diff --git a/fastNLP/core/dataset.py b/fastNLP/core/dataset.py index 3b5ebbbe..bc4dcf57 100644 --- a/fastNLP/core/dataset.py +++ b/fastNLP/core/dataset.py @@ -1,7 +1,9 @@ +import _pickle as pickle import numpy as np from fastNLP.core.fieldarray import FieldArray from fastNLP.core.instance import Instance +from fastNLP.core.utils import get_func_signature _READERS = {} @@ -26,24 +28,6 @@ class DataSet(object): However, it stores data in a different way: Field-first, Instance-second. """ - - class DataSetIter(object): - def __init__(self, data_set, idx=-1, **fields): - self.data_set = data_set - self.idx = idx - self.fields = fields - - def __next__(self): - self.idx += 1 - if self.idx >= len(self.data_set): - raise StopIteration - # this returns a copy - return self.data_set[self.idx] - - def __repr__(self): - return "\n".join(['{}: {}'.format(name, repr(self.data_set[name][self.idx])) for name - in self.data_set.get_fields().keys()]) - def __init__(self, data=None): """ @@ -72,7 +56,27 @@ class DataSet(object): return item in self.field_arrays def __iter__(self): - return self.DataSetIter(self) + def iter_func(): + for idx in range(len(self)): + yield self[idx] + return iter_func() + + def _inner_iter(self): + class Iter_ptr: + def __init__(self, dataset, idx): + self.dataset = dataset + self.idx = idx + def __getitem__(self, item): + assert self.idx < len(self.dataset), "index:{} out of range".format(self.idx) + assert item in self.dataset.field_arrays, "no such field:{} in instance {}".format(item, self.dataset[self.idx]) + return self.dataset.field_arrays[item][self.idx] + def __repr__(self): + return self.dataset[self.idx].__repr__() + + def inner_iter_func(): + for idx in range(len(self)): + yield Iter_ptr(self, idx) + return inner_iter_func() def __getitem__(self, idx): """Fetch Instance(s) at the `idx` position(s) in the dataset. @@ -110,6 +114,15 @@ class DataSet(object): field = iter(self.field_arrays.values()).__next__() return len(field) + def __inner_repr__(self): + if len(self) < 20: + return ",\n".join([ins.__repr__() for ins in self]) + else: + return self[:5].__inner_repr__() + "\n...\n" + self[-5:].__inner_repr__() + + def __repr__(self): + return "DataSet(" + self.__inner_repr__() + ")" + def append(self, ins): """Add an instance to the DataSet. If the DataSet is not empty, the instance must have the same field names as the rest instances in the DataSet. @@ -226,7 +239,10 @@ class DataSet(object): (2) is_target: boolean, will be ignored if new_field is None. If True, the new field will be as target. :return results: if new_field_name is not passed, returned values of the function over all instances. """ - results = [func(ins) for ins in self] + results = [func(ins) for ins in self._inner_iter()] + if len(list(filter(lambda x: x is not None, results)))==0: # all None + raise ValueError("{} always return None.".format(get_func_signature(func=func))) + extra_param = {} if 'is_input' in kwargs: extra_param['is_input'] = kwargs['is_input'] @@ -250,7 +266,7 @@ class DataSet(object): return results def drop(self, func): - results = [ins for ins in self if not func(ins)] + results = [ins for ins in self._inner_iter() if not func(ins)] for name, old_field in self.field_arrays.items(): self.field_arrays[name].content = [ins[name] for ins in results] @@ -317,3 +333,12 @@ class DataSet(object): for header, content in zip(headers, contents): _dict[header].append(content) return cls(_dict) + + def save(self, path): + with open(path, 'wb') as f: + pickle.dump(self, f) + + @staticmethod + def load(self, path): + with open(path, 'rb') as f: + return pickle.load(f) diff --git a/fastNLP/core/instance.py b/fastNLP/core/instance.py index 9dfe8fb8..dc65fa82 100644 --- a/fastNLP/core/instance.py +++ b/fastNLP/core/instance.py @@ -1,5 +1,3 @@ - - class Instance(object): """An Instance is an example of data. It is the collection of Fields. @@ -33,4 +31,5 @@ class Instance(object): return self.add_field(name, field) def __repr__(self): - return self.fields.