@@ -69,6 +69,6 @@ class Batch(object): | |||
else: | |||
batch[name] = torch.stack(tensor_list, dim=0) | |||
self.curidx += endidx | |||
self.curidx = endidx | |||
return batch_x, batch_y | |||
@@ -144,6 +144,15 @@ class DataSet(list): | |||
else: | |||
self.convert(raw_data) | |||
def load_raw(self, raw_data, vocabs): | |||
""" | |||
:param raw_data: | |||
:param vocabs: | |||
:return: | |||
""" | |||
self.convert_for_infer(raw_data, vocabs) | |||
def split(self, ratio, shuffle=True): | |||
"""Train/dev splitting | |||
@@ -38,14 +38,19 @@ class SeqLabelEvaluator(Evaluator): | |||
def __call__(self, predict, truth): | |||
""" | |||
:param predict: list of tensors, the network outputs from all batches. | |||
:param predict: list of List, the network outputs from all batches. | |||
:param truth: list of dict, the ground truths from all batch_y. | |||
:return accuracy: | |||
""" | |||
truth = [item["truth"] for item in truth] | |||
truth = torch.cat(truth).view(-1, ) | |||
results = torch.Tensor(predict).view(-1, ) | |||
accuracy = torch.sum(results.to(truth) == truth).to(torch.float) / results.shape[0] | |||
total_correct, total_count= 0., 0. | |||
for x, y in zip(predict, truth): | |||
mask = torch.Tensor(x).ge(1) | |||
correct = torch.sum(torch.Tensor(x) * mask.float() == (y * mask.long()).float()) | |||
correct -= torch.sum(torch.Tensor(x).le(0)) | |||
total_correct += float(correct) | |||
total_count += float(torch.sum(mask)) | |||
accuracy = total_correct / total_count | |||
return {"accuracy": float(accuracy)} | |||
@@ -34,7 +34,7 @@ class Predictor(object): | |||
"""Perform inference using the trained model. | |||
:param network: a PyTorch model (cpu) | |||
:param data: list of list of strings, [num_examples, seq_len] | |||
:param data: a DataSet object. | |||
:return: list of list of strings, [num_examples, tag_seq_length] | |||
""" | |||
# transform strings into DataSet object | |||
@@ -18,6 +18,9 @@ def save_pickle(obj, pickle_path, file_name): | |||
:param pickle_path: str, the directory where the pickle file is to be saved | |||
:param file_name: str, the name of the pickle file. In general, it should be ended by "pkl". | |||
""" | |||
if not os.path.exists(pickle_path): | |||
os.mkdir(pickle_path) | |||
print("make dir {} before saving pickle file".format(pickle_path)) | |||
with open(os.path.join(pickle_path, file_name), "wb") as f: | |||
_pickle.dump(obj, f) | |||
print("{} saved in {}".format(file_name, pickle_path)) | |||
@@ -4,6 +4,8 @@ from fastNLP.core.predictor import SeqLabelInfer, ClassificationInfer | |||
from fastNLP.core.preprocess import load_pickle | |||
from fastNLP.loader.config_loader import ConfigLoader, ConfigSection | |||
from fastNLP.loader.model_loader import ModelLoader | |||
from fastNLP.core.dataset import SeqLabelDataSet, TextClassifyDataSet | |||
""" | |||
mapping from model name to [URL, file_name.class_name, model_pickle_name] | |||
@@ -76,6 +78,8 @@ class FastNLP(object): | |||
self.model_dir = model_dir | |||
self.model = None | |||
self.infer_type = None # "seq_label"/"text_class" | |||
self.word_vocab = None | |||
self.label_vocab = None | |||
def load(self, model_name, config_file="config", section_name="model"): | |||
""" | |||
@@ -100,10 +104,10 @@ class FastNLP(object): | |||
print("Restore model hyper-parameters {}".format(str(model_args.data))) | |||
# fetch dictionary size and number of labels from pickle files | |||
word_vocab = load_pickle(self.model_dir, "word2id.pkl") | |||
model_args["vocab_size"] = len(word_vocab) | |||
