@@ -77,14 +77,17 @@ class FullSpaceToHalfSpaceProcessor(Processor): | |||||
def process(self, dataset): | def process(self, dataset): | ||||
assert isinstance(dataset, DataSet), "Only Dataset class is allowed, not {}.".format(type(dataset)) | assert isinstance(dataset, DataSet), "Only Dataset class is allowed, not {}.".format(type(dataset)) | ||||
for ins in dataset: | |||||
def inner_proc(ins): | |||||
sentence = ins[self.field_name] | sentence = ins[self.field_name] | ||||
new_sentence = [None] * len(sentence) | |||||
new_sentence = [""] * len(sentence) | |||||
for idx, char in enumerate(sentence): | for idx, char in enumerate(sentence): | ||||
if char in self.convert_map: | if char in self.convert_map: | ||||
char = self.convert_map[char] | char = self.convert_map[char] | ||||
new_sentence[idx] = char | new_sentence[idx] = char | ||||
ins[self.field_name] = ''.join(new_sentence) | |||||
return "".join(new_sentence) | |||||
dataset.apply(inner_proc, new_field_name=self.field_name) | |||||
return dataset | return dataset | ||||
@@ -94,9 +97,7 @@ class PreAppendProcessor(Processor): | |||||
self.data = data | self.data = data | ||||
def process(self, dataset): | def process(self, dataset): | ||||
for ins in dataset: | |||||
sent = ins[self.field_name] | |||||
ins[self.new_added_field_name] = [self.data] + sent | |||||
dataset.apply(lambda ins: [self.data] + ins[self.field_name], new_field_name=self.new_added_field_name) | |||||
return dataset | return dataset | ||||
@@ -108,9 +109,7 @@ class SliceProcessor(Processor): | |||||
self.slice = slice(start, end, step) | self.slice = slice(start, end, step) | ||||
def process(self, dataset): | def process(self, dataset): | ||||
for ins in dataset: | |||||
sent = ins[self.field_name] | |||||
ins[self.new_added_field_name] = sent[self.slice] | |||||
dataset.apply(lambda ins: ins[self.field_name][self.slice], new_field_name=self.new_added_field_name) | |||||
return dataset | return dataset | ||||
@@ -121,14 +120,17 @@ class Num2TagProcessor(Processor): | |||||
self.pattern = r'[-+]?([0-9]+[.]?[0-9]*)+[/eE]?[-+]?([0-9]+[.]?[0-9]*)' | self.pattern = r'[-+]?([0-9]+[.]?[0-9]*)+[/eE]?[-+]?([0-9]+[.]?[0-9]*)' | ||||
def process(self, dataset): | def process(self, dataset): | ||||
for ins in dataset: | |||||
def inner_proc(ins): | |||||
s = ins[self.field_name] | s = ins[self.field_name] | ||||
new_s = [None] * len(s) | new_s = [None] * len(s) | ||||
for i, w in enumerate(s): | for i, w in enumerate(s): | ||||
if re.search(self.pattern, w) is not None: | if re.search(self.pattern, w) is not None: | ||||
w = self.tag | w = self.tag | ||||
new_s[i] = w | new_s[i] = w | ||||
ins[self.new_added_field_name] = new_s | |||||
return new_s | |||||
dataset.apply(inner_proc, new_field_name=self.new_added_field_name) | |||||
return dataset | return dataset | ||||
@@ -149,11 +151,8 @@ class IndexerProcessor(Processor): | |||||
def process(self, dataset): | def process(self, dataset): | ||||
assert isinstance(dataset, DataSet), "Only DataSet class is allowed, not {}.".format(type(dataset)) | assert isinstance(dataset, DataSet), "Only DataSet class is allowed, not {}.".format(type(dataset)) | ||||
for ins in dataset: | |||||
tokens = ins[self.field_name] | |||||
index = [self.vocab.to_index(token) for token in tokens] | |||||
ins[self.new_added_field_name] = index | |||||
dataset.apply(lambda ins: [self.vocab.to_index(token) for token in ins[self.field_name]], | |||||
new_field_name=self.new_added_field_name) | |||||
if self.is_input: | if self.is_input: | ||||
dataset.set_input(self.new_added_field_name) | dataset.set_input(self.new_added_field_name) | ||||
@@ -167,6 +166,7 @@ class VocabProcessor(Processor): | |||||
"""Build vocabulary with a field in the data set. | """Build vocabulary with a field in the data set. | ||||
""" | """ | ||||
def __init__(self, field_name): | def __init__(self, field_name): | ||||
super(VocabProcessor, self).__init__(field_name, None) | super(VocabProcessor, self).__init__(field_name, None) | ||||
self.vocab = Vocabulary() | self.vocab = Vocabulary() | ||||
@@ -175,8 +175,7 @@ class VocabProcessor(Processor): | |||||
for dataset in datasets: | for dataset in datasets: | ||||
assert isinstance(dataset, DataSet), "Only Dataset class is allowed, not {}.".format(type(dataset)) | assert isinstance(dataset, DataSet), "Only Dataset class is allowed, not {}.".format(type(dataset)) | ||||
for ins in dataset: | for ins in dataset: | ||||
tokens = ins[self.field_name] | |||||
self.vocab.update(tokens) | |||||
self.vocab.update(ins[self.field_name]) | |||||
def get_vocab(self): | def get_vocab(self): | ||||
self.vocab.build_vocab() | self.vocab.build_vocab() | ||||
@@ -190,9 +189,7 @@ class SeqLenProcessor(Processor): | |||||
def process(self, dataset): | def process(self, dataset): | ||||
