@@ -1,17 +1,34 @@ | |||
from ...core.dataset import DataSet | |||
from ..file_reader import _read_json | |||
from ...core.instance import Instance | |||
from ...core.const import Const | |||
from .json import JsonLoader | |||
class CRLoader(JsonLoader): | |||
""" | |||
原始数据中内容应该为, 每一行为一个json对象,其中doc_key包含文章的种类信息,speakers包含每句话的说话者信息,cluster是指向现实中同一个事物的聚集,sentences是文本信息内容。 | |||
Example:: | |||
{"doc_key":"bc/cctv/00/cctv_001", | |||
"speakers":"[["Speaker1","Speaker1","Speaker1"],["Speaker1","Speaker1","Speaker1"]]", | |||
"clusters":"[[[2,3],[4,5]],[7,8],[18,20]]]", | |||
"sentences":[["I","have","an","apple"],["It","is","good"]] | |||
} | |||
读取预处理好的Conll2012数据。 | |||
""" | |||
def __init__(self, fields=None, dropna=False): | |||
super().__init__(fields, dropna) | |||
self.fields = {"doc_key":Const.INPUTS(0),"speakers":Const.INPUTS(1),"clusters":Const.TARGET,"sentences":Const.INPUTS(2)} | |||
def _load(self, path): | |||
""" | |||
加载数据 | |||
:param path: | |||
:param path: 数据文件路径,文件为json | |||
:return: | |||
""" | |||
dataset = DataSet() | |||
@@ -6,12 +6,16 @@ __all__ = [ | |||
from .pipe import Pipe | |||
from ..data_bundle import DataBundle | |||
from ..loader.coreference import CRLoader | |||
from ...core.const import Const | |||
from fastNLP.core.vocabulary import Vocabulary | |||
import numpy as np | |||
import collections | |||
class CoreferencePipe(Pipe): | |||
""" | |||
对Coreference resolution问题进行处理,得到文章种类/说话者/字符级信息/序列长度。 | |||
""" | |||
def __init__(self,config): | |||
super().__init__() | |||
@@ -19,28 +23,39 @@ class CoreferencePipe(Pipe): | |||
def process(self, data_bundle: DataBundle): | |||
genres = {g: i for i, g in enumerate(["bc", "bn", "mz", "nw", "pt", "tc", "wb"])} | |||
vocab = Vocabulary().from_dataset(*data_bundle.datasets.values(), field_name='sentences') | |||
vocab = Vocabulary().from_dataset(*data_bundle.datasets.values(), field_name=Const.INPUTS(2)) | |||
vocab.build_vocab() | |||
word2id = vocab.word2idx | |||
data_bundle.vocabs = {"vocab":vocab} | |||
char_dict = get_char_dict(self.config.char_path) | |||
for name, ds in data_bundle.datasets.items(): | |||
ds.apply(lambda x: doc2numpy(x['sentences'], word2id, char_dict, max(self.config.filter), | |||
# genre | |||
ds.apply(lambda x: genres[x[Const.INPUTS(0)][:2]], new_field_name=Const.INPUTS(0)) | |||
# speaker_ids_np | |||
ds.apply(lambda x: speaker2numpy(x[Const.INPUTS(1)], self.config.max_sentences, is_train=name == 'train'), | |||
new_field_name=Const.INPUTS(1)) | |||
# doc_np | |||
ds.apply(lambda x: doc2numpy(x[Const.INPUTS(2)], word2id, char_dict, max(self.config.filter), | |||
self.config.max_sentences, is_train=name == 'train')[0], | |||
new_field_name='doc_np') | |||
ds.apply(lambda x: doc2numpy(x['sentences'], word2id, char_dict, max(self.config.filter), | |||
new_field_name=Const.INPUTS(3)) | |||
# char_index | |||
ds.apply(lambda x: doc2numpy(x[Const.INPUTS(2)], word2id, char_dict, max(self.config.filter), | |||
self.config.max_sentences, is_train=name == 'train')[1], | |||
new_field_name='char_index') | |||
ds.apply(lambda x: doc2numpy(x['sentences'], word2id, char_dict, max(self.config.filter), | |||
new_field_name=Const.CHAR_INPUT) | |||
# seq len | |||
ds.apply(lambda x: doc2numpy(x[Const.INPUTS(2)], word2id, char_dict, max(self.config.filter), | |||
self.config.max_sentences, is_train=name == 'train')[2], | |||
new_field_name='seq_len') | |||
ds.apply(lambda x: speaker2numpy(x["speakers"], self.config.max_sentences, is_train=name == 'train'), | |||
new_field_name='speaker_ids_np') | |||
ds.apply(lambda x: genres[x["doc_key"][:2]], new_field_name='genre') | |||
