self.batch_size - \ | |||
(self.num_left_samples + self.batch_size - 1) // self.batch_size | |||
@property | |||
def total_size(self): | |||
""" | |||
这个变量代表的含义是当前这个sampler会最终产生出的index数量(包括了其它rank的),因为replica和pad的原因,这个值可能等于、 | |||
大于或者小于len(dataset) | |||
:return: | |||
""" | |||
return self.num_consumed_samples + self.num_replicas*self.num_left_samples | |||
@property | |||
def num_left_samples(self): | |||
""" | |||
返回当前 iteration 还有多少个 sample 结束,表示的是当前 rank 的还剩多少。 | |||
:return: | |||
""" | |||
num_consumed_samples = self.num_consumed_samples | |||
return math.ceil((len(self.dataset) - num_consumed_samples) / self.num_replicas) if \ | |||
self.pad else math.floor(((len(self.dataset) - num_consumed_samples) / self.num_replicas)) | |||
def __len__(self)->int: | |||
""" | |||
返回当前 sampler 还会返回多少个 batch 的数据 | |||
:return: | |||
""" | |||
num_sampler_per_rank = self.total_size//self.num_replicas | |||
num_batches = num_sampler_per_rank//self.batch_size if self.drop_last else \ | |||
(num_sampler_per_rank+self.batch_size-1)//self.batch_size | |||
return num_batches | |||
def state_dict(self) -> Dict: | |||
if self.old_batch_size != self.batch_size: | |||
raise RuntimeError("BucketedBatchSampler does not support saving before last checkpoint states have been" | |||
" consumed. ") | |||
states = {'seed': self.seed, 'epoch': self.epoch, 'num_consumed_samples': self.num_consumed_samples, | |||
'sampler_type': self.__class__.__name__, 'length': len(self.dataset), 'shuffle': self.shuffle, | |||
'batch_size': self.batch_size, | |||
'num_replicas': self.num_replicas} | |||
return states | |||
def load_state_dict(self, states: Dict): | |||
# 如果 self.during_iter 是 True,那么 num_consumed_samples 一定是 0; | |||
assert self.during_iter is False, "Cannot call load_state_dict() when it is " \ | |||
"during an unfinished iteration." | |||
assert states['sampler_type'] == self.__class__.__name__, f"The sampler type in checkpoint is {states['sampler_type']}," \ | |||
f"we cannot use {self.__class__.__name__} to load it." | |||
length = states['length'] | |||
assert length == len(self.dataset), "The number of samples is different between the checkpoint record " \ | |||
"and current dataset." | |||
self.seed = states['seed'] | |||
self.epoch = states['epoch'] | |||
self.num_consumed_samples = states['num_consumed_samples'] | |||
if self.num_consumed_samples>=length: # 如果保存的时候已经到达了最后一个sample了,则直接将结果重置为0 | |||
self.num_consumed_samples = 0 | |||
if self.shuffle != states['shuffle']: | |||
logger.info(f"The shuffle from the checkpoint is {states['shuffle']}, while set as {self.shuffle}, " | |||
f"we use shuffle={states['shuffle']}") | |||
self.shuffle = states["shuffle"] | |||
self.old_batch_size = states['batch_size'] | |||
self.old_num_replicas = states['num_replicas'] | |||
class BucketedBatchSampler(ReproducibleBatchSampler): | |||
def __init__(self, dataset, length: Union[List[int], str], batch_size:int = 32, num_batch_per_bucket:int = 10, | |||
shuffle: bool = True, drop_last: bool = False, seed: int = 0, **kwargs): | |||
@@ -54,13 +54,12 @@ class RandomSampler(ReproducibleSampler): | |||
def __init__(self, dataset, shuffle: bool = True, seed: int = 0, **kwargs): | |||
""" | |||
:param dataset: 实现了 __len__ 方法的数据容器 | |||
:param shuffle: 是否在每次 iterate 的时候打乱顺序。 | |||
:param seed: 随机数种子。 | |||
:param kwargs: 用户不需要使用,fastNLP 内部使用 | |||
""" | |||
super(RandomSampler, self).__init__() | |||
self.dataset = dataset | |||
self.shuffle = shuffle | |||
self.seed = seed | |||
@@ -21,7 +21,6 @@ __all__ = [ | |||
'nullcontext', | |||
'pretty_table_printer', | |||
'Option', | |||
'indice_collate_wrapper', | |||
'deprecated', | |||
'seq_len_to_mask', | |||
'rank_zero_rm', | |||
@@ -37,6 +36,7 @@ from .torch_paddle_utils import torch_paddle_move_data_to_device | |||
from .torch_utils import torch_move_data_to_device | |||
from .utils import get_fn_arg_names, auto_param_call, check_user_specific_params, \ | |||
dataclass_to_dict, match_and_substitute_params, apply_to_collection, nullcontext, pretty_table_printer, Option, \ | |||
indice_collate_wrapper, deprecated, seq_len_to_mask, rank_zero_rm, rank_zero_mkdir | |||
deprecated, seq_len_to_mask, rank_zero_rm, rank_zero_mkdir | |||
from ..dataloaders.utils import indice_collate_wrapper | |||
@@ -7,13 +7,13 @@ from collections.abc import Mapping, Callable | |||
from functools import wraps | |||
from fastNLP.envs.imports import _NEED_IMPORT_JITTOR | |||
if _NEED_IMPORT_JITTOR: | |||
import jittor as jt | |||
from fastNLP.core.dataset import Instance | |||
def is_jittor_dataset(dataset) -> bool: | |||
try: | |||
if isinstance(dataset, jt.dataset.Dataset): | |||
@@ -32,6 +32,7 @@ def jittor_collate_wraps(func, auto_collator: Callable): | |||
:param auto_collator: | |||
:return: | |||
""" | |||
@wraps(func) | |||
def wrapper(batch): | |||
if isinstance(batch[0], Instance): | |||
@@ -6,7 +6,7 @@ import warnings | |||
from dataclasses import is_dataclass | |||
from copy import deepcopy | |||
from collections import defaultdict, OrderedDict | |||
from typing import Callable, List, Any, Dict, AnyStr, Union, Mapping, Sequence, Optional | |||
from typing import Callable, List, Any, Dict, AnyStr, Union, Mapping, Sequence | |||
from typing import Tuple, Optional | |||
from time import sleep | |||
@@ -35,7 +35,6 @@ __all__ = [ | |||
'nullcontext', | |||
'pretty_table_printer', | |||
'Option', | |||
'indice_collate_wrapper', | |||
'deprecated', | |||
'seq_len_to_mask', | |||
'rank_zero_rm', | |||
@@ -513,24 +512,6 @@ class Option(dict): | |||
self.update(state) | |||
def indice_collate_wrapper(func): | |||
""" | |||
其功能是封装一层collate_fn,将dataset取到的tuple数据分离开,将idx打包为indices。 | |||
:param func: 需要修饰的函数 | |||
:return: | |||
""" | |||
def wrapper(tuple_data): | |||
indice, ins_list = [], [] | |||
