| @@ -124,11 +124,7 @@ class Evaluator: | |||
| self.dataloaders = {} | |||
| for name, dl in dataloaders.items(): # 替换为正确的 sampler | |||
| dl = self.driver.replace_sampler( | |||
| dataloader=dl, | |||
| dist_sampler=self._dist_sampler, | |||
| reproducible=False | |||
| ) | |||
| dl = self.driver.set_dist_repro_dataloader(dataloader=dl, dist=self._dist_sampler, reproducible=False) | |||
| self.dataloaders[name] = dl | |||
| self.progress_bar = kwargs.get('progress_bar', 'auto') | |||
| @@ -250,11 +250,8 @@ class Trainer(TrainerEventTrigger): | |||
| self.dataloader = self.train_dataloader | |||
| self.driver.set_deterministic_dataloader(self.dataloader) | |||
| self.dataloader = self.driver.replace_sampler( | |||
| dataloader=self.train_dataloader, | |||
| dist_sampler=_dist_sampler, | |||
| reproducible=self.callback_manager.has_trainer_chechpoint | |||
| ) | |||
| self.dataloader = self.driver.set_dist_repro_dataloader(dataloader=self.train_dataloader, dist=_dist_sampler, | |||
| reproducible=self.callback_manager.has_trainer_chechpoint) | |||
| self.set_grad_to_none = kwargs.get("set_grad_to_none", True) | |||
| self.on_after_trainer_initialized(self.driver) | |||
| @@ -578,22 +575,6 @@ class Trainer(TrainerEventTrigger): | |||
| else: | |||
| states["val_filter_state"] = None | |||
| # 4. sampler 的状态,因为我们支持 resume training,即精确恢复到具体的一个 batch; | |||
| # 首先 pytorch 的 DataLoader 一定会有 sampler;另一方面,我们在断点重训的时候一定会在 `replace_sampler` 中将 dataloader 的 | |||
| # sampler 替换为 `ReproducibleIterator`;否则就是在单卡情况下将 batch_sampler 替换为 `ReproducibleBatchSampler`; | |||
| dataloader_args = self.driver.get_dataloader_args(self.dataloader) | |||
| if isinstance(dataloader_args.batch_sampler, ReproducibleBatchSampler): | |||
| sampler = dataloader_args.batch_sampler | |||
| elif dataloader_args.sampler: | |||
| sampler = dataloader_args.sampler | |||
| else: | |||
| raise RuntimeError("This condition is not supposed to appear. Please report a bug to us.") | |||
| if hasattr(sampler, 'state_dict') and callable(sampler.state_dict): | |||
| states['sampler_states'] = sampler.state_dict() | |||
| else: | |||
| raise RuntimeError( | |||
| 'The sampler has no `state_dict()` method, it will fail to recover to the specific batch.') | |||
| if isinstance(folder, str): | |||
| folder = Path(folder) | |||
| @@ -601,9 +582,9 @@ class Trainer(TrainerEventTrigger): | |||
| if not callable(model_save_fn): | |||
| raise ValueError("Parameter `model_save_fn` should be `Callable` type when it is not None.") | |||
| rank_zero_call(model_save_fn)(folder) | |||
| self.driver.save(folder=folder, states=states, should_save_model=False, **kwargs) | |||
| self.driver.save(folder=folder, dataloader=self.dataloader, states=states, should_save_model=False, **kwargs) | |||
| else: | |||
| self.driver.save(folder=folder, states=states, | |||
| self.driver.save(folder=folder, dataloader=self.dataloader, states=states, | |||
| only_state_dict=only_state_dict, should_save_model=True, **kwargs) | |||
| self.driver.barrier() | |||
| @@ -616,9 +597,6 @@ class Trainer(TrainerEventTrigger): | |||
| 保存;在这种情况下,dataloader 的 sampler 就不一定会被替换成我们的 ReproducibleIterator; | |||
| 注意我们目前不支持单卡到多卡的断点重训; | |||
| TODO:注意我们目前不支持 RandomSampler、BucketedSampler 或者 SortedSampler 之间的断点重训; | |||
| 因此如果用户自己需要使用 BucketedSampler,那么其需要自己在 Trainer 之前初始化 BucketedSampler,然后替换原始 Dataloader 中的 | |||
| sampler,不管其是第一次断点重训,还是之后的加载的重新训练; | |||
| :param folder: 保存断点重训 states 的文件地址; | |||
| :param resume_training: 是否从上次的 batch 开始训练,或者只从最近的 epoch 开始训练;注意如果 resume_training=True,那么我们 | |||
| @@ -627,33 +605,23 @@ class Trainer(TrainerEventTrigger): | |||
| self.driver.barrier() | |||
| if isinstance(folder, str): | |||
| folder = Path(folder) | |||
| dataloader = self.dataloader | |||
