@@ -63,7 +63,7 @@ class Inference(object): | |||||
""" | """ | ||||
Perform inference. | Perform inference. | ||||
:param network: | :param network: | ||||
:param data: multi-level lists of strings | |||||
:param data: two-level lists of strings | |||||
:return result: the model outputs | :return result: the model outputs | ||||
""" | """ | ||||
# transform strings into indices | # transform strings into indices | ||||
@@ -97,7 +97,7 @@ class Inference(object): | |||||
def prepare_input(self, data): | def prepare_input(self, data): | ||||
""" | """ | ||||
Transform three-level list of strings into that of index. | |||||
Transform two-level list of strings into that of index. | |||||
:param data: | :param data: | ||||
[ | [ | ||||
[word_11, word_12, ...], | [word_11, word_12, ...], | ||||
@@ -140,7 +140,7 @@ class SeqLabelInfer(Inference): | |||||
mask = mask.byte().view(batch_size, max_len) | mask = mask.byte().view(batch_size, max_len) | ||||
y = network(x) | y = network(x) | ||||
prediction = network.prediction(y, mask) | prediction = network.prediction(y, mask) | ||||
return torch.Tensor(prediction, required_grad=False) | |||||
return torch.Tensor(prediction) | |||||
def make_batch(self, iterator, data, use_cuda): | def make_batch(self, iterator, data, use_cuda): | ||||
return make_batch(iterator, data, use_cuda, output_length=True) | return make_batch(iterator, data, use_cuda, output_length=True) | ||||
@@ -37,10 +37,6 @@ class BaseTester(object): | |||||
else: | else: | ||||
self.model = network | self.model = network | ||||
# no backward setting for model | |||||
for param in network.parameters(): | |||||
param.requires_grad = False | |||||
# turn on the testing mode; clean up the history | # turn on the testing mode; clean up the history | ||||
self.mode(network, test=True) | self.mode(network, test=True) | ||||
self.eval_history.clear() | self.eval_history.clear() | ||||
@@ -112,6 +108,7 @@ class SeqLabelTester(BaseTester): | |||||
super(SeqLabelTester, self).__init__(test_args) | super(SeqLabelTester, self).__init__(test_args) | ||||
self.max_len = None | self.max_len = None | ||||
self.mask = None | self.mask = None | ||||
self.seq_len = None | |||||
self.batch_result = None | self.batch_result = None | ||||
def data_forward(self, network, inputs): | def data_forward(self, network, inputs): | ||||
@@ -125,7 +122,7 @@ class SeqLabelTester(BaseTester): | |||||
if torch.cuda.is_available() and self.use_cuda: | if torch.cuda.is_available() and self.use_cuda: | ||||
mask = mask.cuda() | mask = mask.cuda() | ||||
self.mask = mask | self.mask = mask | ||||
self.seq_len = seq_len | |||||
y = network(x) | y = network(x) | ||||
return y | return y | ||||
@@ -56,3 +56,49 @@ class SeqLabeling(BaseModel): | |||||
""" | """ | ||||
tag_seq = self.Crf.viterbi_decode(x, mask) | tag_seq = self.Crf.viterbi_decode(x, mask) | ||||
return tag_seq | return tag_seq | ||||
class AdvSeqLabel(SeqLabeling): | |||||
""" | |||||
Advanced Sequence Labeling Model | |||||
""" | |||||
def __init__(self, args, emb=None): | |||||
super(AdvSeqLabel, self).__init__(args) | |||||
vocab_size = args["vocab_size"] | |||||
word_emb_dim = args["word_emb_dim"] | |||||
hidden_dim = args["rnn_hidden_units"] | |||||
num_classes = args["num_classes"] | |||||
self.Embedding = encoder.embedding.Embedding(vocab_size, word_emb_dim, init_emb=emb) | |||||
self.Rnn = encoder.lstm.Lstm(word_emb_dim, hidden_dim, num_layers=3, dropout=0.3, bidirectional=True) | |||||
self.Linear1 = encoder.Linear(hidden_dim * 2, hidden_dim * 2 // 3) | |||||
self.batch_norm = torch.nn.BatchNorm1d(hidden_dim * 2 // 3) | |||||
self.relu = torch.nn.ReLU() | |||||