label_vocab = load_pickle(self.model_dir, "class2id.pkl") | |||
model_args["num_classes"] = len(label_vocab) | |||
self.word_vocab = load_pickle(self.model_dir, "word2id.pkl") | |||
model_args["vocab_size"] = len(self.word_vocab) | |||
self.label_vocab = load_pickle(self.model_dir, "label2id.pkl") | |||
model_args["num_classes"] = len(self.label_vocab) | |||
# Construct the model | |||
model = model_class(model_args) | |||
@@ -130,8 +134,11 @@ class FastNLP(object): | |||
# tokenize: list of string ---> 2-D list of string | |||
infer_input = self.tokenize(raw_input, language="zh") | |||
# 2-D list of string ---> 2-D list of tags | |||
results = infer.predict(self.model, infer_input) | |||
# create DataSet: 2-D list of strings ----> DataSet | |||
infer_data = self._create_data_set(infer_input) | |||
# DataSet ---> 2-D list of tags | |||
results = infer.predict(self.model, infer_data) | |||
# 2-D list of tags ---> list of final answers | |||
outputs = self._make_output(results, infer_input) | |||
@@ -154,6 +161,11 @@ class FastNLP(object): | |||
return module | |||
def _create_inference(self, model_dir): | |||
"""Specify which task to perform. | |||
:param model_dir: | |||
:return: | |||
""" | |||
if self.infer_type == "seq_label": | |||
return SeqLabelInfer(model_dir) | |||
elif self.infer_type == "text_class": | |||
@@ -161,6 +173,24 @@ class FastNLP(object): | |||
else: | |||
raise ValueError("fail to create inference instance") | |||
def _create_data_set(self, infer_input): | |||
"""Create a DataSet object given the raw inputs. | |||
:param infer_input: 2-D lists of strings | |||
:return data_set: a DataSet object | |||
""" | |||
if self.infer_type == "seq_label": | |||
data_set = SeqLabelDataSet() | |||
data_set.load_raw(infer_input, {"word_vocab": self.word_vocab}) | |||
return data_set | |||
elif self.infer_type == "text_class": | |||
data_set = TextClassifyDataSet() | |||
data_set.load_raw(infer_input, {"word_vocab": self.word_vocab}) | |||
return data_set | |||
else: | |||
raise RuntimeError("fail to make outputs with infer type {}".format(self.infer_type)) | |||
def _load(self, model_dir, model_name): | |||
# To do | |||
return 0 | |||
@@ -18,7 +18,7 @@ class ConfigSaver(object): | |||
:return: The section. | |||
""" | |||
sect = ConfigSection() | |||
ConfigLoader(self.file_path).load_config(self.file_path, {sect_name: sect}) | |||
ConfigLoader().load_config(self.file_path, {sect_name: sect}) | |||
return sect | |||
def _read_section(self): | |||
@@ -43,8 +43,10 @@ class TestCase1(unittest.TestCase): | |||
# use batch to iterate dataset | |||
data_iterator = Batch(data, 2, SeqSampler(), False) | |||
total_data = 0 | |||
for batch_x, batch_y in data_iterator: | |||
self.assertEqual(len(batch_x), 2) | |||
total_data += batch_x["text"].size(0) | |||
self.assertTrue(batch_x["text"].size(0) == 2 or total_data == len(raw_texts)) | |||
self.assertTrue(isinstance(batch_x, dict)) | |||
self.assertTrue(isinstance(batch_x["text"], torch.LongTensor)) | |||
self.assertTrue(isinstance(batch_y, dict)) | |||
@@ -1,20 +1,42 @@ | |||
import sys, os | |||
import os | |||
import sys | |||
sys.path = [os.path.join(os.path.dirname(__file__), '..')] + sys.path | |||
from fastNLP.core import metrics | |||
# from sklearn import metrics as skmetrics | |||
import unittest | |||
import numpy as np | |||
from numpy import random | |||
from fastNLP.core.metrics import SeqLabelEvaluator | |||
import torch | |||
def generate_fake_label(low, high, size): | |||