| if not resume_training: | |||
| dataloader = None | |||
| if model_load_fn is not None: | |||
| if not callable(model_load_fn): | |||
| raise ValueError("Parameter `model_save_fn` should be `Callable` type when it is not None.") | |||
| raise ValueError("Parameter `model_save_fn` should be `Callable`.") | |||
| rank_zero_call(model_load_fn)(folder) | |||
| states = self.driver.load(folder=folder, should_load_model=False, **kwargs) | |||
| states = self.driver.load(folder=folder, dataloader=dataloader, should_load_model=False, **kwargs) | |||
| else: | |||
| states = self.driver.load(folder=folder, only_state_dict=only_state_dict, should_load_model=True, **kwargs) | |||
| states = self.driver.load(folder=folder, dataloader=dataloader, only_state_dict=only_state_dict, should_load_model=True, **kwargs) | |||
| if not resume_training: | |||
| return | |||
| # 1. 恢复 sampler 的状态; | |||
| dataloader_args = self.driver.get_dataloader_args(self.dataloader) | |||
| sampler = dataloader_args.sampler | |||
| if not (hasattr(sampler, 'load_state_dict') and callable(sampler.load_state_dict)): | |||
| # 说明这里需要使用 ReproduceSampler 来弄一下了 | |||
| if self.driver.is_distributed(): | |||
| raise RuntimeError("It is not allowed to use single device checkpoint retraining before but ddp now.") | |||
| sampler = ReproducibleBatchSampler( | |||
| batch_sampler=sampler, | |||
| batch_size=dataloader_args.batch_size, | |||
| drop_last=dataloader_args.drop_last | |||
| ) | |||
| sampler.load_state_dict(states['sampler_states']) | |||
| self.driver.replace_sampler(self.dataloader, sampler) | |||
| self.dataloader = states.pop('dataloader') | |||
| # 2. validate filter state; | |||
| if self.evaluator is not None: | |||
| @@ -668,22 +636,16 @@ class Trainer(TrainerEventTrigger): | |||
| # 4. 修改 trainer_state.batch_idx_in_epoch | |||
| # sampler 是类似 RandomSampler 的sampler,不是 batch_sampler; | |||
| if not isinstance(sampler, ReproducibleBatchSampler): | |||
| if dataloader_args.drop_last: | |||
| self.trainer_state.batch_idx_in_epoch = len(sampler) // dataloader_args.batch_size - sampler.num_left_samples // dataloader_args.batch_size | |||
| else: | |||
| self.trainer_state.batch_idx_in_epoch = (len(sampler) + dataloader_args.batch_size - 1) // dataloader_args.batch_size - \ | |||
| (sampler.num_left_samples + dataloader_args.batch_size - 1) // dataloader_args.batch_size | |||
| # sampler 是 batch_sampler; | |||
| else: | |||
| self.trainer_state.batch_idx_in_epoch = sampler.batch_idx_in_epoch | |||
| # 这里的原则就是应当使得 '还会产生的batch数量' + 'batch_idx_in_epoch' = '原来不断点训练的batch的总数'。其中由于 | |||
| # '还会产生的batch数量' 是由还剩多少 sample 决定的,因此只能通过调整 'batch_idx_in_epoch' 使得等式成立 | |||
| self.trainer_state.batch_idx_in_epoch = states.pop('batch_idx_in_epoch') | |||
| # 5. 恢复所有 callback 的状态; | |||
| self.on_load_checkpoint(states["callback_states"]) | |||
| self.driver.barrier() | |||
| """ 这四个函数是用来方便用户定制自己的 batch_step_fn(用于替换 train_batch_loop 当中的 step 函数) 的 """ | |||
| """ 这四个函数是用来方便用户定制自己的 batch_step_fn(用于替换 train_batch_loop 当中的 batch_step_fn 函数) 的 """ | |||
| def train_step(self, batch): | |||
| with self.driver.auto_cast(): | |||
| @@ -2,7 +2,7 @@ import os | |||
| import signal | |||
| import sys | |||
| from typing import Any, Sequence, List, Optional, Callable, Dict, Union | |||
| from abc import ABC | |||
| from abc import ABC, abstractmethod | |||
| from datetime import datetime | |||
| from pathlib import Path | |||
| from io import BytesIO | |||
| @@ -14,7 +14,6 @@ __all__ = [ | |||
| from fastNLP.core.utils import nullcontext | |||
| # todo 航总 check 一下哪一些方法需要 @abstractmethod; | |||
| class Driver(ABC): | |||
| r""" | |||
| 用来初始化 `Driver` 的基类,所有定制的 `driver` 都需要继承此类; | |||
| @@ -32,29 +31,33 @@ class Driver(ABC): | |||
