|
|
@@ -80,7 +80,7 @@ class TestTutorial(unittest.TestCase): |
|
|
|
test_data.rename_field('label', 'label_seq') |
|
|
|
|
|
|
|
loss = CrossEntropyLoss(pred="output", target="label_seq") |
|
|
|
metric = AccuracyMetric(pred="predict", target="label_seq") |
|
|
|
metric = AccuracyMetric(target="label_seq") |
|
|
|
|
|
|
|
# 实例化Trainer,传入模型和数据,进行训练 |
|
|
|
# 先在test_data拟合(确保模型的实现是正确的) |
|
|
@@ -96,7 +96,7 @@ class TestTutorial(unittest.TestCase): |
|
|
|
# 用train_data训练,在test_data验证 |
|
|
|
trainer = Trainer(model=model, train_data=train_data, dev_data=test_data, |
|
|
|
loss=CrossEntropyLoss(pred="output", target="label_seq"), |
|
|
|
metrics=AccuracyMetric(pred="predict", target="label_seq"), |
|
|
|
metrics=AccuracyMetric(target="label_seq"), |
|
|
|
save_path=None, |
|
|
|
batch_size=32, |
|
|
|
n_epochs=5) |
|
|
@@ -106,7 +106,7 @@ class TestTutorial(unittest.TestCase): |
|
|
|
# 调用Tester在test_data上评价效果 |
|
|
|
from fastNLP import Tester |
|
|
|
|
|
|
|
tester = Tester(data=test_data, model=model, metrics=AccuracyMetric(pred="predict", target="label_seq"), |
|
|
|
tester = Tester(data=test_data, model=model, metrics=AccuracyMetric(target="label_seq"), |
|
|
|
batch_size=4) |
|
|
|
acc = tester.test() |
|
|
|
print(acc) |
|
|
|