assert isinstance(dataset, DataSet), "Only Dataset class is allowed, not {}.".format(type(dataset)) | assert isinstance(dataset, DataSet), "Only Dataset class is allowed, not {}.".format(type(dataset)) | ||||
for ins in dataset: | |||||
length = len(ins[self.field_name]) | |||||
ins[self.new_added_field_name] = length | |||||
dataset.apply(lambda ins: len(ins[self.field_name]), new_field_name=self.new_added_field_name) | |||||
if self.is_input: | if self.is_input: | ||||
dataset.set_input(self.new_added_field_name) | dataset.set_input(self.new_added_field_name) | ||||
return dataset | return dataset | ||||
@@ -225,7 +222,7 @@ class ModelProcessor(Processor): | |||||
for key, value in prediction.items(): | for key, value in prediction.items(): | ||||
tmp_batch = [] | tmp_batch = [] | ||||
value = value.cpu().numpy() | value = value.cpu().numpy() | ||||
if len(value.shape) == 1 or (len(value.shape)==2 and value.shape[1]==1): | |||||
if len(value.shape) == 1 or (len(value.shape) == 2 and value.shape[1] == 1): | |||||
batch_output[key].extend(value.tolist()) | batch_output[key].extend(value.tolist()) | ||||
else: | else: | ||||
for idx, seq_len in enumerate(seq_lens): | for idx, seq_len in enumerate(seq_lens): | ||||
@@ -236,7 +233,7 @@ class ModelProcessor(Processor): | |||||
# TODO 当前的实现会导致之后的processor需要知道model输出的output的key是什么 | # TODO 当前的实现会导致之后的processor需要知道model输出的output的key是什么 | ||||
for field_name, fields in batch_output.items(): | for field_name, fields in batch_output.items(): | ||||
dataset.add_field(field_name, fields, need_tensor=False, is_target=False) | |||||
dataset.add_field(field_name, fields, is_input=True, is_target=False) | |||||
return dataset | return dataset | ||||
@@ -254,23 +251,8 @@ class Index2WordProcessor(Processor): | |||||
self.vocab = vocab | self.vocab = vocab | ||||
def process(self, dataset): | def process(self, dataset): | ||||
for ins in dataset: | |||||
new_sent = [self.vocab.to_word(w) for w in ins[self.field_name]] | |||||
ins[self.new_added_field_name] = new_sent | |||||
return dataset | |||||
class SetTensorProcessor(Processor): | |||||
# TODO: remove it. It is strange. | |||||
def __init__(self, field_dict, default=False): | |||||
super(SetTensorProcessor, self).__init__(None, None) | |||||
self.field_dict = field_dict | |||||
self.default = default | |||||
def process(self, dataset): | |||||
set_dict = {name: self.default for name in dataset.get_all_fields().keys()} | |||||
set_dict.update(self.field_dict) | |||||
dataset._set_need_tensor(**set_dict) | |||||
dataset.apply(lambda ins: [self.vocab.to_word(w) for w in ins[self.field_name]], | |||||
new_field_name=self.new_added_field_name) | |||||
return dataset | return dataset | ||||
@@ -10,7 +10,7 @@ class Optimizer(object): | |||||
class SGD(Optimizer): | class SGD(Optimizer): | ||||
def __init__(self, lr=0.01, momentum=0, model_params=None): | |||||
def __init__(self, lr=0.001, momentum=0, model_params=None): | |||||
""" | """ | ||||
:param float lr: learning rate. Default: 0.01 | :param float lr: learning rate. Default: 0.01 | ||||
@@ -30,7 +30,7 @@ class SGD(Optimizer): | |||||
class Adam(Optimizer): | class Adam(Optimizer): | ||||
def __init__(self, lr=0.01, weight_decay=0, model_params=None): | |||||
def __init__(self, lr=0.001, weight_decay=0, betas=(0.9, 0.999), eps=1e-8, amsgrad=False, model_params=None): | |||||
""" | """ | ||||
:param float lr: learning rate | :param float lr: learning rate | ||||
@@ -39,7 +39,8 @@ class Adam(Optimizer): | |||||
""" | """ | ||||
if not isinstance(lr, float): | if not isinstance(lr, float): | ||||
raise TypeError("learning rate has to be float.") | raise TypeError("learning rate has to be float.") | ||||
super(Adam, self).__init__(model_params, lr=lr, weight_decay=weight_decay) | |||||
super(Adam, self).__init__(model_params, lr=lr, betas=betas, eps=eps, amsgrad=amsgrad, | |||||
weight_decay=weight_decay) | |||||
def construct_from_pytorch(self, model_params): | def construct_from_pytorch(self, model_params): | ||||
if self.model_params is None: | if self.model_params is None: | ||||
@@ -31,12 +31,12 @@ class Tester(object): | |||||
self.use_cuda = use_cuda | self.use_cuda = use_cuda | ||||
self.batch_size = batch_size | self.batch_size = batch_size | ||||
self.verbose = verbose | self.verbose = verbose | ||||
self._model_device = model.parameters().__next__().device | |||||
if torch.cuda.is_available() and self.use_cuda: | if torch.cuda.is_available() and self.use_cuda: | ||||
self._model = model.cuda() | self._model = model.cuda() | ||||
else: | else: | ||||
self._model = model | self._model = model | ||||
self._model_device = model.parameters().__next__().device | |||||
# check predict | # check predict | ||||
if hasattr(self._model, 'predict'): | if hasattr(self._model, 'predict'): | ||||
@@ -3,6 +3,7 @@ import time | |||||
from datetime import datetime | from datetime import datetime | ||||