| # self._consensus_file: Optional[Union[str, Path]] = None | |||
| self._pids: Optional[List[int]] = None | |||
| @abstractmethod | |||
| def setup(self): | |||
| r""" | |||
| 该函数用来初始化训练环境,例如将模型迁移到对应的设备上等; | |||
| 多卡的 driver 的该函数要更为复杂一些,例如其可能需要开启多进程之间的通信环境,以及设置一些环境变量和其余所需要的变量值; | |||
| """ | |||
| def replace_sampler(self, dataloader, dist_sampler: Optional[str], reproducible: bool = False): | |||
| def set_dist_repro_dataloader(self, dataloader, dist=None, reproducible: bool = False): | |||
| r""" | |||
| 因为一些特殊的情况需要替换 dataloader 的 sampler,而每一个 driver 中的该函数会提供该功能;例如在多卡训练的中,我们 | |||
| 需要将 sampler 替换为 distributed sampler;以及如果用户在 Trainer 中加入了断点重训的 callback,那么我们就需要将 sampler 替换 | |||
| 为 reproducible sampler; | |||
| :param dataloader: 由 trainer 中传入的原始的 dataloader; | |||
| :param dist_sampler: 应当为一个字符串,其值应当为以下之一:[None, "dist", "unrepeatdist"];用于指定使用怎样的 sampler; | |||
| 目前该参数被定制为分布式训练服务,其中 trainer 中 kwargs 的参数 `use_dist_sampler` 为 True 时,该值为 "dist",否则为 None; | |||
| evaluator 中的 kwargs 的参数 `use_dist_sampler` 为 True 时,该值为 "unrepeatdist",否则为 None; | |||
| :param reproducible: 用于在 `Trainer` 中指定是否替换为断点重训的 sampler(多卡) 或者 batch_sampler(单卡);如果是单卡的 Driver, | |||
| 并且该参数为 True,表示当前正在断点重训,那么我们就会使用我们的 `ReproducibleBatchSampler` 来替换 dataloader 原本的 batch_sampler; | |||
| 如果是多卡的 Driver,那么我们就会用 `RandomSampler` 替换 dataloader 原本的 sampler; | |||
| :return: 应当返回一个被替换 sampler 后的新的 dataloader 对象 (注意此处一定需要返回一个新的 dataloader 对象) ; | |||
| """ | |||
| raise NotImplementedError("Each specific driver should implemented its own `replace_sampler` function.") | |||
| 根据输入的 dataloader 得到一个 支持分布式 (distributed) 与 可复现的 (reproducible) 的 dataloader。 | |||
| :param dataloader: 根据 dataloader 设置其对应的分布式版本以及可复现版本 | |||
| :param dist: 应当为一个字符串,其值应当为以下之一:[None, "dist", "unrepeatdist"];为 None 时,表示不需要考虑当前 dataloader | |||
| 切换为分布式状态;为 'dist' 时,表示该 dataloader 应该保证每个 gpu 上返回的 batch 的数量是一样多的,允许出现少量 sample ,在 | |||
| 不同 gpu 上出现重复;为 'unrepeatdist' 时,表示该 dataloader 应该保证所有 gpu 上迭代出来的数据合并起来应该刚好等于原始的 | |||
| 数据,允许不同 gpu 上 batch 的数量不一致。其中 trainer 中 kwargs 的参数 `use_dist_sampler` 为 True 时,该值为 "dist"; | |||
| 否则为 None ,evaluator 中的 kwargs 的参数 `use_dist_sampler` 为 True 时,该值为 "unrepeatdist",否则为 None; | |||
| :param reproducible: 如果为 False ,不要做任何考虑;如果为 True ,需要保证返回的 dataloader 可以保存当前的迭代状态,使得 | |||
| 可以可以加载。 | |||
| :return: 应当返回一个被替换 sampler 后的新的 dataloader 对象 (注意此处一定需要返回一个新的 dataloader 对象) ;此外, | |||
| 如果传入的 dataloader 中是 ReproducibleIterator 或者 ReproducibleBatchSampler 需要重新初始化一个放入返回的 | |||
| dataloader 中。如果 dist 为空,且 reproducible 为 False,可直接返回原对象。 | |||
| """ | |||
| if dist is None and reproducible is False: | |||
| return dataloader | |||
| raise NotImplementedError(f"Driver:{self.__class__.__name__} does not support `set_dist_repro_dataloader` " | |||
| f"function.") | |||
| def set_deterministic_dataloader(self, dataloader): | |||
| r""" | |||
| @@ -68,7 +71,7 @@ class Driver(ABC): | |||
| :param cur_epoch_idx: 当前是第几个 epoch; | |||
| """ | |||
| @abstractmethod | |||
| def train_step(self, batch): | |||
| """ | |||
| 通过调用模型自带的 `train_step` 或者 `forward` 方法来实现训练的前向过程; | |||
| @@ -103,7 +106,7 @@ class Driver(ABC): | |||
| 因此如果用户的 evaluator mode 是 validate,但是传入的 model 却没有实现 validate_step 函数,而是实现了 test_step 函数,那么 | |||
| 我们应当提醒用户这一行为; | |||
| """ | |||
| raise NotImplementedError("Each specific driver should implemented its own `predict_step` function.") | |||
| raise NotImplementedError("Each specific driver should implemented its own `check_evaluator_mode` function.") | |||
| @property | |||
| def model(self): | |||
| @@ -234,6 +237,7 @@ class Driver(ABC): | |||
| """ | |||
| self.optimizers = optimizers | |||
| @abstractmethod | |||
| def backward(self, loss): | |||
| """ | |||
| 实现深度学习中的反向传播过程; | |||
| @@ -242,12 +246,14 @@ class Driver(ABC): | |||
| """ | |||