return random.randint(low, high, size), random.randint(low, high, size) | |||
class TestEvaluator(unittest.TestCase): | |||
def test_a(self): | |||
evaluator = SeqLabelEvaluator() | |||
pred = [[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]] | |||
truth = [{"truth": torch.LongTensor([1, 2, 3, 3, 3])}, {"truth": torch.LongTensor([1, 2, 3, 3, 4])}] | |||
ans = evaluator(pred, truth) | |||
print(ans) | |||
def test_b(self): | |||
evaluator = SeqLabelEvaluator() | |||
pred = [[1, 2, 3, 4, 5, 0, 0], [1, 2, 3, 4, 5, 0, 0]] | |||
truth = [{"truth": torch.LongTensor([1, 2, 3, 3, 3, 0, 0])}, {"truth": torch.LongTensor([1, 2, 3, 3, 4, 0, 0])}] | |||
ans = evaluator(pred, truth) | |||
print(ans) | |||
class TestMetrics(unittest.TestCase): | |||
delta = 1e-5 | |||
# test for binary, multiclass, multilabel | |||
data_types = [((1000,), 2), ((1000,), 10), ((1000, 10), 2)] | |||
fake_data = [generate_fake_label(0, high, shape) for shape, high in data_types] | |||
def test_accuracy_score(self): | |||
for y_true, y_pred in self.fake_data: | |||
for normalize in [True, False]: | |||
@@ -22,7 +44,7 @@ class TestMetrics(unittest.TestCase): | |||
test = metrics.accuracy_score(y_true, y_pred, normalize=normalize, sample_weight=sample_weight) | |||
# ans = skmetrics.accuracy_score(y_true, y_pred, normalize=normalize, sample_weight=sample_weight) | |||
# self.assertAlmostEqual(test, ans, delta=self.delta) | |||
def test_recall_score(self): | |||
for y_true, y_pred in self.fake_data: | |||
# print(y_true.shape) | |||
@@ -73,5 +95,6 @@ class TestMetrics(unittest.TestCase): | |||
# ans = skmetrics.f1_score(y_true, y_pred) | |||
# self.assertAlmostEqual(ans, test, delta=self.delta) | |||
if __name__ == '__main__': | |||
unittest.main() |
@@ -2,9 +2,12 @@ import os | |||
import unittest | |||
from fastNLP.core.predictor import Predictor | |||
from fastNLP.core.dataset import TextClassifyDataSet, SeqLabelDataSet | |||
from fastNLP.core.preprocess import save_pickle | |||
from fastNLP.models.sequence_modeling import SeqLabeling | |||
from fastNLP.core.vocabulary import Vocabulary | |||
from fastNLP.loader.base_loader import BaseLoader | |||
from fastNLP.models.sequence_modeling import SeqLabeling | |||
from fastNLP.models.cnn_text_classification import CNNText | |||
class TestPredictor(unittest.TestCase): | |||
@@ -28,23 +31,44 @@ class TestPredictor(unittest.TestCase): | |||
vocab = Vocabulary() | |||
vocab.word2idx = {'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4, '!': 5, '@': 6, '#': 7, '$': 8, '?': 9} | |||
class_vocab = Vocabulary() | |||
class_vocab.word2idx = {"0":0, "1":1, "2":2, "3":3, "4":4} | |||
class_vocab.word2idx = {"0": 0, "1": 1, "2": 2, "3": 3, "4": 4} | |||
os.system("mkdir save") | |||
save_pickle(class_vocab, "./save/", "class2id.pkl") | |||
save_pickle(class_vocab, "./save/", "label2id.pkl") | |||
save_pickle(vocab, "./save/", "word2id.pkl") | |||
model = SeqLabeling(model_args) | |||
predictor = Predictor("./save/", task="seq_label") | |||
model = CNNText(model_args) | |||
import fastNLP.core.predictor as pre | |||
predictor = Predictor("./save/", pre.text_classify_post_processor) | |||
results = predictor.predict(network=model, data=infer_data) | |||
# Load infer data | |||
infer_data_set = TextClassifyDataSet(loader=BaseLoader()) | |||
infer_data_set.convert_for_infer(infer_data, vocabs={"word_vocab": vocab.word2idx}) | |||
results = predictor.predict(network=model, data=infer_data_set) | |||
self.assertTrue(isinstance(results, list)) | |||