from datetime import timedelta | from datetime import timedelta | ||||
import numpy as np | |||||
import torch | import torch | ||||
from tensorboardX import SummaryWriter | from tensorboardX import SummaryWriter | ||||
from torch import nn | from torch import nn | ||||
@@ -97,7 +98,8 @@ class Trainer(object): | |||||
if check_code_level > -1: | if check_code_level > -1: | ||||
_check_code(dataset=train_data, model=model, losser=losser, metrics=metrics, dev_data=dev_data, | _check_code(dataset=train_data, model=model, losser=losser, metrics=metrics, dev_data=dev_data, | ||||
metric_key=metric_key, check_level=check_code_level) | |||||
metric_key=metric_key, check_level=check_code_level, | |||||
batch_size=min(batch_size, DEFAULT_CHECK_BATCH_SIZE)) | |||||
self.train_data = train_data | self.train_data = train_data | ||||
self.dev_data = dev_data # If None, No validation. | self.dev_data = dev_data # If None, No validation. | ||||
@@ -113,8 +115,6 @@ class Trainer(object): | |||||
self.best_metric_indicator = None | self.best_metric_indicator = None | ||||
self.sampler = sampler | self.sampler = sampler | ||||
self._model_device = model.parameters().__next__().device | |||||
if isinstance(optimizer, torch.optim.Optimizer): | if isinstance(optimizer, torch.optim.Optimizer): | ||||
self.optimizer = optimizer | self.optimizer = optimizer | ||||
else: | else: | ||||
@@ -123,6 +123,7 @@ class Trainer(object): | |||||
self.use_tqdm = use_tqdm | self.use_tqdm = use_tqdm | ||||
if self.use_tqdm: | if self.use_tqdm: | ||||
tester_verbose = 0 | tester_verbose = 0 | ||||
self.print_every = abs(self.print_every) | |||||
else: | else: | ||||
tester_verbose = 1 | tester_verbose = 1 | ||||
@@ -137,17 +138,44 @@ class Trainer(object): | |||||
self.step = 0 | self.step = 0 | ||||
self.start_time = None # start timestamp | self.start_time = None # start timestamp | ||||
def train(self): | |||||
"""Start Training. | |||||
def train(self, load_best_model=True): | |||||
""" | |||||
开始训练过程。主要有以下几个步骤 | |||||
for epoch in range(num_epochs): | |||||
(1) 使用Batch从DataSet中按批取出数据,并自动对DataSet中dtype为float, int的fields进行padding。并转换为Tensor。非 | |||||
float,int类型的参数将不会被转换为Tensor,且不进行padding | |||||
for batch_x, batch_y in Batch(DataSet): | |||||
# batch_x中为设置为input的field | |||||
# batch_y中为设置为target的field | |||||
(2) 将batch_x的数据送入到model.forward函数中,并获取结果 | |||||
(3) 将batch_y与model.forward的结果一并送入loss中计算loss | |||||
(4) 获取到loss之后,进行反向求导并更新梯度 | |||||
if dev_data is not None: | |||||
根据metrics进行evaluation,并根据是否提供了save_path判断是否存储模型 | |||||
:param load_best_model: 该参数只有在初始化提供了dev_data的情况下有效,如果True, trainer将在返回之前重新加载dev表现最好的 | |||||
模型参数。 | |||||
将会返回一个字典类型的数据, 内含以下内容: | |||||
seconds: float, 表示训练时长 | |||||
以下三个内容只有在提供了dev_data的情况下会有。 | |||||
best_eval: Dict of Dict, 表示evaluation的结果 | |||||
best_epoch: int,在第几个epoch取得的最佳值 | |||||
best_step: int, 在第几个step(batch)更新取得的最佳值 | |||||
return dict: | |||||
""" | """ | ||||
results = {} | |||||
try: | try: | ||||
if torch.cuda.is_available() and self.use_cuda: | if torch.cuda.is_available() and self.use_cuda: | ||||
self.model = self.model.cuda() | self.model = self.model.cuda() | ||||
self._model_device = self.model.parameters().__next__().device | |||||
self._mode(self.model, is_test=False) | self._mode(self.model, is_test=False) | ||||
self.start_time = str(datetime.now().strftime('%Y-%m-%d %H-%M-%S')) | self.start_time = str(datetime.now().strftime('%Y-%m-%d %H-%M-%S')) | ||||
start_time = time.time() | |||||
print("training epochs started " + self.start_time, flush=True) | print("training epochs started " + self.start_time, flush=True) | ||||
if self.save_path is None: | if self.save_path is None: | ||||
class psudoSW: | class psudoSW: | ||||
@@ -165,26 +193,37 @@ class Trainer(object): | |||||
self._tqdm_train() | self._tqdm_train() | ||||
else: | else: | ||||
self._print_train() | self._print_train() | ||||
if self.dev_data is not None: | |||||
print("\nIn Epoch:{}/Step:{}, got best dev performance:".format(self.best_dev_epoch, self.best_dev_step) + | |||||
self.tester._format_eval_results(self.best_dev_perf),) | |||||
results['best_eval'] = self.best_dev_perf | |||||
results['best_epoch'] = self.best_dev_epoch | |||||
results['best_step'] = self.best_dev_step | |||||
if load_best_model: | |||||
model_name = "best_" + "_".join([self.model.__class__.__name__, self.metric_key, self.start_time]) | |||||
# self._load_model(self.model, model_name) | |||||
print("Reloaded the best model.") | |||||
finally: | finally: | ||||
self._summary_writer.close() | self._summary_writer.close() | ||||
del self._summary_writer | del self._summary_writer | ||||
results['seconds'] = round(time.time() - start_time, 2) | |||||
return results | |||||
def _tqdm_train(self): | def _tqdm_train(self): | ||||
self.step = 0 | self.step = 0 | ||||