self.drop = torch.nn.Dropout(0.3) | |||||
self.Linear2 = encoder.Linear(hidden_dim * 2 // 3, num_classes) | |||||
self.Crf = decoder.CRF.ConditionalRandomField(num_classes) | |||||
def forward(self, x): | |||||
""" | |||||
:param x: LongTensor, [batch_size, mex_len] | |||||
:return y: [batch_size, mex_len, tag_size] | |||||
""" | |||||
batch_size = x.size(0) | |||||
max_len = x.size(1) | |||||
x = self.Embedding(x) | |||||
# [batch_size, max_len, word_emb_dim] | |||||
x = self.Rnn(x) | |||||
# [batch_size, max_len, hidden_size * direction] | |||||
x = x.contiguous() | |||||
x = x.view(batch_size * max_len, -1) | |||||
x = self.Linear1(x) | |||||
x = self.batch_norm(x) | |||||
x = self.relu(x) | |||||
x = self.drop(x) | |||||
x = self.Linear2(x) | |||||
x = x.view(batch_size, max_len, -1) | |||||
# [batch_size, max_len, num_classes] | |||||
return x |
@@ -123,6 +123,160 @@ | |||||
张 S-q | 张 S-q | ||||
) S-w | ) S-w | ||||
迈 B-v | |||||
向 E-v | |||||
充 B-v | |||||
满 E-v | |||||
希 B-n | |||||
望 E-n | |||||
的 S-u | |||||
新 S-a | |||||
世 B-n | |||||
纪 E-n | |||||
— B-w | |||||
— E-w | |||||
一 B-t | |||||
九 M-t | |||||
九 M-t | |||||
八 M-t | |||||
年 E-t | |||||
新 B-t | |||||
年 E-t | |||||
讲 B-n | |||||
话 E-n | |||||
( S-w | |||||
附 S-v | |||||
图 B-n | |||||
片 E-n | |||||
1 S-m | |||||
张 S-q | |||||
) S-w | |||||
迈 B-v | |||||
向 E-v | |||||
充 B-v | |||||
满 E-v | |||||
希 B-n | |||||
望 E-n | |||||
的 S-u | |||||
新 S-a | |||||
世 B-n | |||||
纪 E-n | |||||
— B-w | |||||
— E-w | |||||
一 B-t | |||||
九 M-t | |||||
九 M-t | |||||
八 M-t | |||||
年 E-t | |||||
新 B-t | |||||
年 E-t | |||||
讲 B-n | |||||
话 E-n | |||||
( S-w | |||||
附 S-v | |||||
图 B-n | |||||
片 E-n | |||||
1 S-m | |||||
张 S-q | |||||
) S-w | |||||
中 B-nt | |||||
共 M-nt | |||||
中 M-nt | |||||
央 E-nt | |||||
总 B-n | |||||
书 M-n | |||||
记 E-n | |||||
、 S-w | |||||
国 B-n | |||||
家 E-n | |||||
主 B-n | |||||
席 E-n | |||||
江 B-nr | |||||
泽 M-nr | |||||
民 E-nr | |||||
( S-w | |||||
一 B-t | |||||
九 M-t | |||||
九 M-t | |||||
七 M-t | |||||
年 E-t | |||||
十 B-t | |||||
二 M-t | |||||
月 E-t | |||||
三 B-t | |||||
十 M-t | |||||
一 M-t | |||||
日 E-t | |||||
) S-w | |||||
1 B-t | |||||
2 M-t | |||||
月 E-t | |||||
3 B-t | |||||
1 M-t | |||||
日 E-t | |||||
, S-w | |||||
迈 B-v | |||||
向 E-v | |||||
充 B-v | |||||
满 E-v | |||||
希 B-n | |||||
望 E-n | |||||
的 S-u | |||||
新 S-a | |||||
世 B-n | |||||
纪 E-n | |||||
— B-w | |||||
— E-w | |||||
一 B-t | |||||
九 M-t | |||||
九 M-t | |||||
八 M-t | |||||
年 E-t | |||||
新 B-t | |||||
年 E-t | |||||
讲 B-n | |||||
话 E-n | |||||
( S-w | |||||
附 S-v | |||||
图 B-n | |||||
片 E-n | |||||
1 S-m | |||||
张 S-q | |||||
) S-w | |||||
迈 B-v | |||||
向 E-v | |||||
充 B-v | |||||
满 E-v | |||||
希 B-n | |||||
望 E-n | |||||
的 S-u | |||||
新 S-a | |||||
世 B-n | |||||
纪 E-n | |||||
— B-w | |||||
— E-w | |||||
一 B-t | |||||
九 M-t | |||||
九 M-t | |||||
八 M-t | |||||
年 E-t | |||||
新 B-t | |||||
年 E-t | |||||
讲 B-n | |||||
话 E-n | |||||
( S-w | |||||
附 S-v | |||||
图 B-n | |||||
片 E-n | |||||
1 S-m | |||||
张 S-q | |||||
) S-w | |||||
迈 B-v | 迈 B-v | ||||
向 E-v | 向 E-v | ||||
充 B-v | 充 B-v | ||||
@@ -0,0 +1,137 @@ | |||||
import _pickle | |||||
import os | |||||
import numpy as np | |||||
import torch | |||||
from fastNLP.core.tester import SeqLabelTester | |||||
from fastNLP.core.trainer import SeqLabelTrainer | |||||
from fastNLP.loader.preprocess import POSPreprocess | |||||
from fastNLP.models.sequence_modeling import AdvSeqLabel | |||||
class MyNERTrainer(SeqLabelTrainer): | |||||
def __init__(self, train_args): | |||||
super(MyNERTrainer, self).__init__(train_args) | |||||
self.scheduler = None | |||||
def define_optimizer(self): | |||||
""" | |||||
override | |||||
:return: | |||||