ds.set_ignore_type('clusters') | |||
ds.set_padder('clusters', None) | |||
ds.set_input("sentences", "doc_np", "speaker_ids_np", "genre", "char_index", "seq_len") | |||
ds.set_target("clusters") | |||
new_field_name=Const.INPUT_LEN) | |||
ds.set_ignore_type(Const.TARGET) | |||
ds.set_padder(Const.TARGET, None) | |||
ds.set_input(Const.INPUTS(0), Const.INPUTS(1), Const.INPUTS(2), Const.INPUTS(3), Const.CHAR_INPUT, Const.INPUT_LEN) | |||
ds.set_target(Const.TARGET) | |||
return data_bundle | |||
def process_from_file(self, paths): | |||
@@ -8,6 +8,7 @@ from fastNLP.models.base_model import BaseModel | |||
from fastNLP.modules.encoder.variational_rnn import VarLSTM | |||
from reproduction.coreference_resolution.model import preprocess | |||
from fastNLP.io.embed_loader import EmbedLoader | |||
from fastNLP.core.const import Const | |||
import random | |||
# 设置seed | |||
@@ -415,7 +416,7 @@ class Model(BaseModel): | |||
return predicted_clusters | |||
def forward(self, sentences, doc_np, speaker_ids_np, genre, char_index, seq_len): | |||
def forward(self, words1 , words2, words3, words4, chars, seq_len): | |||
""" | |||
实际输入都是tensor | |||
:param sentences: 句子,被fastNLP转化成了numpy, | |||
@@ -426,6 +427,14 @@ class Model(BaseModel): | |||
:param seq_len: 被fastNLP转化成了Tensor | |||
:return: | |||
""" | |||
sentences = words3 | |||
doc_np = words4 | |||
speaker_ids_np = words2 | |||
genre = words1 | |||
char_index = chars | |||
# change for fastNLP | |||
sentences = sentences[0].tolist() | |||
doc_tensor = doc_np[0] | |||
@@ -11,18 +11,18 @@ class SoftmaxLoss(LossBase): | |||
允许多标签分类 | |||
""" | |||
def __init__(self, antecedent_scores=None, clusters=None, mention_start_tensor=None, mention_end_tensor=None): | |||
def __init__(self, antecedent_scores=None, target=None, mention_start_tensor=None, mention_end_tensor=None): | |||
""" | |||
:param pred: | |||
:param target: | |||
""" | |||
super().__init__() | |||
self._init_param_map(antecedent_scores=antecedent_scores, clusters=clusters, | |||
self._init_param_map(antecedent_scores=antecedent_scores, target=target, | |||
mention_start_tensor=mention_start_tensor, mention_end_tensor=mention_end_tensor) | |||
def get_loss(self, antecedent_scores, clusters, mention_start_tensor, mention_end_tensor): | |||
antecedent_labels = get_labels(clusters[0], mention_start_tensor, mention_end_tensor, | |||
def get_loss(self, antecedent_scores, target, mention_start_tensor, mention_end_tensor): | |||
antecedent_labels = get_labels(target[0], mention_start_tensor, mention_end_tensor, | |||
Config().max_antecedents) | |||
antecedent_labels = torch.from_numpy(antecedent_labels*1).to(torch.device("cuda:" + Config().cuda)) | |||
@@ -1,14 +0,0 @@ | |||
import unittest | |||
from fastNLP.io.pipe.coreference import CoreferencePipe | |||
from reproduction.coreference_resolution.model.config import Config | |||
class Test_CRLoader(unittest.TestCase): | |||
def test_cr_loader(self): | |||
config = Config() | |||
bundle = CoreferencePipe(config).process_from_file({'train': config.train_path, 'dev': config.dev_path,'test': config.test_path}) | |||
print(bundle.datasets['train'][0]) | |||
print(bundle.datasets['dev'][0]) | |||
print(bundle.datasets['test'][0]) |
@@ -45,7 +45,7 @@ if __name__ == "__main__": | |||
print("数据集划分:\ntrain:", str(len(data_info.datasets["train"])), | |||
"\ndev:" + str(len(data_info.datasets["dev"])) + "\ntest:" + str(len(data_info.datasets["test"]))) | |||
# print(data_info) | |||
model = Model(data_info.vocabs, config) | |||
model = Model(data_info.vocabs['vocab'], config) | |||
print(model) | |||
loss = SoftmaxLoss() | |||