self.assertGreater(len(results), 0) | |||
self.assertEqual(len(results), len(infer_data)) | |||
for res in results: | |||
self.assertTrue(isinstance(res, str)) | |||
self.assertTrue(res in class_vocab.word2idx) | |||
del model, predictor, infer_data_set | |||
model = SeqLabeling(model_args) | |||
predictor = Predictor("./save/", pre.seq_label_post_processor) | |||
infer_data_set = SeqLabelDataSet(loader=BaseLoader()) | |||
infer_data_set.convert_for_infer(infer_data, vocabs={"word_vocab": vocab.word2idx}) | |||
results = predictor.predict(network=model, data=infer_data_set) | |||
self.assertTrue(isinstance(results, list)) | |||
self.assertEqual(len(results), len(infer_data)) | |||
for i in range(len(infer_data)): | |||
res = results[i] | |||
self.assertTrue(isinstance(res, list)) | |||
self.assertEqual(len(res), 5) | |||
self.assertTrue(isinstance(res[0], str)) | |||
self.assertEqual(len(res), len(infer_data[i])) | |||
os.system("rm -rf save") | |||
print("pickle path deleted") | |||
@@ -1,8 +1,9 @@ | |||
import os | |||
import unittest | |||
from fastNLP.core.dataset import DataSet | |||
from fastNLP.core.field import TextField | |||
from fastNLP.core.dataset import SeqLabelDataSet | |||
from fastNLP.core.metrics import SeqLabelEvaluator | |||
from fastNLP.core.field import TextField, LabelField | |||
from fastNLP.core.instance import Instance | |||
from fastNLP.core.tester import SeqLabelTester | |||
from fastNLP.models.sequence_modeling import SeqLabeling | |||
@@ -21,7 +22,7 @@ class TestTester(unittest.TestCase): | |||
} | |||
valid_args = {"save_output": True, "validate_in_training": True, "save_dev_input": True, | |||
"save_loss": True, "batch_size": 2, "pickle_path": "./save/", | |||
"use_cuda": False, "print_every_step": 1} | |||
"use_cuda": False, "print_every_step": 1, "evaluator": SeqLabelEvaluator()} | |||
train_data = [ | |||
[['a', 'b', 'c', 'd', 'e'], ['a', '@', 'c', 'd', 'e']], | |||
@@ -34,16 +35,17 @@ class TestTester(unittest.TestCase): | |||
vocab = {'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4, '!': 5, '@': 6, '#': 7, '$': 8, '?': 9} | |||
label_vocab = {'a': 0, '@': 1, 'c': 2, 'd': 3, 'e': 4} | |||
data_set = DataSet() | |||
data_set = SeqLabelDataSet() | |||
for example in train_data: | |||
text, label = example[0], example[1] | |||
x = TextField(text, False) | |||
x_len = LabelField(len(text), is_target=False) | |||
y = TextField(label, is_target=True) | |||
ins = Instance(word_seq=x, label_seq=y) | |||
ins = Instance(word_seq=x, truth=y, word_seq_origin_len=x_len) | |||
data_set.append(ins) | |||
data_set.index_field("word_seq", vocab) | |||
data_set.index_field("label_seq", label_vocab) | |||
data_set.index_field("truth", label_vocab) | |||
model = SeqLabeling(model_args) | |||
@@ -1,8 +1,9 @@ | |||
import os | |||
import unittest | |||
from fastNLP.core.dataset import DataSet | |||
from fastNLP.core.field import TextField | |||
from fastNLP.core.dataset import SeqLabelDataSet | |||
from fastNLP.core.metrics import SeqLabelEvaluator | |||
from fastNLP.core.field import TextField, LabelField | |||
from fastNLP.core.instance import Instance | |||
from fastNLP.core.loss import Loss | |||
from fastNLP.core.optimizer import Optimizer | |||
@@ -12,14 +13,15 @@ from fastNLP.models.sequence_modeling import SeqLabeling | |||
class TestTrainer(unittest.TestCase): | |||
def test_case_1(self): | |||
args = {"epochs": 3, "batch_size": 2, "validate": True, "use_cuda": False, "pickle_path": "./save/", | |||