| raise NotImplementedError("Each specific driver should implemented its own `backward` function.") | |||
| @abstractmethod | |||
| def step(self): | |||
| r""" | |||
| 实现深度学习中的参数的优化更新过程,应当直接通过优化器 optimizers 来更新参数; | |||
| """ | |||
| raise NotImplementedError("Each specific driver should implemented its own `step` function.") | |||
| @abstractmethod | |||
| def zero_grad(self, set_to_none: bool = False): | |||
| r""" | |||
| 实现深度学习中的梯度的置零操作,应当直接通过优化器 optimizers 来将梯度置零; | |||
| @@ -286,6 +292,7 @@ class Driver(ABC): | |||
| def auto_cast(self, auto_cast): | |||
| self._auto_cast = auto_cast | |||
| @abstractmethod | |||
| def save_model(self, filepath: Union[str, Path, BytesIO], only_state_dict: bool = True, **kwargs): | |||
| r""" | |||
| 保存模型的函数;注意函数 `save` 是用来进行断点重训的函数; | |||
| @@ -296,6 +303,7 @@ class Driver(ABC): | |||
| """ | |||
| raise NotImplementedError("Each specific driver should implemented its own `save_model` function.") | |||
| @abstractmethod | |||
| def load_model(self, filepath: Union[str, Path, BytesIO], only_state_dict: bool = False, **kwargs): | |||
| r""" | |||
| 加载模型的函数;将 filepath 中的模型加载并赋值给当前 model 。 | |||
| @@ -307,7 +315,8 @@ class Driver(ABC): | |||
| """ | |||
| raise NotImplementedError("Each specific driver should implemented its own `load_model` function.") | |||
| def save(self, folder, states: Dict, only_state_dict: bool = True, should_save_model: bool = True, **kwargs): | |||
| @abstractmethod | |||
| def save(self, folder, states: Dict, dataloader, only_state_dict: bool = True, should_save_model: bool = True, **kwargs): | |||
| r""" | |||
| 断点重训的保存函数,该函数会负责保存模型和 optimizers, fp16 的 state_dict;以及模型的保存(若 should_save_model 为 True) | |||
| @@ -317,12 +326,14 @@ class Driver(ABC): | |||
| :param states: 由 trainer 传入的一个字典,其中已经包含了为了实现断点重训所需要保存的其它对象的状态,Driver 应该只需要保存 | |||
| 该对象即可, Driver 应该不需要理解该对象,同时在 driver.load() 的时候,需要将 states 返回回去,load() 返回的值与这里的 | |||
| 传入的值保持一致。 | |||
| :param dataloader: 正在使用的 dataloader,需要保存里面的状态使得之后可以从当前迭代的位置恢复。 | |||
| :param only_state_dict: 是否只保存模型的参数,当 should_save_model 为 False ,该参数无效。 | |||
| :param should_save_model: 是否应该保存模型,如果为False,Driver 将不负责 model 的保存。 | |||
| """ | |||
| raise NotImplementedError("Each specific driver should implemented its own `save` function.") | |||
| def load(self, folder: Union[str, Path], only_state_dict: bool =True, should_load_model: bool = True, **kwargs) -> Dict: | |||
| @abstractmethod | |||
| def load(self, folder: Union[str, Path], dataloader, only_state_dict: bool =True, should_load_model: bool = True, **kwargs) -> Dict: | |||
| r""" | |||
| 断点重训的加载函数,注意该函数会负责读取数据,并且恢复 optimizers , fp16 的 state_dict 和 模型(根据 should_load_model )和; | |||
| 其它在 Driver.save() 函数中执行的保存操作,然后将一个 state 字典返回给 trainer ( 内容为Driver.save() 接受到的 states )。 | |||
| @@ -331,11 +342,22 @@ class Driver(ABC): | |||
| :param folder: 读取该 folder 下的 FASTNLP_CHECKPOINT_FILENAME 文件与 FASTNLP_MODEL_FILENAME | |||
| (如果 should_load_model 为True)。 | |||
| :param dataloader: 当前给定 dataloader,需要根据 save 的 dataloader 状态合理设置。若该值为 None ,是不需要返回 'dataloader' | |||
| 以及 'batch_idx_in_epoch' 这两个值。 | |||
| :param only_state_dict: 读取的,当 should_save_model 为 False ,该参数无效。如果为 True ,说明保存的内容为权重;如果为 | |||
| False 说明保存的是模型,但也是通过当前 Driver 的模型去加载保存的模型的权重,而不是使用保存的模型替换当前模型。 | |||
| :param should_load_model: 是否应该加载模型,如果为False,Driver 将不负责加载模型。若该参数为 True ,但在保存的状态中没有 | |||
| 找到对应的模型状态,则报错。 | |||
| :return: 需要返回 save 函数输入的 states 内容; | |||
| :return: 需要返回 save 函数输入的 states 内容 | |||
| 'dataloader',返回的是根据传入的 dataloader 与 保存的状态一起设置为合理的状态,可以返回的对象与传入的dataloader是同一个。 | |||
| 在保存与当前传入 data sample 数目不一致时报错。 | |||
| 'batch_idx_in_epoch': int 类型的数据,表明当前 epoch 进行到了进行到了第几个 batch 了。 请注意,该值不能是只能通过保存的 | |||
| 数据中读取的,因为前后两次运行 batch_size 可能由变化。该数字的原则应该符合以下等式 | |||
| '返回 dataloader 还会产生的batch数量' + 'batch_idx_in_epoch' = '原来不断点训练的batch的总数' 。 | |||
