From 58120998c53e376019bd1a42b4f2812ff2c34d74 Mon Sep 17 00:00:00 2001 From: FengZiYjun Date: Mon, 30 Jul 2018 18:08:29 +0800 Subject: [PATCH] update --- fastNLP/core/action.py | 77 ++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 77 insertions(+) diff --git a/fastNLP/core/action.py b/fastNLP/core/action.py index 2bc08b75..ce278356 100644 --- a/fastNLP/core/action.py +++ b/fastNLP/core/action.py @@ -1,3 +1,5 @@ +from collections import Counter + import numpy as np @@ -10,6 +12,63 @@ class Action(object): super(Action, self).__init__() +def k_means_1d(x, k, max_iter=100): + """ + + :param x: list of int, representing points in 1-D. + :param k: the number of clusters required. + :param max_iter: maximum iteration + :return centroids: numpy array, centroids of the k clusters + assignment: numpy array, 1-D, the bucket id assigned to each example. + """ + sorted_x = sorted(list(set(x))) + if len(sorted_x) < k: + raise ValueError("too few buckets") + gap = len(sorted_x) / k + + centroids = np.array([sorted_x[int(x * gap)] for x in range(k)]) + assign = None + + for i in range(max_iter): + # Cluster Assignment step + assign = np.array([np.argmin([np.absolute(x_i - x) for x in centroids]) for x_i in x]) + # Move centroids step + new_centroids = np.array([x[assign == k].mean() for k in range(k)]) + if (new_centroids == centroids).all(): + centroids = new_centroids + break + centroids = new_centroids + return np.array(centroids), assign + + +def k_means_bucketing(all_inst, buckets): + """ + :param all_inst: 3-level list + [ + [[word_11, word_12, word_13], [label_11. label_12]], # sample 1 + [[word_21, word_22, word_23], [label_21. label_22]], # sample 2 + ... + ] + :param buckets: list of int. The length of the list is the number of buckets. Each integer is the maximum length + threshold for each bucket (This is usually None.). + :return data: 2-level list + [ + [index_11, index_12, ...], # bucket 1 + [index_21, index_22, ...], # bucket 2 + ... + ] + """ + bucket_data = [[] for _ in buckets] + num_buckets = len(buckets) + lengths = np.array([len(inst[0]) for inst in all_inst]) + _, assignments = k_means_1d(lengths, num_buckets) + + for idx, bucket_id in enumerate(assignments): + if buckets[bucket_id] is None or lengths[idx] <= buckets[bucket_id]: + bucket_data[bucket_id].append(idx) + return bucket_data + + class BaseSampler(object): """ Base class for all samplers. @@ -49,6 +108,24 @@ class RandomSampler(BaseSampler): return iter(np.random.permutation(self.data_set_length)) +class BucketSampler(BaseSampler): + """ + Partition all samples into multiple buckets, each of which contains sentences of approximately the same length. + In sampling, first random choose a bucket. Then sample data from it. + The number of buckets is decided dynamically by the variance of sentence lengths. + """ + + def __init__(self, data_set): + super(BucketSampler, self).__init__(data_set) + BUCKETS = [None * 10] + self.length_freq = dict(Counter([len(example) for example in data_set])) + self.buckets = k_means_bucketing(data_set, BUCKETS) + + def __iter__(self): + chosen_bucket = self.buckets[np.random.randint(0, len(self.buckets) + 1)] + + + class Batchifier(object): """ Wrap random or sequential sampler to generate a mini-batch.