for idx, ins in tuple_data: | |||
indice.append(idx) | |||
ins_list.append(ins) | |||
return indice, func(ins_list) | |||
return wrapper | |||
_emitted_deprecation_warnings = set() | |||
@@ -0,0 +1,106 @@ | |||
import numpy as np | |||
import pytest | |||
from fastNLP.core.collators.padders.paddle_padder import paddleTensorPadder, paddleSequencePadder, paddleNumberPadder | |||
from fastNLP.core.collators.padders.exceptions import DtypeError | |||
from fastNLP.envs.imports import _NEED_IMPORT_PADDLE | |||
if _NEED_IMPORT_PADDLE: | |||
import paddle | |||
@pytest.mark.paddle | |||
class TestpaddleNumberPadder: | |||
def test_run(self): | |||
padder = paddleNumberPadder(ele_dtype=int, dtype=int, pad_val=-1) | |||
a = [1, 2, 3] | |||
t_a = padder(a) | |||
assert isinstance(t_a, paddle.Tensor) | |||
assert (t_a == paddle.to_tensor(a, dtype='int64')).sum() == 3 | |||
@pytest.mark.paddle | |||
class TestpaddleSequencePadder: | |||
def test_run(self): | |||
padder = paddleSequencePadder(ele_dtype=int, dtype=int, pad_val=-1) | |||
a = [[1, 2, 3], [3]] | |||
a = padder(a) | |||
shape = a.shape | |||
assert isinstance(a, paddle.Tensor) | |||
assert tuple(shape) == (2, 3) | |||
b = paddle.to_tensor([[1, 2, 3], [3, -1, -1]], dtype='int64') | |||
assert (a == b).sum().item() == shape[0]*shape[1] | |||
def test_dtype_check(self): | |||
padder = paddleSequencePadder(ele_dtype=np.zeros(3, dtype=np.int32).dtype, dtype=int, pad_val=-1) | |||
with pytest.raises(DtypeError): | |||
padder = paddleSequencePadder(ele_dtype=str, dtype=int, pad_val=-1) | |||
padder = paddleSequencePadder(ele_dtype='int64', dtype=int, pad_val=-1) | |||
padder = paddleSequencePadder(ele_dtype=np.int32, dtype=None, pad_val=-1) | |||
a = padder([[1], [2, 322]]) | |||
# assert (a>67).sum()==0 # 因为int8的范围为-67 - 66 | |||
padder = paddleSequencePadder(ele_dtype=np.zeros(2).dtype, dtype=None, pad_val=-1) | |||
@pytest.mark.paddle | |||
class TestpaddleTensorPadder: | |||
def test_run(self): | |||
padder = paddleTensorPadder(ele_dtype=paddle.zeros((3,)).dtype, dtype=paddle.zeros((3,)).dtype, pad_val=-1) | |||
a = [paddle.zeros((3,)), paddle.zeros((2,))] | |||
a = padder(a) | |||
shape = a.shape | |||
assert isinstance(a, paddle.Tensor) | |||
assert tuple(shape) == (2, 3) | |||
b = paddle.to_tensor([[0, 0, 0], [0, 0, -1]], dtype='int64') | |||
assert (a == b).sum().item() == shape[0]*shape[1] | |||
a = [paddle.zeros((3, 2)), paddle.zeros((2, 2)), paddle.zeros((1, 2))] | |||
a = padder(a) | |||
shape = a.shape | |||
assert isinstance(a, paddle.Tensor) | |||
assert tuple(shape) == (3, 3, 2) | |||
b = paddle.to_tensor([[[0, 0], [0, 0], [0, 0]], | |||
[[0, 0], [0, 0], [-1, -1]], | |||
[[0, 0], [-1, -1], [-1, -1]]], dtype='int64') | |||
assert (a == b).sum().item() == shape[0]*shape[1]*shape[2] | |||
a = [paddle.zeros((3, 2)), paddle.zeros((2, 2)), paddle.zeros((1, 1))] | |||
a = padder(a) | |||
shape = a.shape | |||
assert isinstance(a, paddle.Tensor) | |||
assert tuple(shape) == (3, 3, 2) | |||
b = paddle.to_tensor([[[0, 0], [0, 0], [0, 0]], | |||
[[0, 0], [0, 0], [-1, -1]], | |||
[[0, -1], [-1, -1], [-1, -1]]]) | |||
assert (a == b).sum().item() == shape[0]*shape[1]*shape[2] | |||
padder = paddleTensorPadder(ele_dtype=paddle.zeros((3, )).dtype, dtype=paddle.zeros((3, )).dtype, pad_val=-1) | |||
a = [paddle.zeros((3, 2)), paddle.zeros((2, 2))] | |||
a = padder(a) | |||
shape = a.shape | |||
assert isinstance(a, paddle.Tensor) | |||
assert tuple(shape) == (2, 3, 2) | |||
b = paddle.to_tensor([[[0, 0], [0, 0], [0, 0]], | |||
[[0, 0], [0, 0], [-1, -1]], | |||
]) | |||
assert (a == b).sum().item() == shape[0]*shape[1]*shape[2] | |||
padder = paddleTensorPadder(ele_dtype=paddle.zeros((3, 2)).dtype, dtype=None, pad_val=-1) | |||
a = [np.zeros((3, 2), dtype=np.float32), np.zeros((2, 2), dtype=np.float32)] | |||
a = padder(a) | |||
shape = a.shape | |||
assert isinstance(a, paddle.Tensor) | |||
assert tuple(shape) == (2, 3, 2) | |||
b = paddle.to_tensor([[[0, 0], [0, 0], [0, 0]], | |||
[[0, 0], [0, 0], [-1, -1]]], dtype='float32') | |||
assert (a == b).sum().item() == shape[0]*shape[1]*shape[2] | |||
def test_dtype_check(self): | |||
padder = paddleTensorPadder(ele_dtype=np.zeros(3, dtype=np.int8).dtype, dtype=int, pad_val=-1) | |||
with pytest.raises(DtypeError): | |||
padder = paddleTensorPadder(ele_dtype=str, dtype=int, pad_val=-1) | |||
padder = paddleTensorPadder(ele_dtype='int64', dtype=int, pad_val=-1) | |||
padder = paddleTensorPadder(ele_dtype=int, dtype='int64', pad_val=-1) | |||
def test_v1(self): | |||
print(paddle.zeros((3, )).dtype) |
@@ -40,8 +40,8 @@ class TestJittor: | |||
""" | |||
dataset = MyDataset() | |||
jtl = JittorDataLoader(dataset, keep_numpy_array=True, batch_size=4) | |||
jtl.set_pad_val('x', 'y') | |||
jtl.set_input('x') | |||
# jtl.set_pad_val('x', 'y') | |||
# jtl.set_input('x') | |||
for batch in jtl: | |||
print(batch) | |||
print(jtl.get_batch_indices()) | |||
@@ -54,15 +54,17 @@ class TestJittor: | |||
""" | |||
dataset = Fdataset({'x': [[1, 2], [0], [2, 3, 4, 5]] * 100, 'y': [0, 1, 2] * 100}) | |||
jtl = JittorDataLoader(dataset, batch_size=16, drop_last=True) | |||
jtl.set_pad_val('x', val=-1) | |||
jtl.set_input('x', 'y') | |||
jtl.set_pad("x", -1) | |||
jtl.set_ignore("y") | |||
# jtl.set_pad_val('x', val=-1) | |||
# jtl.set_input('x', 'y') | |||
for batch in jtl: | |||
assert batch['x'].size() == (16, 4) | |||
def test_v3(self): | |||
dataset = HfDataset.from_dict({'x': [[1, 2], [0], [2, 3, 4, 5]] * 100, 'y': [0, 1, 2] * 100}) | |||
jtl = JittorDataLoader(dataset, batch_size=4, drop_last=True) | |||
jtl.set_input('x', 'y') | |||
# jtl.set_input('x', 'y') | |||
for batch in jtl: | |||
print(batch) | |||
@@ -3,6 +3,8 @@ import numpy as np | |||
from fastNLP.core.dataloaders.paddle_dataloader.fdl import PaddleDataLoader | |||
