@@ -14,6 +14,8 @@ __all__ = [ | |||||
'MoreEvaluateCallback', | 'MoreEvaluateCallback', | ||||
"TorchWarmupCallback", | "TorchWarmupCallback", | ||||
"TorchGradClipCallback", | "TorchGradClipCallback", | ||||
"MonitorUtility", | |||||
'HasMonitorCallback', | |||||
# collators | # collators | ||||
'Collator', | 'Collator', | ||||
@@ -40,6 +42,12 @@ __all__ = [ | |||||
'Trainer', | 'Trainer', | ||||
# dataloaders TODO 需要把 mix_dataloader 的搞定 | # dataloaders TODO 需要把 mix_dataloader 的搞定 | ||||
'TorchDataLoader', | |||||
'PaddleDataLoader', | |||||
'JittorDataLoader', | |||||
'prepare_jittor_dataloader', | |||||
'prepare_paddle_dataloader', | |||||
'prepare_torch_dataloader', | |||||
# dataset | # dataset | ||||
'DataSet', | 'DataSet', | ||||
@@ -15,6 +15,9 @@ __all__ = [ | |||||
"TorchWarmupCallback", | "TorchWarmupCallback", | ||||
"TorchGradClipCallback", | "TorchGradClipCallback", | ||||
"MonitorUtility", | |||||
'HasMonitorCallback' | |||||
] | ] | ||||
@@ -28,4 +31,5 @@ from .load_best_model_callback import LoadBestModelCallback | |||||
from .early_stop_callback import EarlyStopCallback | from .early_stop_callback import EarlyStopCallback | ||||
from .torch_callbacks import * | from .torch_callbacks import * | ||||
from .more_evaluate_callback import MoreEvaluateCallback | from .more_evaluate_callback import MoreEvaluateCallback | ||||
from .has_monitor_callback import MonitorUtility, HasMonitorCallback | |||||
@@ -66,7 +66,6 @@ class MoreEvaluateCallback(HasMonitorCallback): | |||||
raise RuntimeError("`evaluate_every` and `watch_monitor` cannot be None at the same time.") | raise RuntimeError("`evaluate_every` and `watch_monitor` cannot be None at the same time.") | ||||
if watch_monitor is not None and evaluate_every is not None: | if watch_monitor is not None and evaluate_every is not None: | ||||
raise RuntimeError("`evaluate_every` and `watch_monitor` cannot be set at the same time.") | raise RuntimeError("`evaluate_every` and `watch_monitor` cannot be set at the same time.") | ||||
self.watch_monitor = watch_monitor | |||||
if topk_monitor is not None and topk == 0: | if topk_monitor is not None and topk == 0: | ||||
raise RuntimeError("`topk_monitor` is set, but `topk` is 0.") | raise RuntimeError("`topk_monitor` is set, but `topk` is 0.") | ||||
@@ -93,8 +92,8 @@ class MoreEvaluateCallback(HasMonitorCallback): | |||||
def on_after_trainer_initialized(self, trainer, driver): | def on_after_trainer_initialized(self, trainer, driver): | ||||
# 如果是需要 watch 的,不能没有 evaluator | # 如果是需要 watch 的,不能没有 evaluator | ||||
if self.watch_monitor is not None: | |||||
assert trainer.evaluator is not None, f"You set `watch_monitor={self.watch_monitor}`, but no " \ | |||||
if self.monitor is not None: | |||||
assert trainer.evaluator is not None, f"You set `watch_monitor={self.monitor}`, but no " \ | |||||
f"evaluate_dataloaders is provided in Trainer." | f"evaluate_dataloaders is provided in Trainer." | ||||
if trainer.evaluate_fn is self.evaluate_fn: | if trainer.evaluate_fn is self.evaluate_fn: | ||||