""" | |||||
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=0.001) | |||||
self.scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer, step_size=3000, gamma=0.5) | |||||
def update(self): | |||||
""" | |||||
override | |||||
:return: | |||||
""" | |||||
self.optimizer.step() | |||||
self.scheduler.step() | |||||
def _create_validator(self, valid_args): | |||||
return MyNERTester(valid_args) | |||||
def best_eval_result(self, validator): | |||||
accuracy = validator.metrics() | |||||
if accuracy > self.best_accuracy: | |||||
self.best_accuracy = accuracy | |||||
return True | |||||
else: | |||||
return False | |||||
class MyNERTester(SeqLabelTester): | |||||
def __init__(self, test_args): | |||||
super(MyNERTester, self).__init__(test_args) | |||||
def _evaluate(self, prediction, batch_y, seq_len): | |||||
""" | |||||
:param prediction: [batch_size, seq_len, num_classes] | |||||
:param batch_y: [batch_size, seq_len] | |||||
:param seq_len: [batch_size] | |||||
:return: | |||||
""" | |||||
summ = 0 | |||||
correct = 0 | |||||
_, indices = torch.max(prediction, 2) | |||||
for p, y, l in zip(indices, batch_y, seq_len): | |||||
summ += l | |||||
correct += np.sum(p[:l].cpu().numpy() == y[:l].cpu().numpy()) | |||||
return float(correct / summ) | |||||
def evaluate(self, predict, truth): | |||||
return self._evaluate(predict, truth, self.seq_len) | |||||
def metrics(self): | |||||
return np.mean(self.eval_history) | |||||
def show_matrices(self): | |||||
return "dev accuracy={:.2f}".format(float(self.metrics())) | |||||
def embedding_process(emb_file, word_dict, emb_dim, emb_pkl): | |||||
if os.path.exists(emb_pkl): | |||||
with open(emb_pkl, "rb") as f: | |||||
embedding_np = _pickle.load(f) | |||||
return embedding_np | |||||
with open(emb_file, "r", encoding="utf-8") as f: | |||||
embedding_np = np.random.uniform(-1, 1, size=(len(word_dict), emb_dim)) | |||||
for line in f: | |||||
line = line.strip().split() | |||||
if len(line) != emb_dim + 1: | |||||
continue | |||||
if line[0] in word_dict: | |||||
embedding_np[word_dict[line[0]]] = [float(i) for i in line[1:]] | |||||
with open(emb_pkl, "wb") as f: | |||||
_pickle.dump(embedding_np, f) | |||||
return embedding_np | |||||
def data_load(data_file): | |||||
with open(data_file, "r", encoding="utf-8") as f: | |||||
all_data = [] | |||||
sent = [] | |||||
label = [] | |||||
for line in f: | |||||
line = line.strip().split() | |||||
if not len(line) <= 1: | |||||
sent.append(line[0]) | |||||
label.append(line[1]) | |||||
else: | |||||
all_data.append([sent, label]) | |||||
sent = [] | |||||
label = [] | |||||
return all_data | |||||
data_path = "data_for_tests/people.txt" | |||||
pick_path = "data_for_tests/" | |||||
emb_path = "data_for_tests/emb50.txt" | |||||
save_path = "data_for_tests/" | |||||
if __name__ == "__main__": | |||||
data = data_load(data_path) | |||||
p = POSPreprocess(data, pickle_path=pick_path, train_dev_split=0.3) | |||||
# emb = embedding_process(emb_path, p.word2index, 50, os.path.join(pick_path, "embedding.pkl")) | |||||
emb = None | |||||
args = {"epochs": 20, | |||||
"batch_size": 1, | |||||
"pickle_path": pick_path, | |||||
"validate": True, | |||||
"save_best_dev": True, | |||||
"model_saved_path": save_path, | |||||
"use_cuda": True, | |||||
"vocab_size": p.vocab_size, | |||||
"num_classes": p.num_classes, | |||||
"word_emb_dim": 50, | |||||
"rnn_hidden_units": 100 | |||||
} | |||||
# emb = torch.Tensor(emb).float().cuda() | |||||
networks = AdvSeqLabel(args, emb) | |||||
trainer = MyNERTrainer(args) | |||||
trainer.train(network=networks) | |||||
print("Training finished!") |
@@ -0,0 +1,129 @@ | |||||
import _pickle | |||||