from fastNLP.core.dataset import DataSet | |||
from fastNLP.core.log import logger | |||
from fastNLP.envs.imports import _NEED_IMPORT_PADDLE | |||
if _NEED_IMPORT_PADDLE: | |||
from paddle.io import Dataset, DataLoader | |||
@@ -11,11 +13,12 @@ else: | |||
from fastNLP.core.utils.dummy_class import DummyClass as Dataset | |||
class RandomDataset(Dataset): | |||
def __getitem__(self, idx): | |||
image = np.random.random((10, 5)).astype('float32') | |||
return {'image': paddle.Tensor(image), 'label': [[0, 1], [1, 2, 3, 4]]} | |||
return {'image': image, 'label': [[0, 1], [1, 2, 3, 4]]} | |||
def __len__(self): | |||
return 10 | |||
@@ -36,23 +39,30 @@ class TestPaddle: | |||
def test_fdl_batch_indices(self): | |||
ds = DataSet({'x': [[1, 2], [2, 3, 4], [1]] * 10, 'y': [0, 1, 1] * 10}) | |||
fdl = PaddleDataLoader(ds, batch_size=4, shuffle=True, drop_last=True) | |||
fdl.set_input("x", "y") | |||
for batch in fdl: | |||
assert len(fdl.get_batch_indices()) == 4 | |||
print(batch) | |||
print(fdl.get_batch_indices()) | |||
def test_set_inputs_and_set_pad_val(self): | |||
logger.setLevel("DEBUG") | |||
ds = RandomDataset() | |||
fdl = PaddleDataLoader(ds, batch_size=2, drop_last=True) | |||
fdl.set_input('image', 'label') | |||
fdl.set_pad_val('label', val=-1) | |||
fdl.set_pad('label', -1) | |||
for batch in fdl: | |||
print(batch['image']) | |||
assert batch['image'].shape == [2, 10, 5] | |||
print(batch) | |||
fdl1 = PaddleDataLoader(ds, batch_size=4, drop_last=True) | |||
fdl1.set_input('image', 'label') | |||
fdl1.set_pad_val('image', val=None) | |||
fdl1.set_ignore('label') | |||
for batch in fdl1: | |||
assert batch['image'].shape == [4, 10, 5] | |||
print(batch) | |||
def test_v2(self): | |||
from fastNLP.core.collators import Collator | |||
logger.setLevel("DEBUG") | |||
data = [paddle.Tensor(np.random.random((10, 5)).astype('float32')), paddle.Tensor(np.random.random((10, 5)).astype('float32'))] | |||
col = Collator(backend="jittor") | |||
res = col(data) | |||
print(res) |
@@ -13,42 +13,23 @@ class TestFdl: | |||
fdl = TorchDataLoader(ds, batch_size=3, shuffle=True, drop_last=True) | |||
# for batch in fdl: | |||
# print(batch) | |||
fdl1 = TorchDataLoader(ds, batch_size=3, shuffle=True, drop_last=True, as_numpy=True) | |||
fdl1 = TorchDataLoader(ds, batch_size=3, shuffle=True, drop_last=True) | |||
# for batch in fdl1: | |||
# print(batch) | |||
def test_set_padding(self): | |||
ds = DataSet({"x": [[1, 2], [2, 3, 4], [4, 5, 6, 7]] * 10, "y": [1, 0, 1] * 10}) | |||
ds.set_pad_val("x", val=-1) | |||
fdl = TorchDataLoader(ds, batch_size=3) | |||
fdl.set_input("x", "y") | |||
fdl.set_pad_val("x", val=None) | |||
fdl.set_pad("x", -1) | |||
for batch in fdl: | |||
print(batch) | |||
# fdl.set_pad_val("x", val=-2) | |||
# for batch in fdl: | |||
# print(batch) | |||
def test_add_collator(self): | |||
ds = DataSet({"x": [[1, 2], [2, 3, 4], [4, 5, 6, 7]] * 10, "y": [1, 0, 1] * 10}) | |||
def collate_fn(ins_list): | |||
_dict = {"Y": []} | |||
for ins in ins_list: | |||
_dict["Y"].append(ins['y']) | |||
return _dict | |||
fdl = TorchDataLoader(ds, batch_size=3, as_numpy=True) | |||
fdl.set_input("x", "y") | |||
# fdl.set_pad_val("x", val=None) | |||
fdl.add_collator(collate_fn) | |||
for batch in fdl: | |||
print(batch) | |||
def test_get_batch_indices(self): | |||
ds = DataSet({"x": [[1, 2], [2, 3, 4], [4, 5, 6, 7]] * 10, "y": [1, 0, 1] * 10}) | |||
fdl = TorchDataLoader(ds, batch_size=3, shuffle=True) | |||
fdl.set_input("y", "x") | |||
for batch in fdl: | |||
print(fdl.get_batch_indices()) | |||
@@ -2,7 +2,7 @@ import pytest | |||
from pathlib import Path | |||
from fastNLP.core.drivers.paddle_driver.single_device import PaddleSingleDriver | |||
from fastNLP.core.samplers import RandomBatchSampler, RandomSampler | |||
from fastNLP.core.samplers import ReproduceBatchSampler, RandomSampler | |||
from tests.helpers.models.paddle_model import PaddleNormalModel_Classification_1 | |||
from tests.helpers.datasets.paddle_data import PaddleNormalDataset, PaddleRandomMaxDataset | |||
from tests.helpers.datasets.torch_data import TorchNormalDataset | |||
@@ -278,7 +278,7 @@ class TestPaddleDriverFunctions: | |||
dataset = PaddleNormalDataset() | |||
dataloader = DataLoader( | |||
dataset, | |||
batch_sampler=RandomBatchSampler( | |||
batch_sampler=ReproduceBatchSampler( | |||
BatchSampler(dataset, batch_size=batch_size, shuffle=shuffle), | |||
batch_size, | |||
drop_last, | |||
@@ -287,7 +287,7 @@ class TestPaddleDriverFunctions: | |||
res = PaddleSingleDriver.get_dataloader_args(dataloader) | |||
assert isinstance(res.dataset, PaddleNormalDataset) | |||
assert isinstance(res.batch_sampler, RandomBatchSampler) | |||
assert isinstance(res.batch_sampler, ReproduceBatchSampler) | |||
if shuffle: | |||
assert isinstance(res.sampler, paddle.io.RandomSampler) | |||
else: | |||
@@ -387,7 +387,7 @@ class TestSetDistReproDataloader: | |||
""" | |||
测试 set_dist_repro_dataloader 参数 `reproducible` 为 True 时的表现 | |||
当dist为字符串时,此时应该返回新的 dataloader,且如果原 sampler 为 paddle.io.RandomSampler(shuffle=True), | |||
只会替换 Sampler 为 RandomSampler;否则会替换 batch_sampler 为 RandomBatchSampler | |||
只会替换 Sampler 为 RandomSampler;否则会替换 batch_sampler 为 ReproduceBatchSampler | |||
""" | |||
dataloader = DataLoader(self.dataset, batch_size=2, shuffle=shuffle) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, dist="dist", reproducible=True) | |||
@@ -400,7 +400,7 @@ class TestSetDistReproDataloader: | |||
assert isinstance(replaced_loader.batch_sampler.sampler, RandomSampler) | |||
else: | |||
# 此时会替换 batch_sampler | |||
assert isinstance(replaced_loader.batch_sampler, RandomBatchSampler) | |||
assert isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler) | |||
assert isinstance(replaced_loader.batch_sampler.batch_sampler, BatchSampler) | |||