@@ -134,7 +133,7 @@ class MoreEvaluateCallback(HasMonitorCallback): | |||||
self.topk_saver.save_topk(trainer, results) | self.topk_saver.save_topk(trainer, results) | ||||
def on_train_epoch_end(self, trainer): | def on_train_epoch_end(self, trainer): | ||||
if self.watch_monitor is not None: | |||||
if self.monitor is not None: | |||||
return | return | ||||
if isinstance(self.evaluate_every, int) and self.evaluate_every < 0: | if isinstance(self.evaluate_every, int) and self.evaluate_every < 0: | ||||
evaluate_every = -self.evaluate_every | evaluate_every = -self.evaluate_every | ||||
@@ -143,7 +142,7 @@ class MoreEvaluateCallback(HasMonitorCallback): | |||||
self.topk_saver.save_topk(trainer, results) | self.topk_saver.save_topk(trainer, results) | ||||
def on_train_batch_end(self, trainer): | def on_train_batch_end(self, trainer): | ||||
if self.watch_monitor is not None: | |||||
if self.monitor is not None: | |||||
return | return | ||||
if callable(self.evaluate_every): | if callable(self.evaluate_every): | ||||
if self.evaluate_every(trainer): | if self.evaluate_every(trainer): | ||||
@@ -117,6 +117,7 @@ class Trainer(TrainerEventTrigger): | |||||
:param monitor: 当存在 evaluate_dataloaders 时,默认的 monitor metric 的名字。传入的 callback 如果有 monitor 参数且没有 | :param monitor: 当存在 evaluate_dataloaders 时,默认的 monitor metric 的名字。传入的 callback 如果有 monitor 参数且没有 | ||||
在 callback 初始化设定的,将采取这个值。如果在 evaluation 结果中没有找到完全一致的名称,将使用 最短公共字符串算法 找到最匹配 | 在 callback 初始化设定的,将采取这个值。如果在 evaluation 结果中没有找到完全一致的名称,将使用 最短公共字符串算法 找到最匹配 | ||||
的那个作为 monitor 。也可以传入一个函数,接受参数为 evaluation 的结果(字典类型),返回一个 float 值作为 monitor 的结果。 | 的那个作为 monitor 。也可以传入一个函数,接受参数为 evaluation 的结果(字典类型),返回一个 float 值作为 monitor 的结果。 | ||||
如果 evaluate_dataloaders 与 metrics 没有提供,该参数无意义。 | |||||
:param larger_better: monitor 的值是否是越大越好。 | :param larger_better: monitor 的值是否是越大越好。 | ||||
:param marker: 用于标记一个 Trainer 实例,从而在用户调用 `Trainer.on` 函数时,标记该 callback 函数属于哪一个具体的 'trainer' 实例;默认为 None; | :param marker: 用于标记一个 Trainer 实例,从而在用户调用 `Trainer.on` 函数时,标记该 callback 函数属于哪一个具体的 'trainer' 实例;默认为 None; | ||||
:param kwargs: 一些其它的可能需要的参数; | :param kwargs: 一些其它的可能需要的参数; | ||||
@@ -231,7 +232,6 @@ class Trainer(TrainerEventTrigger): | |||||
total_batches=None | total_batches=None | ||||
) | ) | ||||
""" 设置内部的 Evaluator """ | |||||
if metrics is None and evaluate_dataloaders is not None: | if metrics is None and evaluate_dataloaders is not None: | ||||
raise ValueError("You have set 'evaluate_dataloaders' but forget to set 'metrics'.") | raise ValueError("You have set 'evaluate_dataloaders' but forget to set 'metrics'.") | ||||
@@ -760,8 +760,6 @@ class Trainer(TrainerEventTrigger): | |||||
self.on_before_backward(outputs) | self.on_before_backward(outputs) | ||||
loss = self.extract_loss_from_outputs(outputs) | loss = self.extract_loss_from_outputs(outputs) | ||||
loss = loss / self.accumulation_steps | loss = loss / self.accumulation_steps | ||||