data_iterator = Batch(self.train_data, batch_size=self.batch_size, sampler=self.sampler, | data_iterator = Batch(self.train_data, batch_size=self.batch_size, sampler=self.sampler, | ||||
as_numpy=False) | as_numpy=False) | ||||
total_steps = data_iterator.num_batches*self.n_epochs | total_steps = data_iterator.num_batches*self.n_epochs | ||||
epoch = 1 | |||||
with tqdm(total=total_steps, postfix='loss:{0:<6.5f}', leave=False, dynamic_ncols=True) as pbar: | with tqdm(total=total_steps, postfix='loss:{0:<6.5f}', leave=False, dynamic_ncols=True) as pbar: | ||||
ava_loss = 0 | |||||
avg_loss = 0 | |||||
for epoch in range(1, self.n_epochs+1): | for epoch in range(1, self.n_epochs+1): | ||||
pbar.set_description_str(desc="Epoch {}/{}".format(epoch, self.n_epochs)) | pbar.set_description_str(desc="Epoch {}/{}".format(epoch, self.n_epochs)) | ||||
for batch_x, batch_y in data_iterator: | for batch_x, batch_y in data_iterator: | ||||
_move_dict_value_to_device(batch_x, batch_y, device=self._model_device) | _move_dict_value_to_device(batch_x, batch_y, device=self._model_device) | ||||
prediction = self._data_forward(self.model, batch_x) | prediction = self._data_forward(self.model, batch_x) | ||||
loss = self._compute_loss(prediction, batch_y) | loss = self._compute_loss(prediction, batch_y) | ||||
ava_loss += loss.item() | |||||
avg_loss += loss.item() | |||||
self._grad_backward(loss) | self._grad_backward(loss) | ||||
self._update() | self._update() | ||||
self._summary_writer.add_scalar("loss", loss.item(), global_step=self.step) | self._summary_writer.add_scalar("loss", loss.item(), global_step=self.step) | ||||
@@ -194,18 +233,18 @@ class Trainer(object): | |||||
# self._summary_writer.add_scalar(name + "_std", param.std(), global_step=self.step) | # self._summary_writer.add_scalar(name + "_std", param.std(), global_step=self.step) | ||||
# self._summary_writer.add_scalar(name + "_grad_sum", param.sum(), global_step=self.step) | # self._summary_writer.add_scalar(name + "_grad_sum", param.sum(), global_step=self.step) | ||||
if (self.step+1) % self.print_every == 0: | if (self.step+1) % self.print_every == 0: | ||||
pbar.set_postfix_str("loss:{0:<6.5f}".format(ava_loss / self.print_every)) | |||||
ava_loss = 0 | |||||
pbar.update(1) | |||||
pbar.set_postfix_str("loss:{0:<6.5f}".format(avg_loss / self.print_every)) | |||||
avg_loss = 0 | |||||
pbar.update(self.print_every) | |||||
self.step += 1 | self.step += 1 | ||||
if self.validate_every > 0 and self.step % self.validate_every == 0 \ | if self.validate_every > 0 and self.step % self.validate_every == 0 \ | ||||
and self.dev_data is not None: | and self.dev_data is not None: | ||||
eval_res = self._do_validation() | |||||
eval_res = self._do_validation(epoch=epoch, step=self.step) | |||||
eval_str = "Epoch {}/{}. Step:{}/{}. ".format(epoch, self.n_epochs, self.step, total_steps) + \ | eval_str = "Epoch {}/{}. Step:{}/{}. ".format(epoch, self.n_epochs, self.step, total_steps) + \ | ||||
self.tester._format_eval_results(eval_res) | self.tester._format_eval_results(eval_res) | ||||
pbar.write(eval_str) | pbar.write(eval_str) | ||||
if self.validate_every < 0 and self.dev_data: | if self.validate_every < 0 and self.dev_data: | ||||
eval_res = self._do_validation() | |||||
eval_res = self._do_validation(epoch=epoch, step=self.step) | |||||
eval_str = "Epoch {}/{}. Step:{}/{}. ".format(epoch, self.n_epochs, self.step, total_steps) + \ | eval_str = "Epoch {}/{}. Step:{}/{}. ".format(epoch, self.n_epochs, self.step, total_steps) + \ | ||||
self.tester._format_eval_results(eval_res) | self.tester._format_eval_results(eval_res) | ||||
pbar.write(eval_str) | pbar.write(eval_str) | ||||
@@ -244,25 +283,29 @@ class Trainer(object): | |||||
if (self.validate_every > 0 and self.step % self.validate_every == 0 and | if (self.validate_every > 0 and self.step % self.validate_every == 0 and | ||||
self.dev_data is not None): | self.dev_data is not None): | ||||
self._do_validation() | |||||
self._do_validation(epoch=epoch, step=self.step) | |||||
self.step += 1 | self.step += 1 | ||||
# validate_every override validation at end of epochs | # validate_every override validation at end of epochs | ||||
if self.dev_data and self.validate_every <= 0: | if self.dev_data and self.validate_every <= 0: | ||||
self._do_validation() | |||||
self._do_validation(epoch=epoch, step=self.step) | |||||
epoch += 1 | epoch += 1 | ||||
def _do_validation(self): | |||||
def _do_validation(self, epoch, step): | |||||
res = self.tester.test() | res = self.tester.test() | ||||
for name, metric in res.items(): | for name, metric in res.items(): | ||||
for metric_key, metric_val in metric.items(): | for metric_key, metric_val in metric.items(): | ||||
self._summary_writer.add_scalar("valid_{}_{}".format(name, metric_key), metric_val, | self._summary_writer.add_scalar("valid_{}_{}".format(name, metric_key), metric_val, | ||||