assert replaced_loader.batch_sampler.batch_size == dataloader.batch_sampler.batch_size | |||
assert replaced_loader.drop_last == dataloader.drop_last | |||
@@ -414,11 +414,11 @@ class TestSetDistReproDataloader: | |||
应该返回新的 dataloader,并将 batch_sampler 替换为 dist 对应的 Sampler | |||
""" | |||
dataloader = DataLoader(self.dataset, batch_size=2, shuffle=not shuffle) | |||
dist = RandomBatchSampler(BatchSampler(self.dataset, batch_size=4, shuffle=shuffle), 4, False) | |||
dist = ReproduceBatchSampler(BatchSampler(self.dataset, batch_size=4, shuffle=shuffle), 4, False) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, dist=dist, reproducible=False) | |||
assert not (replaced_loader is dataloader) | |||
assert isinstance(replaced_loader.batch_sampler, RandomBatchSampler) | |||
assert isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler) | |||
assert replaced_loader.batch_sampler is dist | |||
self.check_set_dist_repro_dataloader(dataloader, replaced_loader, shuffle) | |||
@@ -450,7 +450,7 @@ class TestSetDistReproDataloader: | |||
""" | |||
dataloader = DataLoader( | |||
dataset=self.dataset, | |||
batch_sampler=RandomBatchSampler( | |||
batch_sampler=ReproduceBatchSampler( | |||
BatchSampler(self.dataset, batch_size=4, shuffle=shuffle), | |||
batch_size=4, | |||
drop_last=False, | |||
@@ -459,7 +459,7 @@ class TestSetDistReproDataloader: | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, dist="dist", reproducible=False) | |||
assert not (replaced_loader is dataloader) | |||
assert isinstance(replaced_loader.batch_sampler, RandomBatchSampler) | |||
assert isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler) | |||
assert not (replaced_loader.batch_sampler is dataloader.batch_sampler) | |||
assert replaced_loader.batch_sampler.batch_size == dataloader.batch_sampler.batch_size | |||
assert replaced_loader.drop_last == dataloader.drop_last | |||
@@ -500,20 +500,20 @@ class TestSetDistReproDataloader: | |||
if idx >= num_consumed_batches: | |||
break | |||
already_seen_idx.update(batch) | |||
if isinstance(replaced_loader.batch_sampler, RandomBatchSampler): | |||
if isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler): | |||
sampler_states = replaced_loader.batch_sampler.state_dict() | |||
else: | |||
sampler_states = replaced_loader.batch_sampler.sampler.state_dict() | |||
# 重新加载,应该可以输出剩下的内容,且对于 PaddleNormalDataset 来说,排序后应该是一个 range | |||
left_idxes = set() | |||
if isinstance(replaced_loader.batch_sampler, RandomBatchSampler): | |||
if isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler): | |||
batch_size = replaced_loader.batch_sampler.batch_size | |||
sampler_states["num_consumed_samples"] = num_consumed_batches * batch_size | |||
# 重新改造 dataloader | |||
new_loader = DataLoader( | |||
dataset=replaced_loader.dataset, | |||
batch_sampler=RandomBatchSampler( | |||
batch_sampler=ReproduceBatchSampler( | |||
BatchSampler(replaced_loader.dataset, shuffle=shuffle, batch_size=batch_size), | |||
batch_size=batch_size, | |||
drop_last=False, | |||
@@ -603,7 +603,7 @@ def test_save_and_load_with_randombatchsampler(only_state_dict, fp16): | |||
dataset = PaddleRandomMaxDataset(40, 10) | |||
dataloader = DataLoader( | |||
dataset=dataset, | |||
batch_sampler=RandomBatchSampler(BatchSampler(dataset, batch_size=4), 4, False) | |||
batch_sampler=ReproduceBatchSampler(BatchSampler(dataset, batch_size=4), 4, False) | |||
) | |||
driver1, driver2 = generate_random_driver(10, 10, fp16, "gpu"), generate_random_driver(10, 10, False, "gpu") | |||
@@ -627,7 +627,7 @@ def test_save_and_load_with_randombatchsampler(only_state_dict, fp16): | |||
# 更改 batch_size | |||
dataloader = DataLoader( | |||
dataset=dataset, | |||
batch_sampler=RandomBatchSampler(BatchSampler(dataset, batch_size=2, shuffle=True), 2, False) | |||
batch_sampler=ReproduceBatchSampler(BatchSampler(dataset, batch_size=2, shuffle=True), 2, False) | |||
) | |||
load_states = driver2.load(Path(path), dataloader, only_state_dict, should_load_model=True) | |||
replaced_loader = load_states.pop("dataloader") | |||
@@ -637,7 +637,7 @@ def test_save_and_load_with_randombatchsampler(only_state_dict, fp16): | |||
# 2. 检查 batch_sampler 是否被正确地加载和替换 | |||
assert not (replaced_loader is dataloader) | |||
assert replaced_loader.batch_sampler is dataloader.batch_sampler | |||
assert isinstance(replaced_loader.batch_sampler, RandomBatchSampler) | |||
assert isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler) | |||
assert replaced_loader.batch_sampler.index_list == sampler_states["index_list"] | |||
assert replaced_loader.batch_sampler.num_consumed_samples == num_consumed_batches * 4 | |||
@@ -6,7 +6,7 @@ from fastNLP.core.drivers.paddle_driver.utils import ( | |||
replace_batch_sampler, | |||
replace_sampler, | |||
) | |||
from fastNLP.core.samplers import RandomBatchSampler, RandomSampler | |||
from fastNLP.core.samplers import ReproduceBatchSampler, RandomSampler | |||
from fastNLP.envs.imports import _NEED_IMPORT_PADDLE | |||
if _NEED_IMPORT_PADDLE: | |||
import paddle | |||
@@ -36,12 +36,12 @@ def test_get_device_from_visible_str(user_visible_devices, cuda_visible_devices, | |||
def test_replace_batch_sampler(): | |||
dataset = PaddleNormalDataset(10) | |||
dataloader = DataLoader(dataset, batch_size=32) | |||
batch_sampler = RandomBatchSampler(dataloader.batch_sampler, batch_size=16, drop_last=False) | |||
batch_sampler = ReproduceBatchSampler(dataloader.batch_sampler, batch_size=16, drop_last=False) | |||
replaced_loader = replace_batch_sampler(dataloader, batch_sampler) | |||
assert not (replaced_loader is dataloader) | |||
assert isinstance(replaced_loader.batch_sampler, RandomBatchSampler) | |||
assert isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler) | |||
assert isinstance(replaced_loader.dataset, PaddleNormalDataset) | |||