# with self.get_no_sync_context(): | |||||
# self.driver.backward(loss) | |||||
self.driver.backward(loss) | self.driver.backward(loss) | ||||
self.on_after_backward() | self.on_after_backward() | ||||
@@ -165,8 +165,8 @@ class TorchDataLoader(DataLoader): | |||||
def prepare_torch_dataloader(ds_or_db: Union[DataSet, DataBundle, Sequence[DataSet], Mapping[str, DataSet]], | def prepare_torch_dataloader(ds_or_db: Union[DataSet, DataBundle, Sequence[DataSet], Mapping[str, DataSet]], | ||||
batch_size: int = 1, | |||||
shuffle: bool = False, sampler: Union["Sampler[int]", ReproducibleSampler, UnrepeatedSampler] = None, | |||||
batch_size: int = 16, | |||||
shuffle: bool = True, sampler: Union["Sampler[int]", ReproducibleSampler, UnrepeatedSampler] = None, | |||||
batch_sampler: Union["Sampler[Sequence[int]]", ReproducibleBatchSampler] = None, | batch_sampler: Union["Sampler[Sequence[int]]", ReproducibleBatchSampler] = None, | ||||
num_workers: int = 0, collate_fn: Union[str, Callable, None] = None, | num_workers: int = 0, collate_fn: Union[str, Callable, None] = None, | ||||
pin_memory: bool = False, drop_last: bool = False, | pin_memory: bool = False, drop_last: bool = False, | ||||
@@ -3,6 +3,7 @@ import hashlib | |||||
import _pickle | import _pickle | ||||
import functools | import functools | ||||
import os | import os | ||||
import re | |||||
from typing import Callable, List, Any, Optional | from typing import Callable, List, Any, Optional | ||||
import inspect | import inspect | ||||
import ast | import ast | ||||
@@ -126,7 +127,10 @@ def _get_func_and_its_called_func_source_code(func) -> List[str]: | |||||
# some failure | # some failure | ||||
pass | pass | ||||
del last_frame # | del last_frame # | ||||
sources.append(inspect.getsource(func)) | |||||
func_source_code = inspect.getsource(func) # 将这个函数中的 cache_results 装饰删除掉。 | |||||
for match in list(re.finditer('@cache_results\(.*\)\\n', func_source_code))[::-1]: | |||||
func_source_code = func_source_code[:match.start()] + func_source_code[match.end():] | |||||
sources.append(func_source_code) | |||||
return sources | return sources | ||||
@@ -163,11 +167,12 @@ def cal_fn_hash_code(fn: Optional[Callable] = None, fn_kwargs: Optional[dict] = | |||||
if fn_kwargs is None: | if fn_kwargs is None: | ||||
fn_kwargs = {} | fn_kwargs = {} | ||||
hasher = Hasher() | hasher = Hasher() | ||||
try: | |||||
sources = _get_func_and_its_called_func_source_code(fn) | |||||
hasher.update(sources) | |||||
except: | |||||
return "can't be hashed" | |||||
if fn is not None: | |||||
try: | |||||
sources = _get_func_and_its_called_func_source_code(fn) | |||||
hasher.update(sources) | |||||
except: | |||||
return "can't be hashed" | |||||
for key in sorted(fn_kwargs): | for key in sorted(fn_kwargs): | ||||
hasher.update(key) | hasher.update(key) | ||||
try: | try: | ||||
@@ -177,7 +182,7 @@ def cal_fn_hash_code(fn: Optional[Callable] = None, fn_kwargs: Optional[dict] = | |||||
return hasher.hexdigest() | return hasher.hexdigest() | ||||
def cache_results(_cache_fp, _refresh=False, _verbose=1, _check_hash=True): | |||||