global_step=self.step) | global_step=self.step) | ||||
if self.save_path is not None and self._better_eval_result(res): | |||||
metric_key = self.metric_key if self.metric_key is not None else "" | |||||
self._save_model(self.model, | |||||
"best_" + "_".join([self.model.__class__.__name__, metric_key, self.start_time])) | |||||
if self._better_eval_result(res): | |||||
if self.save_path is not None: | |||||
self._save_model(self.model, | |||||
"best_" + "_".join([self.model.__class__.__name__, self.metric_key, self.start_time])) | |||||
self.best_dev_perf = res | |||||
self.best_dev_epoch = epoch | |||||
self.best_dev_step = step | |||||
return res | return res | ||||
def _mode(self, model, is_test=False): | def _mode(self, model, is_test=False): | ||||
@@ -317,6 +360,16 @@ class Trainer(object): | |||||
else: | else: | ||||
torch.save(model, model_name) | torch.save(model, model_name) | ||||
def _load_model(self, model, model_name, only_param=False): | |||||
# TODO: 这个是不是有问题? | |||||
if self.save_path is not None: | |||||
model_name = os.path.join(self.save_path, model_name) | |||||
if only_param: | |||||
states = torch.save(model.state_dict(), model_name) | |||||
else: | |||||
states = torch.save(model, model_name).state_dict() | |||||
model.load_state_dict(states) | |||||
def _better_eval_result(self, metrics): | def _better_eval_result(self, metrics): | ||||
"""Check if the current epoch yields better validation results. | """Check if the current epoch yields better validation results. | ||||
@@ -344,6 +397,21 @@ class Trainer(object): | |||||
DEFAULT_CHECK_BATCH_SIZE = 2 | DEFAULT_CHECK_BATCH_SIZE = 2 | ||||
DEFAULT_CHECK_NUM_BATCH = 2 | DEFAULT_CHECK_NUM_BATCH = 2 | ||||
def _get_value_info(_dict): | |||||
# given a dict value, return information about this dict's value. Return list of str | |||||
strs = [] | |||||
for key, value in _dict.items(): | |||||
_str = '' | |||||
if isinstance(value, torch.Tensor): | |||||
_str += "\t{}: (1)type:torch.Tensor (2)dtype:{}, (3)shape:{} ".format(key, | |||||
value.dtype, value.size()) | |||||
elif isinstance(value, np.ndarray): | |||||
_str += "\t{}: (1)type:numpy.ndarray (2)dtype:{}, (3)shape:{} ".format(key, | |||||
value.dtype, value.shape) | |||||
else: | |||||
_str += "\t{}: type:{}".format(key, type(value)) | |||||
strs.append(_str) | |||||
return strs | |||||
def _check_code(dataset, model, losser, metrics, batch_size=DEFAULT_CHECK_BATCH_SIZE, | def _check_code(dataset, model, losser, metrics, batch_size=DEFAULT_CHECK_BATCH_SIZE, | ||||
dev_data=None, metric_key=None, | dev_data=None, metric_key=None, | ||||
@@ -356,8 +424,24 @@ def _check_code(dataset, model, losser, metrics, batch_size=DEFAULT_CHECK_BATCH_ | |||||
_move_dict_value_to_device(batch_x, batch_y, device=model_devcie) | _move_dict_value_to_device(batch_x, batch_y, device=model_devcie) | ||||
# forward check | # forward check | ||||
if batch_count==0: | if batch_count==0: | ||||
info_str = "" | |||||
input_fields = _get_value_info(batch_x) | |||||
target_fields = _get_value_info(batch_y) | |||||
if len(input_fields)>0: | |||||
info_str += "input fields after batch(if batch size is {}):\n".format(batch_size) | |||||
info_str += "\n".join(input_fields) | |||||
info_str += '\n' | |||||
else: | |||||
raise RuntimeError("There is no input field.") | |||||
if len(target_fields)>0: | |||||
info_str += "target fields after batch(if batch size is {}):\n".format(batch_size) | |||||
info_str += "\n".join(target_fields) | |||||
info_str += '\n' | |||||
else: | |||||
info_str += 'There is no target field.' | |||||
print(info_str) | |||||
_check_forward_error(forward_func=model.forward, dataset=dataset, | _check_forward_error(forward_func=model.forward, dataset=dataset, | ||||
batch_x=batch_x, check_level=check_level) | |||||
batch_x=batch_x, check_level=check_level) | |||||
refined_batch_x = _build_args(model.forward, **batch_x) | refined_batch_x = _build_args(model.forward, **batch_x) | ||||
pred_dict = model(**refined_batch_x) | pred_dict = model(**refined_batch_x) | ||||
@@ -125,7 +125,7 @@ def _check_arg_dict_list(func, args): | |||||
input_args = set(input_arg_count.keys()) | input_args = set(input_arg_count.keys()) | ||||
missing = list(require_args - input_args) | missing = list(require_args - input_args) | ||||
unused = list(input_args - all_args) | unused = list(input_args - all_args) | ||||
varargs = [] if not spect.varargs else [arg for arg in spect.varargs] | |||||
varargs = [] if not spect.varargs else [spect.varargs] | |||||
return CheckRes(missing=missing, | return CheckRes(missing=missing, | ||||
unused=unused, | unused=unused, | ||||
duplicated=duplicated, | duplicated=duplicated, | ||||
@@ -0,0 +1,6 @@ | |||||
import unittest | |||||
class TestPipeline(unittest.TestCase): | |||||
def test_case(self): | |||||
pass |
@@ -1,6 +1,9 @@ | |||||