assert len(replaced_loader.dataset) == len(dataset) | |||
assert replaced_loader.batch_sampler.batch_size == 16 | |||
@@ -2,7 +2,7 @@ import pytest | |||
from pathlib import Path | |||
from fastNLP.core.drivers.torch_driver.single_device import TorchSingleDriver | |||
from fastNLP.core.samplers import RandomBatchSampler, RandomSampler | |||
from fastNLP.core.samplers import ReproduceBatchSampler, RandomSampler | |||
from tests.helpers.models.torch_model import TorchNormalModel_Classification_1 | |||
from tests.helpers.datasets.torch_data import TorchNormalDataset, TorchArgMaxDataset | |||
from tests.helpers.datasets.paddle_data import PaddleNormalDataset | |||
@@ -17,7 +17,7 @@ if _NEED_IMPORT_PADDLE: | |||
def dataloader_with_randombatchsampler(dataset, batch_size, shuffle, drop_last): | |||
""" | |||
建立一个 batch_sampler 为 RandomBatchSampler 的 dataloader | |||
建立一个 batch_sampler 为 ReproduceBatchSampler 的 dataloader | |||
""" | |||
if shuffle: | |||
sampler = torch.utils.data.RandomSampler(dataset) | |||
@@ -25,7 +25,7 @@ def dataloader_with_randombatchsampler(dataset, batch_size, shuffle, drop_last): | |||
sampler = torch.utils.data.SequentialSampler(dataset) | |||
dataloader = DataLoader( | |||
dataset=dataset, | |||
batch_sampler=RandomBatchSampler( | |||
batch_sampler=ReproduceBatchSampler( | |||
BatchSampler( | |||
sampler, batch_size=batch_size, drop_last=drop_last | |||
), | |||
@@ -306,7 +306,7 @@ class TestTorchDriverFunctions: | |||
res = TorchSingleDriver.get_dataloader_args(dataloader) | |||
assert isinstance(res.dataset, TorchNormalDataset) | |||
assert isinstance(res.batch_sampler, RandomBatchSampler) | |||
assert isinstance(res.batch_sampler, ReproduceBatchSampler) | |||
if shuffle: | |||
assert isinstance(res.sampler, torch.utils.data.RandomSampler) | |||
else: | |||
@@ -401,7 +401,7 @@ class TestSetDistReproDataloader: | |||
""" | |||
测试 set_dist_repro_dataloader 参数 `reproducible` 为 True 时的表现 | |||
当dist为字符串时,此时应该返回新的 dataloader,且如果原 sampler 为 torch.utils.data.RandomSampler(shuffle=True), | |||
只会替换 Sampler 为 RandomSampler;否则会替换 batch_sampler 为 RandomBatchSampler | |||
只会替换 Sampler 为 RandomSampler;否则会替换 batch_sampler 为 ReproduceBatchSampler | |||
""" | |||
dataloader = DataLoader(self.dataset, batch_size=2, shuffle=shuffle) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, dist="dist", reproducible=True) | |||
@@ -414,7 +414,7 @@ class TestSetDistReproDataloader: | |||
assert isinstance(replaced_loader.batch_sampler.sampler, RandomSampler) | |||
else: | |||
# 此时会替换 batch_sampler | |||
assert isinstance(replaced_loader.batch_sampler, RandomBatchSampler) | |||
assert isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler) | |||
assert isinstance(replaced_loader.batch_sampler.batch_sampler, BatchSampler) | |||
assert replaced_loader.batch_sampler.batch_size == dataloader.batch_sampler.batch_size | |||
assert replaced_loader.drop_last == dataloader.drop_last | |||
@@ -428,11 +428,11 @@ class TestSetDistReproDataloader: | |||
应该返回新的 dataloader,并将 batch_sampler 替换为 dist 对应的 Sampler | |||
""" | |||
dataloader = DataLoader(self.dataset, batch_size=2, shuffle=shuffle) | |||
dist = RandomBatchSampler(BatchSampler(self.dataset, batch_size=4, drop_last=False), 4, False) | |||
dist = ReproduceBatchSampler(BatchSampler(self.dataset, batch_size=4, drop_last=False), 4, False) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, dist=dist, reproducible=False) | |||
assert not (replaced_loader is dataloader) | |||
assert isinstance(replaced_loader.batch_sampler, RandomBatchSampler) | |||
assert isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler) | |||
assert replaced_loader.batch_sampler is dist | |||
self.check_set_dist_repro_dataloader(dataloader, replaced_loader, shuffle) | |||
@@ -466,7 +466,7 @@ class TestSetDistReproDataloader: | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, dist="dist", reproducible=False) | |||
assert not (replaced_loader is dataloader) | |||
assert isinstance(replaced_loader.batch_sampler, RandomBatchSampler) | |||
assert isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler) | |||
assert not (replaced_loader.batch_sampler is dataloader.batch_sampler) | |||
assert replaced_loader.batch_sampler.batch_size == dataloader.batch_sampler.batch_size | |||
assert replaced_loader.drop_last == dataloader.drop_last | |||
@@ -502,14 +502,14 @@ class TestSetDistReproDataloader: | |||
if idx >= num_consumed_batches: | |||
break | |||
already_seen_idx.update(batch) | |||
if isinstance(replaced_loader.batch_sampler, RandomBatchSampler): | |||
if isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler): | |||
sampler_states = replaced_loader.batch_sampler.state_dict() | |||
else: | |||
sampler_states = replaced_loader.batch_sampler.sampler.state_dict() | |||
# 重新加载,应该可以输出剩下的内容,且对于 TorchNormalDataset 来说,排序后应该是一个 range | |||
left_idxes = set() | |||
if isinstance(replaced_loader.batch_sampler, RandomBatchSampler): | |||
if isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler): | |||
batch_size = replaced_loader.batch_sampler.batch_size | |||
sampler_states["num_consumed_samples"] = num_consumed_batches * batch_size | |||
# 重新改造 dataloader | |||
@@ -613,7 +613,7 @@ def test_save_and_load_with_randombatchsampler(only_state_dict, fp16): | |||
# 2. 检查 batch_sampler 是否被正确地加载和替换 | |||
assert not (replaced_loader is dataloader) | |||
assert replaced_loader.batch_sampler is dataloader.batch_sampler | |||
assert isinstance(replaced_loader.batch_sampler, RandomBatchSampler) | |||
assert isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler) | |||
assert replaced_loader.batch_sampler.index_list == sampler_states["index_list"] | |||
assert replaced_loader.batch_sampler.num_consumed_samples == num_consumed_batches * 4 | |||