| 由于 '返回 dataloader 还会产生的batch数量' 这个数量在 batch_size 与 drop_last 参数给定的情况下,无法改变,因此 | |||
| 只能通过调整 batch_idx_in_epoch 这个值来使等式成立。一个简单的计算原则如下 | |||
| 当drop_last为True,等同于 floor(sample_in_this_rank/batch_size) - floor(num_left_samples/batch_size); | |||
| 当drop_last为False,等同于 ceil(sample_in_this_rank/batch_size) - ceil(num_left_samples/batch_size)。 | |||
| """ | |||
| raise NotImplementedError("Each specific driver should implemented its own `load` function.") | |||
| @@ -352,6 +374,7 @@ class Driver(ABC): | |||
| """ | |||
| raise NotImplementedError("Each specific driver should implemented its own `tensor_to_numeric` function.") | |||
| @abstractmethod | |||
| def set_model_mode(self, mode: str): | |||
| r""" | |||
| 设置模型为 `train` / `eval` 的模式;目的是为切换模型训练和推理(会关闭dropout等)模式; | |||
| @@ -378,6 +401,7 @@ class Driver(ABC): | |||
| 中,我们需要先将模型移到 cpu 后,又再移到 gpu 上,因此不适宜在该函数内部调用 `unwrap_model`,而是将 model 作为该函数的参数; | |||
| """ | |||
| @abstractmethod | |||
| def move_data_to_device(self, batch): | |||
| r""" | |||
| 将数据迁移到指定的机器上;batch 可能是 list 也可能 dict ,或其嵌套结构。 | |||
| @@ -399,17 +423,6 @@ class Driver(ABC): | |||
| 仅在多分布式训练场景中有使用。 | |||
| """ | |||
| @staticmethod | |||
| def get_dataloader_args(dataloader): | |||
| """ | |||
| 用于从 dataloader 中抽取一些属性的值,返回的dataclass中必须包含以下的key: | |||
| sampler, batch_sampler, batch_size, drop_last; | |||
| :param dataloader: | |||
| :return: 返回一个 dataclass,其实例属性应当包括以上的各个属性,并且其名字也应当与这些属性相同,从而方便 trainer 或者其它对象调用; | |||
| """ | |||
| raise NotImplementedError("Each specific driver should implemented its own `get_dataloader_args` function.") | |||
| def is_distributed(self) -> bool: | |||
| """ | |||
| 当前的 driver 实例是否是分布式的; | |||
| @@ -70,7 +70,8 @@ class JittorMPIDriver(JittorDriver): | |||
| def test_step(self, batch): | |||
| return self._test_step(batch) | |||
| def replace_sampler(self, dataloader, dist_sampler: Optional[Union[str, ReproducibleIterator]] = "dist", reproducible: bool = False): | |||
| def set_dist_repro_dataloader(self, dataloader, dist: Optional[Union[str, ReproducibleIterator]], | |||
| reproducible: bool = False, sampler_or_batch_sampler=None): | |||
| pass | |||
| def backward(self, loss): | |||
| @@ -99,14 +99,15 @@ class JittorSingleDriver(JittorDriver): | |||
| def is_distributed(self): | |||
| return False | |||
| def replace_sampler(self, dataloader, dist_sampler: Union[str, ReproducibleBatchSampler, ReproducibleIterator], reproducible: bool = False): | |||
| def set_dist_repro_dataloader(self, dataloader, dist: Union[str, ReproducibleBatchSampler, ReproducibleIterator], | |||
| reproducible: bool = False, sampler_or_batch_sampler=None): | |||
| # reproducible 的相关功能暂时没有实现 | |||
| if isinstance(dist_sampler, ReproducibleBatchSampler): | |||
| if isinstance(dist, ReproducibleBatchSampler): | |||
| raise NotImplementedError | |||
| dataloader.batch_sampler = dist_sample | |||
| if isinstance(dist_sampler, ReproducibleIterator): | |||
| if isinstance(dist, ReproducibleIterator): | |||
| raise NotImplementedError | |||
| dataloader.batch_sampler.sampler = dist_sampler | |||
| dataloader.batch_sampler.sampler = dist | |||
| if reproducible: | |||
| raise NotImplementedError | |||
| @@ -316,13 +316,14 @@ class PaddleFleetDriver(PaddleDriver): | |||
| def test_step(self, batch): | |||
| return self._test_step(batch) | |||
| def replace_sampler(self, dataloader, dist_sampler: Optional[Union[str, ReproducibleIterator]] = "dist", reproducible: bool = False): | |||
| def set_dist_repro_dataloader(self, dataloader, dist: Optional[Union[str, ReproducibleIterator]], | |||
| reproducible: bool = False, sampler_or_batch_sampler=None): | |||
| # 暂时不支持iterableDataset | |||
| assert dataloader.dataset_kind != _DatasetKind.ITER, \ | |||