import random | |||||
import unittest | import unittest | ||||
from fastNLP.api.processor import FullSpaceToHalfSpaceProcessor | |||||
from fastNLP import Vocabulary | |||||
from fastNLP.api.processor import FullSpaceToHalfSpaceProcessor, PreAppendProcessor, SliceProcessor, Num2TagProcessor, \ | |||||
IndexerProcessor, VocabProcessor, SeqLenProcessor | |||||
from fastNLP.core.dataset import DataSet | from fastNLP.core.dataset import DataSet | ||||
@@ -9,4 +12,44 @@ class TestProcessor(unittest.TestCase): | |||||
ds = DataSet({"word": ["00, u1, u), (u2, u2"]}) | ds = DataSet({"word": ["00, u1, u), (u2, u2"]}) | ||||
proc = FullSpaceToHalfSpaceProcessor("word") | proc = FullSpaceToHalfSpaceProcessor("word") | ||||
ds = proc(ds) | ds = proc(ds) | ||||
self.assertTrue(ds.field_arrays["word"].content, ["00, u1, u), (u2, u2"]) | |||||
self.assertEqual(ds.field_arrays["word"].content, ["00, u1, u), (u2, u2"]) | |||||
def test_PreAppendProcessor(self): | |||||
ds = DataSet({"word": [["1234", "3456"], ["8789", "3464"]]}) | |||||
proc = PreAppendProcessor(data="abc", field_name="word") | |||||
ds = proc(ds) | |||||
self.assertEqual(ds.field_arrays["word"].content, [["abc", "1234", "3456"], ["abc", "8789", "3464"]]) | |||||
def test_SliceProcessor(self): | |||||
ds = DataSet({"xx": [[random.randint(0, 10) for _ in range(30)]] * 40}) | |||||
proc = SliceProcessor(10, 20, 2, "xx", new_added_field_name="yy") | |||||
ds = proc(ds) | |||||
self.assertEqual(len(ds.field_arrays["yy"].content[0]), 5) | |||||
def test_Num2TagProcessor(self): | |||||
ds = DataSet({"num": [["99.9982", "2134.0"], ["0.002", "234"]]}) | |||||
proc = Num2TagProcessor("<num>", "num") | |||||
ds = proc(ds) | |||||
for data in ds.field_arrays["num"].content: | |||||
for d in data: | |||||
self.assertEqual(d, "<num>") | |||||
def test_VocabProcessor_and_IndexerProcessor(self): | |||||
ds = DataSet({"xx": [[str(random.randint(0, 10)) for _ in range(30)]] * 40}) | |||||
vocab_proc = VocabProcessor("xx") | |||||
vocab_proc(ds) | |||||
vocab = vocab_proc.vocab | |||||
self.assertTrue(isinstance(vocab, Vocabulary)) | |||||
self.assertTrue(len(vocab) > 5) | |||||
proc = IndexerProcessor(vocab, "xx", "yy") | |||||
ds = proc(ds) | |||||
for data in ds.field_arrays["yy"].content[0]: | |||||
self.assertTrue(isinstance(data, int)) | |||||
def test_SeqLenProcessor(self): | |||||
ds = DataSet({"xx": [[str(random.randint(0, 10)) for _ in range(30)]] * 10}) | |||||
proc = SeqLenProcessor("xx", "len") | |||||
ds = proc(ds) | |||||
for data in ds.field_arrays["len"].content: | |||||
self.assertEqual(data, 30) |
@@ -52,28 +52,24 @@ class TestAccuracyMetric(unittest.TestCase): | |||||
def test_AccuaryMetric4(self): | def test_AccuaryMetric4(self): | ||||
# (5) check reset | # (5) check reset | ||||
metric = AccuracyMetric() | metric = AccuracyMetric() | ||||
pred_dict = {"pred": torch.zeros(4, 3, 2)} | |||||
target_dict = {'target': torch.zeros(4, 3)} | |||||
metric(pred_dict=pred_dict, target_dict=target_dict) | |||||
self.assertDictEqual(metric.get_metric(), {'acc': 1}) | |||||
pred_dict = {"pred": torch.zeros(4, 3, 2)} | |||||
target_dict = {'target': torch.zeros(4, 3) + 1} | |||||
pred_dict = {"pred": torch.randn(4, 3, 2)} | |||||
target_dict = {'target': torch.ones(4, 3)} | |||||
metric(pred_dict=pred_dict, target_dict=target_dict) | metric(pred_dict=pred_dict, target_dict=target_dict) | ||||
self.assertDictEqual(metric.get_metric(), {'acc': 0}) | |||||
ans = torch.argmax(pred_dict["pred"], dim=2).to(target_dict["target"]) == target_dict["target"] | |||||
res = metric.get_metric() | |||||
self.assertTrue(isinstance(res, dict)) | |||||
self.assertTrue("acc" in res) | |||||
self.assertAlmostEqual(res["acc"], float(ans.float().mean()), places=3) | |||||
def test_AccuaryMetric5(self): | def test_AccuaryMetric5(self): | ||||
# (5) check reset | # (5) check reset | ||||
metric = AccuracyMetric() | metric = AccuracyMetric() | ||||
pred_dict = {"pred": torch.zeros(4, 3, 2)} | |||||
pred_dict = {"pred": torch.randn(4, 3, 2)} | |||||
target_dict = {'target': torch.zeros(4, 3)} | target_dict = {'target': torch.zeros(4, 3)} | ||||
metric(pred_dict=pred_dict, target_dict=target_dict) | metric(pred_dict=pred_dict, target_dict=target_dict) | ||||
self.assertDictEqual(metric.get_metric(reset=False), {'acc': 1}) | |||||
pred_dict = {"pred": torch.zeros(4, 3, 2)} | |||||
target_dict = {'target': torch.zeros(4, 3) + 1} | |||||
metric(pred_dict=pred_dict, target_dict=target_dict) | |||||
self.assertDictEqual(metric.get_metric(), {'acc': 0.5}) | |||||
res = metric.get_metric(reset=False) | |||||
ans = (torch.argmax(pred_dict["pred"], dim=2).float() == target_dict["target"]).float().mean() | |||||
self.assertAlmostEqual(res["acc"], float(ans), places=4) | |||||
def test_AccuaryMetric6(self): | def test_AccuaryMetric6(self): | ||||