@@ -30,7 +30,7 @@ class SequenceDataSet: | |||
def check_replace_sampler(driver): | |||
# dist_sampler 可以选择的有['dist', 'unrepeatdist', None]或者是ReproducibleSampler,RandomBatchSampler | |||
# dist_sampler 可以选择的有['dist', 'unrepeatdist', None]或者是ReproducibleSampler,ReproduceBatchSampler | |||
# reproducible 是 True 和 False | |||
# 需要 check 返回的 sampler 和 dataloader 都不同了 | |||
@@ -4,7 +4,7 @@ from fastNLP.core.drivers.torch_driver.utils import ( | |||
replace_batch_sampler, | |||
replace_sampler, | |||
) | |||
from fastNLP.core.samplers import RandomBatchSampler, RandomSampler | |||
from fastNLP.core.samplers import ReproduceBatchSampler, RandomSampler | |||
from torch.utils.data import DataLoader, BatchSampler | |||
from tests.helpers.datasets.torch_data import TorchNormalDataset | |||
@@ -14,12 +14,12 @@ from tests.helpers.datasets.torch_data import TorchNormalDataset | |||
def test_replace_batch_sampler(): | |||
dataset = TorchNormalDataset(10) | |||
dataloader = DataLoader(dataset, batch_size=32) | |||
batch_sampler = RandomBatchSampler(dataloader.batch_sampler, batch_size=16, drop_last=False) | |||
batch_sampler = ReproduceBatchSampler(dataloader.batch_sampler, batch_size=16, drop_last=False) | |||
replaced_loader = replace_batch_sampler(dataloader, batch_sampler) | |||
assert not (replaced_loader is dataloader) | |||
assert isinstance(replaced_loader.batch_sampler, RandomBatchSampler) | |||
assert isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler) | |||
assert isinstance(replaced_loader.dataset, TorchNormalDataset) | |||
assert len(replaced_loader.dataset) == len(dataset) | |||
assert replaced_loader.batch_sampler.batch_size == 16 | |||
@@ -5,7 +5,7 @@ import pytest | |||
from itertools import chain | |||
from copy import deepcopy | |||
from fastNLP.core.samplers import RandomBatchSampler, BucketedBatchSampler | |||
from fastNLP.core.samplers import ReproduceBatchSampler, BucketedBatchSampler, RandomBatchSampler | |||
from fastNLP.core.drivers.torch_driver.utils import replace_batch_sampler | |||
from tests.helpers.datasets.torch_data import TorchNormalDataset | |||
@@ -19,7 +19,7 @@ from tests.helpers.datasets.torch_data import TorchNormalDataset | |||
# before_batch_size = 7 | |||
# dataset = TorchNormalDataset(num_of_data=100) | |||
# dataloader = DataLoader(dataset, batch_size=before_batch_size) | |||
# re_batchsampler = RandomBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False) | |||
# re_batchsampler = ReproduceBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False) | |||
# dataloader = replace_batch_sampler(dataloader, re_batchsampler) | |||
# | |||
# forward_steps = 3 | |||
@@ -29,15 +29,15 @@ from tests.helpers.datasets.torch_data import TorchNormalDataset | |||
# | |||
# # 1. 保存状态 | |||
# _get_re_batchsampler = dataloader.batch_sampler | |||
# assert isinstance(_get_re_batchsampler, RandomBatchSampler) | |||
# assert isinstance(_get_re_batchsampler, ReproduceBatchSampler) | |||
# state = _get_re_batchsampler.state_dict() | |||
# assert state == {"index_list": array("I", list(range(100))), "num_consumed_samples": forward_steps*before_batch_size, | |||
# "sampler_type": "RandomBatchSampler"} | |||
# "sampler_type": "ReproduceBatchSampler"} | |||
# | |||
# # 2. 断点重训,重新生成一个 dataloader; | |||
# # 不改变 batch_size; | |||
# dataloader = DataLoader(dataset, batch_size=before_batch_size) | |||
# re_batchsampler = RandomBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False) | |||
# re_batchsampler = ReproduceBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False) | |||
# re_batchsampler.load_state_dict(state) | |||
# dataloader = replace_batch_sampler(dataloader, re_batchsampler) | |||
# | |||
@@ -54,7 +54,7 @@ from tests.helpers.datasets.torch_data import TorchNormalDataset | |||
# # 改变 batch_size; | |||
# after_batch_size = 3 | |||
# dataloader = DataLoader(dataset, batch_size=after_batch_size) | |||
# re_batchsampler = RandomBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False) | |||
# re_batchsampler = ReproduceBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False) | |||
# re_batchsampler.load_state_dict(state) | |||
# dataloader = replace_batch_sampler(dataloader, re_batchsampler) | |||
# | |||
@@ -100,7 +100,7 @@ from tests.helpers.datasets.torch_data import TorchNormalDataset | |||
# dataset = TorchNormalDataset(num_of_data=100) | |||
# # 开启 shuffle,来检验断点重训后的第二轮的 index list 是不是重新生成的; | |||
# dataloader = DataLoader(dataset, batch_size=before_batch_size, shuffle=True) | |||
# re_batchsampler = RandomBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False) | |||
# re_batchsampler = ReproduceBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False) | |||
# dataloader = replace_batch_sampler(dataloader, re_batchsampler) | |||
# | |||
# # 将一轮的所有数据保存下来,看是否恢复的是正确的; | |||
@@ -112,13 +112,13 @@ from tests.helpers.datasets.torch_data import TorchNormalDataset | |||
# | |||
# # 1. 保存状态 | |||
# _get_re_batchsampler = dataloader.batch_sampler | |||
# assert isinstance(_get_re_batchsampler, RandomBatchSampler) | |||
# assert isinstance(_get_re_batchsampler, ReproduceBatchSampler) | |||
# state = _get_re_batchsampler.state_dict() | |||
# | |||
# # 2. 断点重训,重新生成一个 dataloader; | |||
# # 不改变 batch_size; | |||
# dataloader = DataLoader(dataset, batch_size=before_batch_size, shuffle=True) | |||
# re_batchsampler = RandomBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False) | |||
# re_batchsampler = ReproduceBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False) | |||
# re_batchsampler.load_state_dict(state) | |||
# dataloader = replace_batch_sampler(dataloader, re_batchsampler) | |||
# | |||
@@ -511,3 +511,313 @@ class TestBucketedBatchSampler: | |||
already_seen_set.update(batch) | |||