args = {"epochs": 3, "batch_size": 2, "validate": False, "use_cuda": False, "pickle_path": "./save/", | |||
"save_best_dev": True, "model_name": "default_model_name.pkl", | |||
"loss": Loss(None), | |||
"loss": Loss("cross_entropy"), | |||
"optimizer": Optimizer("Adam", lr=0.001, weight_decay=0), | |||
"vocab_size": 10, | |||
"word_emb_dim": 100, | |||
"rnn_hidden_units": 100, | |||
"num_classes": 5 | |||
"num_classes": 5, | |||
"evaluator": SeqLabelEvaluator() | |||
} | |||
trainer = SeqLabelTrainer(**args) | |||
@@ -34,16 +36,17 @@ class TestTrainer(unittest.TestCase): | |||
vocab = {'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4, '!': 5, '@': 6, '#': 7, '$': 8, '?': 9} | |||
label_vocab = {'a': 0, '@': 1, 'c': 2, 'd': 3, 'e': 4} | |||
data_set = DataSet() | |||
data_set = SeqLabelDataSet() | |||
for example in train_data: | |||
text, label = example[0], example[1] | |||
x = TextField(text, False) | |||
y = TextField(label, is_target=True) | |||
ins = Instance(word_seq=x, label_seq=y) | |||
x_len = LabelField(len(text), is_target=False) | |||
y = TextField(label, is_target=False) | |||
ins = Instance(word_seq=x, truth=y, word_seq_origin_len=x_len) | |||
data_set.append(ins) | |||
data_set.index_field("word_seq", vocab) | |||
data_set.index_field("label_seq", label_vocab) | |||
data_set.index_field("truth", label_vocab) | |||
model = SeqLabeling(args) | |||
@@ -9,10 +9,54 @@ input = [1,2,3] | |||
text = "this is text" | |||
doubles = 0.5 | |||
doubles = 0.8 | |||
tt = 0.5 | |||
test = 105 | |||
str = "this is a str" | |||
double = 0.5 | |||
[t] | |||
x = "this is an test section" | |||
[test-case-2] | |||
double = 0.5 | |||
doubles = 0.8 | |||
tt = 0.5 | |||
test = 105 | |||
str = "this is a str" | |||
[another-test] | |||
doubles = 0.8 | |||
tt = 0.5 | |||
test = 105 | |||
str = "this is a str" | |||
double = 0.5 | |||
[one-another-test] | |||
doubles = 0.8 | |||
tt = 0.5 | |||
test = 105 | |||
str = "this is a str" | |||
double = 0.5 | |||
@@ -31,7 +31,7 @@ class TestConfigLoader(unittest.TestCase): | |||
return dict | |||
test_arg = ConfigSection() | |||
ConfigLoader("config").load_config(os.path.join("./test/loader", "config"), {"test": test_arg}) | |||
ConfigLoader().load_config(os.path.join("./test/loader", "config"), {"test": test_arg}) | |||
section = read_section_from_config(os.path.join("./test/loader", "config"), "test") | |||
@@ -1,3 +1,4 @@ | |||
import os | |||
import unittest | |||
from fastNLP.loader.dataset_loader import POSDataSetLoader, LMDataSetLoader, TokenizeDataSetLoader, \ | |||
@@ -14,28 +15,28 @@ class TestDatasetLoader(unittest.TestCase): | |||
def test_case_TokenizeDatasetLoader(self): | |||
loader = TokenizeDataSetLoader() | |||
data = loader.load("test/data_for_tests/", max_seq_len=32) | |||
data = loader.load("./test/data_for_tests/cws_pku_utf_8", max_seq_len=32) | |||
print("pass TokenizeDataSetLoader test!") | |||
def test_case_POSDatasetLoader(self): | |||
loader = POSDataSetLoader() | |||
data = loader.load() | |||
datas = loader.load_lines() | |||
data = loader.load("./test/data_for_tests/people.txt") | |||
datas = loader.load_lines("./test/data_for_tests/people.txt") | |||
print("pass POSDataSetLoader test!") | |||
def test_case_LMDatasetLoader(self): | |||
loader = LMDataSetLoader() | |||
data = loader.load() | |||
datas = loader.load_lines() | |||
data = loader.load("./test/data_for_tests/charlm.txt") | |||
datas = loader.load_lines("./test/data_for_tests/charlm.txt") | |||
print("pass TokenizeDataSetLoader test!") | |||
def test_PeopleDailyCorpusLoader(self): | |||