# (6) check numpy array is not acceptable | # (6) check numpy array is not acceptable | ||||
@@ -90,10 +86,12 @@ class TestAccuracyMetric(unittest.TestCase): | |||||
def test_AccuaryMetric7(self): | def test_AccuaryMetric7(self): | ||||
# (7) check map, match | # (7) check map, match | ||||
metric = AccuracyMetric(pred='predictions', target='targets') | metric = AccuracyMetric(pred='predictions', target='targets') | ||||
pred_dict = {"predictions": torch.zeros(4, 3, 2)} | |||||
pred_dict = {"predictions": torch.randn(4, 3, 2)} | |||||
target_dict = {'targets': torch.zeros(4, 3)} | target_dict = {'targets': torch.zeros(4, 3)} | ||||
metric(pred_dict=pred_dict, target_dict=target_dict) | metric(pred_dict=pred_dict, target_dict=target_dict) | ||||
self.assertDictEqual(metric.get_metric(), {'acc': 1}) | |||||
res = metric.get_metric() | |||||
ans = (torch.argmax(pred_dict["predictions"], dim=2).float() == target_dict["targets"]).float().mean() | |||||
self.assertAlmostEqual(res["acc"], float(ans), places=4) | |||||
def test_AccuaryMetric8(self): | def test_AccuaryMetric8(self): | ||||
# (8) check map, does not match. use stop_fast_param to stop fast param map | # (8) check map, does not match. use stop_fast_param to stop fast param map | ||||
@@ -1,10 +1,10 @@ | |||||
import time | |||||
import unittest | import unittest | ||||
import numpy as np | import numpy as np | ||||
import torch.nn.functional as F | import torch.nn.functional as F | ||||
from torch import nn | from torch import nn | ||||
import time | |||||
from fastNLP.core.utils import CheckError | |||||
from fastNLP.core.dataset import DataSet | from fastNLP.core.dataset import DataSet | ||||
from fastNLP.core.instance import Instance | from fastNLP.core.instance import Instance | ||||
from fastNLP.core.losses import BCELoss | from fastNLP.core.losses import BCELoss | ||||
@@ -83,7 +83,7 @@ class TrainerTestGround(unittest.TestCase): | |||||
model = Model() | model = Model() | ||||
with self.assertRaises(NameError): | |||||
with self.assertRaises(RuntimeError): | |||||
trainer = Trainer( | trainer = Trainer( | ||||
train_data=dataset, | train_data=dataset, | ||||
model=model | model=model | ||||
@@ -19,16 +19,52 @@ | |||||
}, | }, | ||||
{ | { | ||||
"cell_type": "code", | "cell_type": "code", | ||||
"execution_count": 50, | |||||
"execution_count": 3, | |||||
"metadata": {}, | "metadata": {}, | ||||
"outputs": [], | |||||
"outputs": [ | |||||
{ | |||||
"name": "stderr", | |||||
"output_type": "stream", | |||||
"text": [ | |||||
"/Users/yh/miniconda2/envs/python3/lib/python3.6/site-packages/tqdm/autonotebook/__init__.py:14: TqdmExperimentalWarning: Using `tqdm.autonotebook.tqdm` in notebook mode. Use `tqdm.tqdm` instead to force console mode (e.g. in jupyter console)\n", | |||||
" \" (e.g. in jupyter console)\", TqdmExperimentalWarning)\n" | |||||
] | |||||
} | |||||
], | |||||
"source": [ | "source": [ | ||||
"import sys\n", | |||||
"sys.path.append(\"../\")\n", | |||||
"\n", | |||||
"from fastNLP import DataSet\n", | "from fastNLP import DataSet\n", | ||||
"\n", | |||||
"# linux_path = \"../test/data_for_tests/tutorial_sample_dataset.csv\"\n", | "# linux_path = \"../test/data_for_tests/tutorial_sample_dataset.csv\"\n", | ||||
"win_path = \"C:\\\\Users\\zyfeng\\Desktop\\FudanNLP\\\\fastNLP\\\\test\\\\data_for_tests\\\\tutorial_sample_dataset.csv\"\n", | |||||
"win_path = \"../test/data_for_tests/tutorial_sample_dataset.csv\"\n", | |||||
"ds = DataSet.read_csv(win_path, headers=('raw_sentence', 'label'), sep='\\t')" | "ds = DataSet.read_csv(win_path, headers=('raw_sentence', 'label'), sep='\\t')" | ||||
] | ] | ||||
}, | }, | ||||
{ | |||||
"cell_type": "code", | |||||
"execution_count": 8, | |||||
"metadata": {}, | |||||
"outputs": [ | |||||
{ | |||||
"data": { | |||||
"text/plain": [ | |||||
"{'raw_sentence': this quiet , introspective and entertaining independent is worth seeking .,\n", | |||||
"'label': 4,\n", | |||||
"'label_seq': 4,\n", | |||||
"'words': ['this', 'quiet', ',', 'introspective', 'and', 'entertaining', 'independent', 'is', 'worth', 'seeking', '.']}" | |||||
] | |||||
}, | |||||
"execution_count": 8, | |||||
"metadata": {}, | |||||
"output_type": "execute_result" | |||||
} | |||||
], | |||||
"source": [ | |||||
"ds[1]" | |||||
] | |||||
}, | |||||
{ | { | ||||
"cell_type": "markdown", | "cell_type": "markdown", | ||||
"metadata": {}, | "metadata": {}, | ||||
@@ -42,7 +78,7 @@ | |||||
}, | }, | ||||
{ | { | ||||
"cell_type": "code", | "cell_type": "code", | ||||
"execution_count": 52, | |||||
"execution_count": 4, | |||||
"metadata": {}, | "metadata": {}, | ||||
"outputs": [], | "outputs": [], | ||||
"source": [ | "source": [ | ||||
@@ -58,65 +94,15 @@ | |||||
}, | }, | ||||
{ | { | ||||
"cell_type": "code", | "cell_type": "code", | ||||
"execution_count": 60, | |||||
"metadata": { | |||||
"collapsed": false | |||||
}, | |||||