def cache_results(_cache_fp, _hash_param=True, _refresh=False, _verbose=1, _check_hash=True): | |||||
r""" | r""" | ||||
cache_results是fastNLP中用于cache数据的装饰器。通过下面的例子看一下如何使用:: | cache_results是fastNLP中用于cache数据的装饰器。通过下面的例子看一下如何使用:: | ||||
@@ -186,9 +191,9 @@ def cache_results(_cache_fp, _refresh=False, _verbose=1, _check_hash=True): | |||||
from fastNLP import cache_results | from fastNLP import cache_results | ||||
@cache_results('cache.pkl') | @cache_results('cache.pkl') | ||||
def process_data(): | |||||
def process_data(second=1): | |||||
# 一些比较耗时的工作,比如读取数据,预处理数据等,这里用time.sleep()代替耗时 | # 一些比较耗时的工作,比如读取数据,预处理数据等,这里用time.sleep()代替耗时 | ||||
time.sleep(1) | |||||
time.sleep(second) | |||||
return np.random.randint(10, size=(5,)) | return np.random.randint(10, size=(5,)) | ||||
start_time = time.time() | start_time = time.time() | ||||
@@ -199,49 +204,49 @@ def cache_results(_cache_fp, _refresh=False, _verbose=1, _check_hash=True): | |||||
print("res =",process_data()) | print("res =",process_data()) | ||||
print(time.time() - start_time) | print(time.time() - start_time) | ||||
# 输出内容如下,可以看到两次结果相同,且第二次几乎没有花费时间 | |||||
# Save cache to cache.pkl. | |||||
start_time = time.time() | |||||
print("res =",process_data(second=2)) | |||||
print(time.time() - start_time) | |||||
# 输出内容如下,可以看到前两次结果相同,且第二次几乎没有花费时间。第三次由于参数变化了,所以cache的结果也就自然变化了。 | |||||
# Save cache to 2d145aeb_cache.pkl. | |||||
# res = [5 4 9 1 8] | # res = [5 4 9 1 8] | ||||
# 1.0042750835418701 | |||||
# Read cache from cache.pkl. | |||||
# 1.0134737491607666 | |||||
# Read cache from 2d145aeb_cache.pkl (Saved on xxxx). | |||||
# res = [5 4 9 1 8] | # res = [5 4 9 1 8] | ||||
# 0.0040721893310546875 | # 0.0040721893310546875 | ||||
# Save cache to 0ead3093_cache.pkl. | |||||
# res = [1 8 2 5 1] | |||||
# 2.0086121559143066 | |||||
可以看到第二次运行的时候,只用了0.0001s左右,是由于第二次运行将直接从cache.pkl这个文件读取数据,而不会经过再次预处理:: | |||||
# 还是以上面的例子为例,如果需要重新生成另一个cache,比如另一个数据集的内容,通过如下的方式调用即可 | |||||
process_data(_cache_fp='cache2.pkl') # 完全不影响之前的‘cache.pkl' | |||||
上面的_cache_fp是cache_results会识别的参数,它将从'cache2.pkl'这里缓存/读取数据,即这里的'cache2.pkl'覆盖默认的 | |||||
'cache.pkl'。如果在你的函数前面加上了@cache_results()则你的函数会增加三个参数[_cache_fp, _refresh, _verbose]。 | |||||
上面的例子即为使用_cache_fp的情况,这三个参数不会传入到你的函数中,当然你写的函数参数名也不可能包含这三个名称:: | |||||
process_data(_cache_fp='cache2.pkl', _refresh=True) # 这里强制重新生成一份对预处理的cache。 | |||||
# _verbose是用于控制输出信息的,如果为0,则不输出任何内容;如果为1,则会提醒当前步骤是读取的cache还是生成了新的cache | |||||
可以看到第二次运行的时候,只用了0.0001s左右,是由于第二次运行将直接从cache.pkl这个文件读取数据,而不会经过再次预处理。 | |||||
如果在函数加上了装饰器@cache_results(),则函数会增加五个参数[_cache_fp, _hash_param, _refresh, _verbose, | |||||
_check_hash]。上面的例子即为使用_cache_fp的情况,这五个参数不会传入到被装饰函数中,当然被装饰函数参数名也不能包含这五个名称:: | |||||
:param str _cache_fp: 将返回结果缓存到什么位置;或从什么位置读取缓存。如果为None,cache_results没有任何效用,除非在 | :param str _cache_fp: 将返回结果缓存到什么位置;或从什么位置读取缓存。如果为None,cache_results没有任何效用,除非在 | ||||
函数调用的时候传入_cache_fp这个参数。 | |||||
:param bool _refresh: 是否重新生成cache。 | |||||
函数调用的时候传入 _cache_fp 这个参数。保存文件的名称会受到 | |||||