assert len(already_seen_set)==len(dataset) if drop_last is False else len(already_seen_set)<=len(dataset) | |||
class TestRandomBatchSampler: | |||
@pytest.mark.parametrize('shuffle', [True, False]) | |||
@pytest.mark.parametrize('drop_last', [True, False]) | |||
@pytest.mark.parametrize('num', [2, 7, 14, 15, 70, 71]) | |||
def test_single_num_batch(self, shuffle, drop_last, num): | |||
# 数量不够不报错 | |||
for num in [2, 7, 14, 15, 70, 71]: | |||
dataset = DatasetWithVaryLength(num_of_data=num) | |||
before_batch_size = 7 | |||
re_batchsampler = RandomBatchSampler(dataset, length=dataset.data, batch_size=before_batch_size, | |||
drop_last=drop_last, | |||
shuffle=shuffle) | |||
count = len(list(iter(re_batchsampler))) | |||
if drop_last: | |||
assert count==num//before_batch_size, num | |||
else: | |||
assert count==(num+before_batch_size-1)//before_batch_size, num | |||
@pytest.mark.parametrize('shuffle', [True, False]) | |||
@pytest.mark.parametrize('drop_last', [True, False]) | |||
def test_single(self, shuffle, drop_last): | |||
before_batch_size = 7 | |||
num_batch_per_bucket = 4 # 那么任意 batch 内的长度差值不应该超过4 | |||
dataset = DatasetWithVaryLength(num_of_data=1000) | |||
re_batchsampler = RandomBatchSampler(dataset, length=dataset.data, batch_size=before_batch_size, | |||
drop_last=drop_last, | |||
shuffle=shuffle) | |||
re_batchsampler.set_epoch(0) | |||
forward_steps = 10 | |||
iterator = iter(re_batchsampler) | |||
already_generate_indices = set() | |||
for _ in range(forward_steps): | |||
batch = next(iterator) | |||
already_generate_indices.update(batch) | |||
# 1. 保存状态 | |||
state = re_batchsampler.state_dict() | |||
# 2. 断点重训,继续训练 | |||
re_batchsampler2 = RandomBatchSampler(dataset, length=dataset.data, batch_size=before_batch_size, | |||
drop_last=drop_last, | |||
shuffle=shuffle) | |||
re_batchsampler2.load_state_dict(state) | |||
re_batchsampler2.set_epoch(0) | |||
new_already_generate_indices = set() | |||
mask = np.ones(len(dataset), dtype=bool) | |||
mask[list(already_generate_indices)] = 0 | |||
indices = np.arange(len(dataset))[mask] | |||
max_diff = -1 | |||
for i in range(len(indices)-before_batch_size * num_batch_per_bucket): | |||
max_diff = max(max_diff, indices[i+before_batch_size * num_batch_per_bucket]-indices[i]) | |||
for batch in re_batchsampler2: | |||
for b in batch: | |||
assert b not in already_generate_indices | |||
new_already_generate_indices.update(batch) | |||
if drop_last is False: | |||
assert len(new_already_generate_indices.union(already_generate_indices))==len(dataset) | |||
# 改变 batch_size; | |||
after_batch_size = 3 | |||
re_batchsampler3 = RandomBatchSampler(dataset, length=dataset.data, batch_size=after_batch_size, | |||
drop_last=drop_last, | |||
shuffle=shuffle) | |||
re_batchsampler3.load_state_dict(state) | |||
re_batchsampler3.set_epoch(0) | |||
count = 0 | |||
mask = np.ones(len(dataset), dtype=bool) | |||
mask[list(already_generate_indices)] = 0 | |||
indices = np.arange(len(dataset))[mask] | |||
for batch in re_batchsampler3: | |||
for b in batch: | |||
assert b not in already_generate_indices | |||
already_generate_indices.update(batch) | |||
count += 1 | |||
if count > 5: | |||
break | |||
# 再 save ,不允许再上个epoch没结束继续sample | |||
after_batch_size = 5 | |||
with pytest.raises(RuntimeError): | |||
state = re_batchsampler3.state_dict() | |||
for batch in re_batchsampler3: # consume all, 这样才能save | |||
pass | |||
already_generate_indices = set() | |||
count = 0 | |||
for batch in re_batchsampler3: # 重新开始 | |||
for b in batch: | |||
assert b not in already_generate_indices | |||
already_generate_indices.update(batch) | |||
count += 1 | |||
if count > 5: | |||
break | |||
state = re_batchsampler3.state_dict() | |||
# 这里的 drop_last 为 False,需要最终是所有 sample | |||
re_batchsampler4 = RandomBatchSampler(dataset, length=dataset.data, batch_size=after_batch_size, | |||
drop_last=False, | |||
shuffle=shuffle) | |||
re_batchsampler4.load_state_dict(state) | |||
re_batchsampler4.set_epoch(0) | |||
mask = np.ones(len(dataset), dtype=bool) | |||
mask[list(already_generate_indices)] = 0 | |||
for batch in re_batchsampler4: | |||
for b in batch: | |||
assert b not in already_generate_indices | |||
already_generate_indices.update(batch) | |||
assert len(already_generate_indices) == len(dataset) | |||
@pytest.mark.parametrize('shuffle', [True, False]) | |||
@pytest.mark.parametrize('drop_last', [True, False]) | |||
@pytest.mark.parametrize('pad', [True, False]) | |||
def test_multi(self, shuffle, drop_last, pad): | |||
# def test_multi(self, shuffle=True, drop_last=False, pad=False): | |||
# no shuffle | |||
num_replica = 2 | |||
dataset = DatasetWithVaryLength(num_of_data=1000) | |||
batch_size = 5 | |||
num_batch_per_bucket = 10 | |||
lengths = [] | |||
rank0_already_seen_indexes = None | |||
max_diff = num_batch_per_bucket * batch_size * num_replica | |||
for rank in range(num_replica): | |||
sampler = RandomBatchSampler(dataset, length=dataset.data, batch_size = batch_size, | |||
shuffle = shuffle, drop_last=drop_last) | |||
sampler.set_epoch(0) | |||
sampler.set_distributed(num_replica, rank=rank, pad=pad) | |||
lengths.append(len(sampler)) | |||
already_seen_indexes = set() | |||
repeat_count = 0 | |||
for batch in sampler: | |||
for b in batch: | |||
repeat_count += int(b in already_seen_indexes) | |||
if rank0_already_seen_indexes: # 不能交叉出现 | |||
assert b not in rank0_already_seen_indexes | |||
already_seen_indexes.update(batch) | |||
if rank0_already_seen_indexes is None: | |||
rank0_already_seen_indexes = already_seen_indexes | |||
if pad: # 应该允许重复一次 | |||
assert repeat_count<=1 | |||
else: | |||
assert repeat_count==0 | |||
assert len(set(lengths))==1, lengths # 每个进程的batch数量一致 | |||
# 多进程的保存 | |||
already_seen_indexes = set() | |||
for rank in range(num_replica): | |||