"execution_count": 5, | |||||
"metadata": {}, | |||||
"outputs": [ | "outputs": [ | ||||
{ | { | ||||
"name": "stdout", | "name": "stdout", | ||||
"output_type": "stream", | "output_type": "stream", | ||||
"text": [ | "text": [ | ||||
"Train size: " | |||||
] | |||||
}, | |||||
{ | |||||
"name": "stdout", | |||||
"output_type": "stream", | |||||
"text": [ | |||||
" " | |||||
] | |||||
}, | |||||
{ | |||||
"name": "stdout", | |||||
"output_type": "stream", | |||||
"text": [ | |||||
"54" | |||||
] | |||||
}, | |||||
{ | |||||
"name": "stdout", | |||||
"output_type": "stream", | |||||
"text": [ | |||||
"\n" | |||||
] | |||||
}, | |||||
{ | |||||
"name": "stdout", | |||||
"output_type": "stream", | |||||
"text": [ | |||||
"Test size: " | |||||
] | |||||
}, | |||||
{ | |||||
"name": "stdout", | |||||
"output_type": "stream", | |||||
"text": [ | |||||
" " | |||||
] | |||||
}, | |||||
{ | |||||
"name": "stdout", | |||||
"output_type": "stream", | |||||
"text": [ | |||||
"23" | |||||
] | |||||
}, | |||||
{ | |||||
"name": "stdout", | |||||
"output_type": "stream", | |||||
"text": [ | |||||
"\n" | |||||
"Train size: 54\n", | |||||
"Test size: 23\n" | |||||
] | ] | ||||
} | } | ||||
], | ], | ||||
@@ -129,7 +115,7 @@ | |||||
}, | }, | ||||
{ | { | ||||
"cell_type": "code", | "cell_type": "code", | ||||
"execution_count": 61, | |||||
"execution_count": 6, | |||||
"metadata": {}, | "metadata": {}, | ||||
"outputs": [], | "outputs": [], | ||||
"source": [ | "source": [ | ||||
@@ -177,14 +163,7 @@ | |||||
"name": "stdout", | "name": "stdout", | ||||
"output_type": "stream", | "output_type": "stream", | ||||
"text": [ | "text": [ | ||||
"training epochs started 2018-12-07 14:03:41" | |||||
] | |||||
}, | |||||
{ | |||||
"name": "stdout", | |||||
"output_type": "stream", | |||||
"text": [ | |||||
"\n" | |||||
"training epochs started 2018-12-07 14:03:41\n" | |||||
] | ] | ||||
}, | }, | ||||
{ | { | ||||
@@ -201,84 +180,10 @@ | |||||
"name": "stdout", | "name": "stdout", | ||||
"output_type": "stream", | "output_type": "stream", | ||||
"text": [ | "text": [ | ||||
"\r" | |||||
] | |||||
}, | |||||
{ | |||||
"name": "stdout", | |||||
"output_type": "stream", | |||||
"text": [ | |||||
"Epoch 1/3. Step:2/6. AccuracyMetric: acc=0.26087" | |||||
] | |||||
}, | |||||
{ | |||||
"name": "stdout", | |||||
"output_type": "stream", | |||||
"text": [ | |||||
"\n" | |||||
] | |||||
}, | |||||
{ | |||||
"name": "stdout", | |||||
"output_type": "stream", | |||||
"text": [ | |||||
"\r" | |||||
] | |||||
}, | |||||
{ | |||||
"name": "stdout", | |||||
"output_type": "stream", | |||||
"text": [ | |||||
"Epoch 2/3. Step:4/6. AccuracyMetric: acc=0.347826" | |||||
] | |||||
}, | |||||
{ | |||||
"name": "stdout", | |||||
"output_type": "stream", | |||||
"text": [ | |||||
"\n" | |||||
] | |||||
}, | |||||
{ | |||||
"name": "stdout", | |||||
"output_type": "stream", | |||||
"text": [ | |||||
"\r" | |||||
] | |||||
}, | |||||
{ | |||||
"name": "stdout", | |||||
"output_type": "stream", | |||||
"text": [ | |||||
"Epoch 3/3. Step:6/6. AccuracyMetric: acc=0.608696" | |||||
] | |||||
}, | |||||
{ | |||||
"name": "stdout", | |||||
"output_type": "stream", | |||||
"text": [ | |||||
"\n" | |||||
] | |||||
}, | |||||
{ | |||||
"name": "stdout", | |||||
"output_type": "stream", | |||||
"text": [ | |||||
"\r" | |||||
] | |||||
}, | |||||
{ | |||||
"name": "stdout", | |||||
"output_type": "stream", | |||||
"text": [ | |||||
"Train finished!" | |||||
] | |||||
}, | |||||
{ | |||||
"name": "stdout", | |||||
"output_type": "stream", | |||||
"text": [ | |||||
"\n" | |||||
"Epoch 1/3. Step:2/6. AccuracyMetric: acc=0.26087\n", | |||||
"Epoch 2/3. Step:4/6. AccuracyMetric: acc=0.347826\n", | |||||
"Epoch 3/3. Step:6/6. AccuracyMetric: acc=0.608696\n", | |||||
"Train finished!\n" | |||||
] | ] | ||||
} | } | ||||
], | ], | ||||
@@ -311,23 +216,23 @@ | |||||
], | ], | ||||
"metadata": { | "metadata": { | ||||
"kernelspec": { | "kernelspec": { | ||||
"display_name": "Python 2", | |||||
"display_name": "Python 3", | |||||
"language": "python", | "language": "python", | ||||
"name": "python2" | |||||
"name": "python3" | |||||
}, | }, | ||||
"language_info": { | "language_info": { | ||||
"codemirror_mode": { | "codemirror_mode": { | ||||
"name": "ipython", | "name": "ipython", | ||||
"version": 2 | |||||
"version": 3 | |||||
}, | }, | ||||
"file_extension": ".py", | "file_extension": ".py", | ||||
"mimetype": "text/x-python", | "mimetype": "text/x-python", | ||||
"name": "python", | "name": "python", | ||||
"nbconvert_exporter": "python", | "nbconvert_exporter": "python", | ||||
"pygments_lexer": "ipython2", | |||||
"version": "2.7.6" | |||||
"pygments_lexer": "ipython3", | |||||
"version": "3.6.7" | |||||
} | } | ||||
}, | }, | ||||
"nbformat": 4, | "nbformat": 4, | ||||
"nbformat_minor": 0 | |||||
"nbformat_minor": 1 | |||||
} | } |