:param bool _hash_param: 是否将传入给被装饰函数的 parameter 进行 str 之后的 hash 结果加入到 _cache_fp 中,这样每次函数的 | |||||
parameter 改变的时候,cache 文件就自动改变了。 | |||||
:param bool _refresh: 强制重新生成新的 cache 。 | |||||
:param int _verbose: 是否打印cache的信息。 | :param int _verbose: 是否打印cache的信息。 | ||||
:param bool _check_hash: 如果为 True 将尝试对比修饰的函数的源码以及该函数内部调用的函数的源码的hash值。如果发现保存时的hash值 | :param bool _check_hash: 如果为 True 将尝试对比修饰的函数的源码以及该函数内部调用的函数的源码的hash值。如果发现保存时的hash值 | ||||
与当前的hash值有差异,会报warning。但该warning可能出现实质上并不影响结果的误报(例如增删空白行);且在修改不涉及源码时,虽然 | 与当前的hash值有差异,会报warning。但该warning可能出现实质上并不影响结果的误报(例如增删空白行);且在修改不涉及源码时,虽然 | ||||
该修改对结果有影响,但无法做出warning。 | 该修改对结果有影响,但无法做出warning。 | ||||
:return: | :return: | ||||
""" | """ | ||||
def wrapper_(func): | def wrapper_(func): | ||||
signature = inspect.signature(func) | signature = inspect.signature(func) | ||||
for key, _ in signature.parameters.items(): | for key, _ in signature.parameters.items(): | ||||
if key in ('_cache_fp', '_refresh', '_verbose', '_check_hash'): | |||||
if key in ('_cache_fp', "_hash_param", '_refresh', '_verbose', '_check_hash'): | |||||
raise RuntimeError("The function decorated by cache_results cannot have keyword `{}`.".format(key)) | raise RuntimeError("The function decorated by cache_results cannot have keyword `{}`.".format(key)) | ||||
@functools.wraps(func) | @functools.wraps(func) | ||||
def wrapper(*args, **kwargs): | def wrapper(*args, **kwargs): | ||||
fn_param = kwargs.copy() | |||||
if args: | |||||
params = [p.name for p in inspect.signature(func).parameters.values()] | |||||
fn_param.update(zip(params, args)) | |||||
# fn_param = kwargs.copy() | |||||
# if args: | |||||
# params = [p.name for p in inspect.signature(func).parameters.values()] | |||||
# fn_param.update(zip(params, args)) | |||||
if '_cache_fp' in kwargs: | if '_cache_fp' in kwargs: | ||||
cache_filepath = kwargs.pop('_cache_fp') | cache_filepath = kwargs.pop('_cache_fp') | ||||
assert isinstance(cache_filepath, str), "_cache_fp can only be str." | assert isinstance(cache_filepath, str), "_cache_fp can only be str." | ||||
@@ -263,10 +268,31 @@ def cache_results(_cache_fp, _refresh=False, _verbose=1, _check_hash=True): | |||||
else: | else: | ||||
check_hash = _check_hash | check_hash = _check_hash | ||||
if '_hash_param' in kwargs: | |||||
hash_param = kwargs.pop('_hash_param') | |||||
assert isinstance(hash_param, bool), "_hash_param can only be bool." | |||||
else: | |||||
hash_param = _hash_param | |||||
if hash_param and cache_filepath is not None: # 尝试将parameter给hash一下 | |||||
try: | |||||
params = dict(inspect.getcallargs(func, *args, **kwargs)) | |||||
if inspect.ismethod(func): # 如果是 method 的话第一个参数(一般就是 self )就不考虑了 | |||||
first_key = next(iter(params.items())) | |||||
params.pop(first_key) | |||||
if len(params): | |||||
# sort 一下防止顺序改变 | |||||
params = {k: str(v) for k, v in sorted(params.items(), key=lambda item: item[0])} | |||||
param_hash = cal_fn_hash_code(None, params)[:8] | |||||
head, tail = os.path.split(cache_filepath) | |||||
cache_filepath = os.path.join(head, param_hash + '_' + tail) | |||||