| "FastNLP does not support `IteratorDataset` now." | |||
| if isinstance(dist_sampler, ReproducibleIterator): | |||
| dataloader.batch_sampler.sampler = dist_sampler | |||
| if isinstance(dist, ReproducibleIterator): | |||
| dataloader.batch_sampler.sampler = dist | |||
| return dataloader | |||
| # paddle 的 BatchSampler 和 DataLoader 没有 shuffle 成员,只能根据 sampler 判断 | |||
| @@ -334,14 +335,14 @@ class PaddleFleetDriver(PaddleDriver): | |||
| shuffle = dataloader.batch_sampler.shuffle | |||
| # trainer, evaluator | |||
| if dist_sampler is None: | |||
| if dist is None: | |||
| if reproducible: | |||
| raise RuntimeError("It is not allowed to use checkpoint retraining when you initialize fleet out of our " | |||
| "control.") | |||
| else: | |||
| return dataloader | |||
| # trainer | |||
| elif dist_sampler == "dist": | |||
| elif dist == "dist": | |||
| # 如果用户的 trainer.use_dist_sampler 为 True,那么此时其是否进行断点重训,不影响这里的行为; | |||
| if isinstance(dataloader.batch_sampler.sampler, ReproducibleIterator): | |||
| dataloader.batch_sampler.sampler.set_distributed( | |||
| @@ -364,7 +365,7 @@ class PaddleFleetDriver(PaddleDriver): | |||
| dataloader.batch_sampler.sampler = sampler | |||
| return dataloader | |||
| # evaluator | |||
| elif dist_sampler == "unrepeatdist": | |||
| elif dist == "unrepeatdist": | |||
| sampler = UnrepeatedDistributedSampler( | |||
| dataset=dataloader.dataset, | |||
| shuffle=shuffle, | |||
| @@ -133,15 +133,16 @@ class PaddleSingleDriver(PaddleDriver): | |||
| """ | |||
| return paddle_move_data_to_device(batch, "gpu:0") | |||
| def replace_sampler(self, dataloader, dist_sampler: Union[str, ReproducibleBatchSampler, ReproducibleIterator], reproducible: bool = False): | |||
| def set_dist_repro_dataloader(self, dataloader, dist: Union[str, ReproducibleBatchSampler, ReproducibleIterator], | |||
| reproducible: bool = False, sampler_or_batch_sampler=None): | |||
| # 暂时不支持IteratorDataset | |||
| assert dataloader.dataset_kind != _DatasetKind.ITER, \ | |||
| "FastNLP does not support `IteratorDataset` now." | |||
| if isinstance(dist_sampler, ReproducibleBatchSampler): | |||
| dataloader.batch_sampler = dist_sampler | |||
| if isinstance(dist, ReproducibleBatchSampler): | |||
| dataloader.batch_sampler = dist | |||
| return dataloader | |||
| if isinstance(dist_sampler, ReproducibleIterator): | |||
| dataloader.batch_sampler.sampler = dist_sampler | |||
| if isinstance(dist, ReproducibleIterator): | |||
| dataloader.batch_sampler.sampler = dist | |||
| return dataloader | |||
| if reproducible: | |||
| @@ -445,21 +445,22 @@ class TorchDDPDriver(TorchDriver): | |||
| # return self.model(batch, **{_MODE_PARAMETER: ForwardState.TEST}) | |||
| return self._test_step(batch) | |||
| def replace_sampler(self, dataloader, dist_sampler: Optional[Union[str, ReproducibleIterator]] = "dist", reproducible: bool = False): | |||
| if isinstance(dist_sampler, ReproducibleIterator): | |||
| def set_dist_repro_dataloader(self, dataloader, dist: Optional[Union[str, ReproducibleIterator]], | |||
| reproducible: bool = False, sampler_or_batch_sampler=None): | |||
| if isinstance(dist, ReproducibleIterator): | |||
| # 注意这里不需要调用 dist_sampler.set_distributed;因为如果用户使用的是 TorchDDPDriver,那么其在 Trainer 初始化的时候就已经调用了该函数; | |||
| dist_sampler = re_instantiate_sampler(dist_sampler) | |||
| return replace_sampler(dataloader, dist_sampler) | |||
| dist = re_instantiate_sampler(dist) | |||
| return replace_sampler(dataloader, dist) | |||
| # trainer, evaluator | |||
| if dist_sampler is None: | |||
| if dist is None: | |||
| if reproducible: | |||
| raise RuntimeError("It is not allowed to use checkpoint retraining when you initialize ddp out of our " | |||
| "control.") | |||
| else: | |||
| return dataloader | |||
| # trainer | |||