import os | |||||
import torch | |||||
from fastNLP.core.inference import SeqLabelInfer | |||||
from fastNLP.core.trainer import SeqLabelTrainer | |||||
from fastNLP.loader.model_loader import ModelLoader | |||||
from fastNLP.models.sequence_modeling import AdvSeqLabel | |||||
class Decode(SeqLabelTrainer): | |||||
def __init__(self, args): | |||||
super(Decode, self).__init__(args) | |||||
def decoder(self, network, sents, model_path): | |||||
self.model = network | |||||
self.model.load_state_dict(torch.load(model_path)) | |||||
out_put = [] | |||||
self.mode(network, test=True) | |||||
for batch_x in sents: | |||||
prediction = self.data_forward(self.model, batch_x) | |||||
seq_tag = self.model.prediction(prediction, batch_x[1]) | |||||
out_put.append(list(seq_tag)[0]) | |||||
return out_put | |||||
def process_sent(sents, word2id): | |||||
sents_num = [] | |||||
for s in sents: | |||||
sent_num = [] | |||||
for c in s: | |||||
if c in word2id: | |||||
sent_num.append(word2id[c]) | |||||
else: | |||||
sent_num.append(word2id["<unk>"]) | |||||
sents_num.append(([sent_num], [len(sent_num)])) # batch_size is 1 | |||||
return sents_num | |||||
def process_tag(sents, tags, id2class): | |||||
Tags = [] | |||||
for ttt in tags: | |||||
Tags.append([id2class[t] for t in ttt]) | |||||
Segs = [] | |||||
PosNers = [] | |||||
for sent, tag in zip(sents, tags): | |||||
word__ = [] | |||||
lll__ = [] | |||||
for c, t in zip(sent, tag): | |||||
t = id2class[t] | |||||
l = t.split("-") | |||||
split_ = l[0] | |||||
pn = l[1] | |||||
if split_ == "S": | |||||
word__.append(c) | |||||
lll__.append(pn) | |||||
word_1 = "" | |||||
elif split_ == "E": | |||||
word_1 += c | |||||
word__.append(word_1) | |||||
lll__.append(pn) | |||||
word_1 = "" | |||||
elif split_ == "B": | |||||
word_1 = "" | |||||
word_1 += c | |||||
else: | |||||
word_1 += c | |||||
Segs.append(word__) | |||||
PosNers.append(lll__) | |||||
return Segs, PosNers | |||||
pickle_path = "data_for_tests/" | |||||
model_path = "data_for_tests/model_best_dev.pkl" | |||||
if __name__ == "__main__": | |||||
with open(os.path.join(pickle_path, "id2word.pkl"), "rb") as f: | |||||
id2word = _pickle.load(f) | |||||
with open(os.path.join(pickle_path, "word2id.pkl"), "rb") as f: | |||||
word2id = _pickle.load(f) | |||||
with open(os.path.join(pickle_path, "id2class.pkl"), "rb") as f: | |||||
id2class = _pickle.load(f) | |||||
sent = ["中共中央总书记、国家主席江泽民", | |||||
"逆向处理输入序列并返回逆序后的序列"] # here is input | |||||
args = {"epochs": 1, | |||||
"batch_size": 1, | |||||
"pickle_path": "data_for_tests/", | |||||
"validate": True, | |||||
"save_best_dev": True, | |||||
"model_saved_path": "data_for_tests/", | |||||
"use_cuda": False, | |||||
"vocab_size": len(word2id), | |||||
"num_classes": len(id2class), | |||||
"word_emb_dim": 50, | |||||
"rnn_hidden_units": 100, | |||||
} | |||||
""" | |||||
network = AdvSeqLabel(args, None) | |||||
decoder_ = Decode(args) | |||||
tags_num = decoder_.decoder(network, process_sent(sent, word2id), model_path=model_path) | |||||
output_seg, output_pn = process_tag(sent, tags_num, id2class) # here is output | |||||
print(output_seg) | |||||
print(output_pn) | |||||
""" | |||||
# Define the same model | |||||
model = AdvSeqLabel(args, None) | |||||
# Dump trained parameters into the model | |||||
ModelLoader.load_pytorch(model, "./data_for_tests/model_best_dev.pkl") | |||||
print("model loaded!") | |||||
# Inference interface | |||||
infer = SeqLabelInfer(pickle_path) | |||||
sent = [[ch for ch in s] for s in sent] | |||||
results = infer.predict(model, sent) | |||||
for res in results: | |||||
print(res) | |||||
print("Inference finished!") |