sampler = RandomBatchSampler(dataset, length=dataset.data, batch_size = batch_size, | |||
shuffle = shuffle, drop_last=drop_last) | |||
sampler.set_epoch(0) | |||
sampler.set_distributed(num_replica, rank=rank, pad=pad) | |||
lengths.append(len(sampler)) | |||
count = 0 | |||
for batch in sampler: | |||
already_seen_indexes.update(batch) | |||
if count>5: | |||
break | |||
count += 1 | |||
state = sampler.state_dict() | |||
# 切换成单机 | |||
new_batch_size = 6 | |||
num_batch_per_bucket = 3 | |||
new_sampler = RandomBatchSampler(dataset, length=dataset.data, batch_size=new_batch_size, | |||
shuffle=shuffle, drop_last=drop_last) | |||
new_sampler.load_state_dict(state) | |||
repeat_count = 0 | |||
new_already_seen_indexes = set(list(already_seen_indexes)) | |||
mask = np.ones(len(dataset), dtype=bool) | |||
mask[list(already_seen_indexes)] = 0 | |||
indices = np.arange(len(dataset))[mask] | |||
for batch in new_sampler: | |||
for b in batch: | |||
repeat_count += int(b in new_already_seen_indexes) | |||
new_already_seen_indexes.update(batch) | |||
if pad: # 应该允许重复一次 | |||
assert repeat_count <= 1 | |||
else: | |||
assert repeat_count == 0 | |||
if drop_last is False: # 如果没有drop应该相等 | |||
assert len(new_already_seen_indexes)==len(dataset) | |||
# 测试替换卡的数量。 | |||
num_replica = 3 | |||
new_sampler = RandomBatchSampler(dataset, length=dataset.data, batch_size=new_batch_size, | |||
shuffle=shuffle, drop_last=drop_last) | |||
new_sampler.set_epoch(0) | |||
new_sampler.load_state_dict(state) | |||
new_sampler.set_distributed(num_replicas=num_replica, rank=1, pad=pad) | |||
repeat_count = 0 | |||
mask = np.ones(len(dataset), dtype=bool) | |||
mask[list(already_seen_indexes)] = 0 | |||
indices = np.arange(len(dataset))[mask] | |||
for batch in new_sampler: | |||
for b in batch: | |||
repeat_count += int(b in already_seen_indexes) | |||
if pad: # 应该允许重复一次 | |||
assert repeat_count <= 1 | |||
else: | |||
assert repeat_count == 0 | |||
@pytest.mark.parametrize('shuffle', [True, False]) | |||
@pytest.mark.parametrize('drop_last', [True, False]) | |||
@pytest.mark.parametrize('pad', [True, False]) | |||
@pytest.mark.parametrize('num_samples', [13, 100, 623, 1000]) | |||
@pytest.mark.parametrize('num_replicas', [2, 3]) | |||
def test_multi_same_bucket(self, shuffle, drop_last, pad, num_samples, num_replicas): | |||
# def test_multi_same_bucket(self, shuffle=True, drop_last=True, pad=True, num_samples=623, num_replicas=2): | |||
dataset = DatasetWithVaryLength(num_of_data=num_samples) | |||
batch_size = 6 | |||
if num_replicas*batch_size > num_samples: | |||
return | |||
num_batch_per_bucket = 10 | |||
samplers = [] | |||
lengths = [] | |||
for i in range(num_replicas): | |||
sampler = RandomBatchSampler(dataset, length=dataset.data, batch_size=batch_size, | |||
shuffle=shuffle, drop_last=drop_last) | |||
sampler.set_distributed(num_replicas, rank=i, pad=pad) | |||
sampler.set_epoch(0) | |||
samplers.append(sampler) | |||
lengths.append(len(list(iter(sampler)))) | |||
assert len(set(lengths))==1 | |||
@pytest.mark.parametrize('shuffle', [True, False]) | |||
@pytest.mark.parametrize('drop_last', [True, False]) | |||
@pytest.mark.parametrize('pad', [True, False]) | |||
@pytest.mark.parametrize('num_samples', [13, 100, 623, 1000]) | |||
@pytest.mark.parametrize('num_replicas', [1, 2, 3]) | |||
def test_multi_save_load(self, shuffle, drop_last, pad, num_samples, num_replicas): | |||
""" | |||
测试是否能够正确地恢复使用过的(forward)数据 | |||
:return: | |||
""" | |||
batch_size = 6 | |||
dataset = DatasetWithVaryLength(num_of_data=num_samples) | |||
samplers = [] | |||
num_consumed_samples_array = list(range(0, num_samples+num_replicas, num_replicas)) | |||
for i in range(num_replicas): | |||
sampler = RandomBatchSampler(dataset, length=dataset.data, batch_size=batch_size, | |||
shuffle=shuffle, drop_last=drop_last) | |||
sampler.set_distributed(num_replicas=num_replicas, rank=i, pad=pad) | |||
samplers.append(sampler) | |||
count = 0 | |||
already_seen_sets = [set()] | |||
already_seen_set = set() | |||
for batchs in zip(*samplers): | |||
batch = chain(*batchs) | |||
already_seen_set.update(batch) | |||
already_seen_sets.append(deepcopy(already_seen_set)) | |||
count += 1 | |||
if count > 3: | |||
break | |||
states = samplers[0].state_dict() | |||
for i in range(len(already_seen_sets)): | |||
states['num_consumed_samples'] = num_consumed_samples_array[i] | |||
sampler = BucketedBatchSampler(dataset, length=dataset.data, batch_size=batch_size+1, | |||
shuffle=shuffle, drop_last=drop_last) | |||
sampler.set_epoch(0) | |||
already_seen_set = deepcopy(already_seen_sets[i]) | |||
for batch in sampler: | |||
already_seen_set.update(batch) | |||
assert len(already_seen_set) == len(dataset) if drop_last is False else len(already_seen_set) <= len( | |||
dataset) | |||
# 测试保存之后再次保存 | |||
sampler = RandomBatchSampler(dataset, length=dataset.data, batch_size=batch_size + 1, | |||
shuffle=shuffle, | |||
drop_last=drop_last) | |||
sampler.set_epoch(0) | |||
states['num_consumed_samples'] = num_consumed_samples_array[2] | |||
if len(already_seen_sets)<3: | |||
return | |||
already_seen_set = already_seen_sets[2] | |||
count = 0 | |||
for batch in sampler: | |||
already_seen_set.update(batch) | |||
count += 1 | |||
if count > 6: | |||
break | |||
states = sampler.state_dict() | |||
num_consumed_samples_array = list(range(len(dataset))) | |||
states['num_consumed_samples'] = num_consumed_samples_array[count] | |||
sampler = RandomBatchSampler(dataset, length=dataset.data, batch_size=batch_size//2, | |||
shuffle=shuffle, | |||
drop_last=drop_last) | |||
sampler.load_state_dict(states) | |||
sampler.set_epoch(0) | |||
for batch in sampler: | |||
already_seen_set.update(batch) | |||
assert len(already_seen_set)==len(dataset) if drop_last is False else len(already_seen_set)<=len(dataset) |