| elif dist_sampler == "dist": | |||
| elif dist == "dist": | |||
| args = self.get_dataloader_args(dataloader) | |||
| # 如果用户的 trainer.use_dist_sampler 为 True,那么此时其是否进行断点重训,不影响这里的行为; | |||
| if isinstance(args.sampler, ReproducibleIterator): | |||
| @@ -485,7 +486,7 @@ class TorchDDPDriver(TorchDriver): | |||
| return replace_sampler(dataloader, sampler) | |||
| # evaluator | |||
| elif dist_sampler == "unrepeatdist": | |||
| elif dist == "unrepeatdist": | |||
| args = self.get_dataloader_args(dataloader) | |||
| sampler = UnrepeatedDistributedSampler( | |||
| dataset=args.dataset, | |||
| @@ -130,12 +130,12 @@ class TorchSingleDriver(TorchDriver): | |||
| else: | |||
| return self._test_step(batch) | |||
| def replace_sampler(self, dataloader, dist_sampler: Union[str, ReproducibleBatchSampler, ReproducibleIterator], | |||
| reproducible: bool = False): | |||
| if isinstance(dist_sampler, ReproducibleBatchSampler): | |||
| return replace_batch_sampler(dataloader, dist_sampler) | |||
| elif isinstance(dist_sampler, ReproducibleIterator): | |||
| return replace_sampler(dataloader, dist_sampler) | |||
| def set_dist_repro_dataloader(self, dataloader, dist: Union[str, ReproducibleBatchSampler, ReproducibleIterator], | |||
| reproducible: bool = False, sampler_or_batch_sampler=None): | |||
| if isinstance(dist, ReproducibleBatchSampler): | |||
| return replace_batch_sampler(dataloader, dist) | |||
| elif isinstance(dist, ReproducibleIterator): | |||
| return replace_sampler(dataloader, dist) | |||
| if reproducible: | |||
| args = self.get_dataloader_args(dataloader) | |||
| @@ -50,6 +50,14 @@ class ReproducibleIterator: | |||
| class RandomSampler(ReproducibleIterator): | |||
| def __init__(self, dataset, shuffle: bool = True, seed: int = 0, **kwargs): | |||
| """ | |||
| :param dataset: 实现了 __len__ 方法的数据容器 | |||
| :param shuffle: 是否在每次 iterate 的时候打乱顺序。 | |||
| :param seed: 随机数种子。 | |||
| :param kwargs: 用户不需要使用,fastNLP 内部使用 | |||
| """ | |||
| self.dataset = dataset | |||
| self.shuffle = shuffle | |||
| @@ -208,6 +216,15 @@ class RandomSampler(ReproducibleIterator): | |||
| class ReproducibleBatchSampler: | |||
| # 这两个参数的值应当交给 driver 的 get_dataloader_args 函数去拿; | |||
| def __init__(self, batch_sampler, batch_size: int, drop_last: bool, **kwargs): | |||
| """ | |||
| 可以使得 batch_sampler 对象状态恢复的 wrapper 。 | |||
| :param batch_sampler: 可迭代出 数字 或 数字列表 的可迭代对象。ReproducibleBatchSampler 将首先遍历一边该对象,然后将迭代 | |||
| 出来的序号暂存起来,使用时按照 batch_size 的 batch 大小吐出序号列表。 | |||
| :param batch_size: 每个 batch 的大小是多少。 | |||
| :param drop_last: 如果最后一个 batch 无法构成 batch_size 那么多个 sample ,是否丢掉。 | |||
| :param kwargs: fastNLP 内部使用。 | |||
| """ | |||
| self.batch_sampler = batch_sampler | |||
| self.batch_size = batch_size | |||
| self.drop_last = drop_last | |||
| @@ -15,7 +15,7 @@ def remove_local_rank_in_argv(): | |||
| """ | |||
| index = -1 | |||
| for i, v in enumerate(sys.argv): | |||
| if v.startswith('--rank='): | |||
| if v.startswith('--local_rank='): | |||
| os.environ['LOCAL_RANK'] = v.split('=')[1] | |||
| index = i | |||
| break | |||
| @@ -3,4 +3,4 @@ prettytable>=0.7.2 | |||
| requests | |||
| regex!=2019.12.17 | |||
| rich==11.2.0 | |||
| # fsspec[http]>=2021.05.0, !=2021.06.0 | |||
| packaging | |||
| @@ -1,12 +1,9 @@ | |||
| import pytest | |||
| import sys | |||
| import os | |||
| import numpy as np | |||
| from fastNLP.envs.set_backend import set_env | |||
| from fastNLP.envs.set_env_on_import import set_env_on_import_paddle | |||
| set_env_on_import_paddle() | |||
| set_env("paddle") | |||
| import paddle | |||
| import paddle.distributed as dist | |||
| from paddle.io import DataLoader | |||
| @@ -54,6 +51,7 @@ def test_move_data_to_device(): | |||
| dist.barrier() | |||
| @magic_argv_env_context | |||