except BaseException as e: | |||||
logger.debug(f"Fail to add parameter hash to cache path, because of Exception:{e}") | |||||
refresh_flag = True | refresh_flag = True | ||||
new_hash_code = None | new_hash_code = None | ||||
if check_hash: | if check_hash: | ||||
new_hash_code = cal_fn_hash_code(func, fn_param) | |||||
new_hash_code = cal_fn_hash_code(func, None) | |||||
if cache_filepath is not None and refresh is False: | if cache_filepath is not None and refresh is False: | ||||
# load data | # load data | ||||
@@ -281,13 +307,13 @@ def cache_results(_cache_fp, _refresh=False, _verbose=1, _check_hash=True): | |||||
logger.info("Read cache from {} (Saved on {}).".format(cache_filepath, save_time)) | logger.info("Read cache from {} (Saved on {}).".format(cache_filepath, save_time)) | ||||
if check_hash and old_hash_code != new_hash_code: | if check_hash and old_hash_code != new_hash_code: | ||||
logger.warning(f"The function `{func.__name__}` is different from its last cache (Save on {save_time}). The " | logger.warning(f"The function `{func.__name__}` is different from its last cache (Save on {save_time}). The " | ||||
f"difference may caused by the sourcecode change of the functions by this function.", | |||||
f"difference may caused by the sourcecode change.", | |||||
extra={'highlighter': ColorHighlighter('red')}) | extra={'highlighter': ColorHighlighter('red')}) | ||||
refresh_flag = False | refresh_flag = False | ||||
if refresh_flag: | if refresh_flag: | ||||
if new_hash_code is None: | if new_hash_code is None: | ||||
new_hash_code = cal_fn_hash_code(func, fn_param) | |||||
new_hash_code = cal_fn_hash_code(func, None) | |||||
results = func(*args, **kwargs) | results = func(*args, **kwargs) | ||||
if cache_filepath is not None: | if cache_filepath is not None: | ||||
if results is None: | if results is None: | ||||
@@ -246,6 +246,106 @@ class TestCacheResults: | |||||
rank_zero_rm('demo.pkl') | rank_zero_rm('demo.pkl') | ||||
def remove_postfix(folder='.', post_fix='.pkl'): | |||||
import os | |||||
for f in os.listdir(folder): | |||||
if os.path.isfile(f) and f.endswith(post_fix): | |||||
os.remove(os.path.join(folder, f)) | |||||
class TestCacheResultsWithParam: | |||||
@pytest.mark.parametrize('_refresh', [True, False]) | |||||
@pytest.mark.parametrize('_hash_param', [True, False]) | |||||
@pytest.mark.parametrize('_verbose', [0, 1]) | |||||
@pytest.mark.parametrize('_check_hash', [True, False]) | |||||
def test_cache_save(self, _refresh, _hash_param, _verbose, _check_hash): | |||||
cache_fp = 'demo.pkl' | |||||
try: | |||||
@cache_results(cache_fp, _refresh=_refresh, _hash_param=_hash_param, _verbose=_verbose, | |||||
_check_hash=_check_hash) | |||||
def demo(a=1): | |||||
print("¥") | |||||
return 1 | |||||
res = demo() | |||||
with Capturing() as output: | |||||
res = demo(a=1) | |||||
if _refresh is False: | |||||
assert '¥' not in output[0] | |||||
if _verbose is 0: | |||||
assert 'read' not in output[0] | |||||