loader = PeopleDailyCorpusLoader() | |||
_, _ = loader.load() | |||
_, _ = loader.load("./test/data_for_tests/people_daily_raw.txt") | |||
def test_ConllLoader(self): | |||
loader = ConllLoader("./test/data_for_tests/conll_example.txt") | |||
_ = loader.load() | |||
loader = ConllLoader() | |||
_ = loader.load("./test/data_for_tests/conll_example.txt") | |||
if __name__ == '__main__': | |||
@@ -13,10 +13,10 @@ from fastNLP.models.sequence_modeling import SeqLabeling | |||
from fastNLP.saver.model_saver import ModelSaver | |||
data_name = "pku_training.utf8" | |||
cws_data_path = "test/data_for_tests/cws_pku_utf_8" | |||
cws_data_path = "./test/data_for_tests/cws_pku_utf_8" | |||
pickle_path = "./save/" | |||
data_infer_path = "test/data_for_tests/people_infer.txt" | |||
config_path = "test/data_for_tests/config" | |||
data_infer_path = "./test/data_for_tests/people_infer.txt" | |||
config_path = "./test/data_for_tests/config" | |||
def infer(): | |||
# Load infer configuration, the same as test | |||
@@ -21,7 +21,7 @@ class TestConfigSaver(unittest.TestCase): | |||
standard_section = ConfigSection() | |||
t_section = ConfigSection() | |||
ConfigLoader(config_file_path).load_config(config_file_path, {"test": standard_section, "t": t_section}) | |||
ConfigLoader().load_config(config_file_path, {"test": standard_section, "t": t_section}) | |||
config_saver = ConfigSaver(config_file_path) | |||
@@ -48,11 +48,11 @@ class TestConfigSaver(unittest.TestCase): | |||
one_another_test_section = ConfigSection() | |||
a_test_case_2_section = ConfigSection() | |||
ConfigLoader(config_file_path).load_config(config_file_path, {"test": test_section, | |||
"another-test": another_test_section, | |||
"t": at_section, | |||
"one-another-test": one_another_test_section, | |||
"test-case-2": a_test_case_2_section}) | |||
ConfigLoader().load_config(config_file_path, {"test": test_section, | |||
"another-test": another_test_section, | |||
"t": at_section, | |||
"one-another-test": one_another_test_section, | |||
"test-case-2": a_test_case_2_section}) | |||
assert test_section == standard_section | |||
assert at_section == t_section | |||
@@ -54,7 +54,7 @@ def mock_cws(): | |||
class2id = Vocabulary(need_default=False) | |||
label_list = ['B', 'M', 'E', 'S'] | |||
class2id.update(label_list) | |||
save_pickle(class2id, "./mock/", "class2id.pkl") | |||
save_pickle(class2id, "./mock/", "label2id.pkl") | |||
model_args = {"vocab_size": len(word2id), "word_emb_dim": 50, "rnn_hidden_units": 50, "num_classes": len(class2id)} | |||
config_file = """ | |||
@@ -115,7 +115,7 @@ def mock_pos_tag(): | |||
idx2label = Vocabulary(need_default=False) | |||
label_list = ['B-n', 'M-v', 'E-nv', 'S-adj', 'B-v', 'M-vn', 'S-adv'] | |||
idx2label.update(label_list) | |||
save_pickle(idx2label, "./mock/", "class2id.pkl") | |||
save_pickle(idx2label, "./mock/", "label2id.pkl") | |||
model_args = {"vocab_size": len(vocab), "word_emb_dim": 50, "rnn_hidden_units": 50, "num_classes": len(idx2label)} | |||
config_file = """ | |||
@@ -163,7 +163,7 @@ def mock_text_classify(): | |||
idx2label = Vocabulary(need_default=False) | |||
label_list = ['class_A', 'class_B', 'class_C', 'class_D', 'class_E', 'class_F'] | |||
idx2label.update(label_list) | |||
save_pickle(idx2label, "./mock/", "class2id.pkl") | |||
save_pickle(idx2label, "./mock/", "label2id.pkl") | |||
model_args = {"vocab_size": len(vocab), "word_emb_dim": 50, "rnn_hidden_units": 50, "num_classes": len(idx2label)} | |||
config_file = """ | |||