| def test_is_distributed(): | |||
| print(os.getenv("CUDA_VISIBLE_DEVICES")) | |||
| @@ -64,6 +62,7 @@ def test_is_distributed(): | |||
| driver = PaddleFleetDriver( | |||
| model=paddle_model, | |||
| parallel_device=[0,1], | |||
| output_from_new_proc='all' | |||
| ) | |||
| driver.set_optimizers(paddle_opt) | |||
| # 区分launch和子进程setup的时候 | |||
| @@ -79,6 +78,7 @@ def test_is_distributed(): | |||
| synchronize_safe_rm("log") | |||
| dist.barrier() | |||
| @magic_argv_env_context | |||
| def test_get_no_sync_context(): | |||
| """ | |||
| @@ -105,6 +105,7 @@ def test_get_no_sync_context(): | |||
| synchronize_safe_rm("log") | |||
| dist.barrier() | |||
| @magic_argv_env_context | |||
| def test_is_global_zero(): | |||
| try: | |||
| @@ -128,6 +129,8 @@ def test_is_global_zero(): | |||
| synchronize_safe_rm("log") | |||
| dist.barrier() | |||
| @magic_argv_env_context | |||
| def test_unwrap_model(): | |||
| try: | |||
| @@ -204,7 +207,7 @@ def test_replace_sampler(dist_sampler, reproducible): | |||
| else: | |||
| driver.setup() | |||
| dataloader = DataLoader(PaddleDataset_MNIST("train"), batch_size=100, shuffle=True) | |||
| driver.replace_sampler(dataloader, dist_sampler, reproducible) | |||
| driver.set_dist_repro_dataloader(dataloader, dist_sampler, reproducible) | |||
| finally: | |||
| synchronize_safe_rm("log") | |||
| dist.barrier() | |||
| @@ -243,7 +246,7 @@ class SingleMachineMultiGPUTrainingTestCase: | |||
| parallel_device=gpus, | |||
| ) | |||
| driver.set_optimizers(paddle_opt) | |||
| dataloader = driver.replace_sampler(dataloader) | |||
| dataloader = driver.set_dist_repro_dataloader(dataloader, ) | |||
| driver.setup() | |||
| # 检查model_device | |||
| self.assertEqual(driver.model_device, f"gpu:{os.environ['PADDLE_LOCAL_DEVICE_IDS']}") | |||
| @@ -164,4 +164,4 @@ class TestSingleDeviceFunction: | |||
| """ | |||
| dataloader = DataLoader(PaddleDataset_MNIST("train"), batch_size=100, shuffle=True) | |||
| res = self.driver.replace_sampler(dataloader, dist_sampler, reproducible) | |||
| res = self.driver.set_dist_repro_dataloader(dataloader, dist_sampler, reproducible) | |||
| @@ -33,11 +33,15 @@ def check_replace_sampler(driver): | |||
| # dist_sampler 可以选择的有['dist', 'unrepeatdist', None]或者是ReproducibleSampler,ReproducibleBatchSampler | |||
| # reproducible 是 True 和 False | |||
| # 需要 check 返回的 sampler 和 dataloader 都不同了 | |||
| assert driver.is_distributed() is False, "This test only for non distributed sampler." | |||
| ds = SequenceDataSet(10) | |||
| dataloader = DataLoader(dataset=ds, batch_size=2, collate_fn=lambda x:x, shuffle=True) | |||
| dl1 = driver.replace_sampler(dataloader, dist_sampler='dist', reproducible=True) | |||
| dl1 = driver.set_dist_repro_dataloader(dataloader, dist='dist', reproducible=True) | |||
| assert not (dl1.sampler is dataloader.sampler), "The sampler should not the same one." | |||
| assert not (dl1 is dataloader), "The dataloader should not the same one." | |||
| # 迭代两个 batch | |||
| already_seen_idx = set() | |||
| @@ -68,6 +72,22 @@ def check_replace_sampler(driver): | |||
| assert b not in already_seen_idx | |||
| assert b in left_idxes | |||
| # 需要 check 替换为 unrepeatdist 的时候没有问题:(1) 不会多pad;(2)所有卡互相不重复 | |||
| ds = SequenceDataSet(11) | |||
| dataloader = DataLoader(dataset=ds, batch_size=2, collate_fn=lambda x:x, shuffle=True) | |||
| dl1 = driver.set_dist_repro_dataloader(dataloader, dist='unrepeatdist', reproducible=True) | |||
| world_size = 3 | |||
| indices = [] | |||
| for i in range(world_size): | |||
| dl1.sampler.set_distributed(num_replicas=world_size, rank=i) | |||
| for idx, batch in dl1: | |||
| indices.extend(batch) | |||
| assert len(indices)==len(ds) # 应该没有任何重复 | |||
| assert len(set(indices))==len(indices) # 应该全是不一样的indice | |||