with Capturing() as output: | |||||
res = demo(1) | |||||
if _refresh is False: | |||||
assert '¥' not in output[0] | |||||
with Capturing() as output: | |||||
res = demo(a=2) | |||||
if _hash_param is True: # 一定对不上,需要重新生成 | |||||
assert '¥' in output[0] | |||||
finally: | |||||
remove_postfix('.') | |||||
def test_cache_complex_param(self): | |||||
cache_fp = 'demo.pkl' | |||||
try: | |||||
@cache_results(cache_fp, _refresh=False) | |||||
def demo(*args, s=1, **kwargs): | |||||
print("¥") | |||||
return 1 | |||||
res = demo(1,2,3, s=4, d=4) | |||||
with Capturing() as output: | |||||
res = demo(1,2,3,d=4, s=4) | |||||
assert '¥' not in output[0] | |||||
finally: | |||||
remove_postfix('.') | |||||
def test_wrapper_change(self): | |||||
cache_fp = 'demo.pkl' | |||||
test_type = 'wrapper_change' | |||||
try: | |||||
cmd = f'python {__file__} --cache_fp {cache_fp} --test_type {test_type} --turn 0' | |||||
res = get_subprocess_results(cmd) | |||||
assert "¥" in res | |||||
cmd = f'python {__file__} --cache_fp {cache_fp} --test_type {test_type} --turn 1' | |||||
res = get_subprocess_results(cmd) | |||||
assert "¥" not in res | |||||
assert 'Read' in res | |||||
assert 'different' not in res | |||||
finally: | |||||
remove_postfix('.') | |||||
def test_param_change(self): | |||||
cache_fp = 'demo.pkl' | |||||
test_type = 'param_change' | |||||
try: | |||||
cmd = f'python {__file__} --cache_fp {cache_fp} --test_type {test_type} --turn 0' | |||||
res = get_subprocess_results(cmd) | |||||
assert "¥" in res | |||||
cmd = f'python {__file__} --cache_fp {cache_fp} --test_type {test_type} --turn 1' | |||||
res = get_subprocess_results(cmd) | |||||
assert "¥" in res | |||||
assert 'Read' not in res | |||||
finally: | |||||
remove_postfix('.') | |||||
def test_create_cache_dir(self): | |||||
@cache_results('demo/demo.pkl') | |||||
def cache(s): | |||||
return 1, 2 | |||||
try: | |||||
results = cache(s=1) | |||||
assert (1, 2) == results | |||||
finally: | |||||
import shutil | |||||
shutil.rmtree('demo/') | |||||
if __name__ == '__main__': | if __name__ == '__main__': | ||||
import argparse | import argparse | ||||
parser = argparse.ArgumentParser() | parser = argparse.ArgumentParser() | ||||
@@ -294,3 +394,31 @@ if __name__ == '__main__': | |||||
res = demo_func() | res = demo_func() | ||||
if test_type == 'wrapper_change': | |||||
if turn == 0: | |||||
@cache_results(cache_fp, _refresh=True) | |||||
def demo_wrapper_change(): | |||||
print("¥") | |||||
return 1 | |||||
else: | |||||
@cache_results(cache_fp, _refresh=False) | |||||
def demo_wrapper_change(): | |||||
print("¥") | |||||
return 1 | |||||
res = demo_wrapper_change() | |||||
if test_type == 'param_change': | |||||
if turn == 0: | |||||
@cache_results(cache_fp, _refresh=False) | |||||
def demo_param_change(): | |||||
print("¥") | |||||
return 1 | |||||
else: | |||||
@cache_results(cache_fp, _refresh=False) | |||||
def demo_param_change(a=1): | |||||
print("¥") | |||||
return 1 | |||||
res = demo_param_change() | |||||