__repr__() + return "{" + ",\n".join( + "\'" + field_name + "\': " + str(self.fields[field_name]) for field_name in self.fields) + "}" diff --git a/fastNLP/core/losses.py b/fastNLP/core/losses.py index dce568bd..f2fb16d0 100644 --- a/fastNLP/core/losses.py +++ b/fastNLP/core/losses.py @@ -70,13 +70,23 @@ class LossBase(object): raise NameError(f"Delete `*{func_spect.varargs}` in {get_func_signature(self.get_loss)}(Do not use " f"positional argument.).") - def __call__(self, output_dict, target_dict, force_check=False): + def _fast_param_map(self, pred_dict, target_dict): + if len(self.param_map) == 2 and len(pred_dict) == 1 and len(target_dict) == 1: + return tuple(pred_dict.values())[0], tuple(target_dict.values())[0] + return None + + def __call__(self, pred_dict, target_dict, check=False): """ - :param output_dict: A dict from forward function of the network. + :param pred_dict: A dict from forward function of the network. :param target_dict: A dict from DataSet.batch_y. - :param force_check: Boolean. Force to check the mapping functions when it is running. + :param check: Boolean. Force to check the mapping functions when it is running. :return: """ + fast_param = self._fast_param_map(pred_dict, target_dict) + if fast_param is not None: + loss = self.get_loss(*fast_param) + return loss + args, defaults, defaults_val, varargs, kwargs = _get_arg_list(self.get_loss) if varargs is not None: raise RuntimeError( @@ -88,7 +98,8 @@ class LossBase(object): raise RuntimeError( f"There is not any param in function{get_func_signature(self.get_loss)}" ) - self._checked = self._checked and not force_check + + self._checked = self._checked and not check if not self._checked: for keys in args: if keys not in param_map: @@ -105,12 +116,12 @@ class LossBase(object): duplicated = [] missing = [] if not self._checked: - for keys, val in output_dict.items(): + for keys, val in pred_dict.items(): if keys in target_dict.keys(): duplicated.append(keys) param_val_dict = {} - for keys, val in output_dict.items(): + for keys, val in pred_dict.items(): param_val_dict.update({keys: val}) for keys, val in target_dict.items(): param_val_dict.update({keys: val}) @@ -131,7 +142,6 @@ class LossBase(object): param_map_val = _map_args(reversed_param_map, **param_val_dict) param_value = _build_args(self.get_loss, **param_map_val) - loss = self.get_loss(**param_value) if not (isinstance(loss, torch.Tensor) and len(loss.size()) == 0): @@ -158,29 +168,31 @@ class LossFunc(LossBase): class CrossEntropyLoss(LossBase): - def __init__(self, input=None, target=None): + def __init__(self, pred=None, target=None): super(CrossEntropyLoss, self).__init__() self.get_loss = F.cross_entropy - self._init_param_map(input=input, target=target) + self._init_param_map(input=pred, target=target) class L1Loss(LossBase): - def __init__(self): + def __init__(self, pred=None, target=None): super(L1Loss, self).__init__() self.get_loss = F.l1_loss + self._init_param_map(input=pred, target=target) class BCELoss(LossBase): - def __init__(self, input=None, target=None): + def __init__(self, pred=None, target=None): super(BCELoss, self).__init__() self.get_loss = F.binary_cross_entropy - self._init_param_map(input=input, target=target) + self._init_param_map(input=pred, target=target) class NLLLoss(LossBase): - def __init__(self): + def __init__(self, pred=None, target=None): super(NLLLoss, self).__init__() self.get_loss = F.nll_loss + self._init_param_map(input=pred, target=target) class LossInForward(LossBase): @@ -199,10 +211,11 @@ class LossInForward(LossBase): all_needed=[], varargs=[]) raise CheckError(check_res=check_res, func_signature=get_func_signature(self.get_loss)) + return kwargs[self.loss_key] - def __call__(self, output_dict, predict_dict, force_check=False): + def __call__(self, pred_dict, target_dict, check=False): - loss = self.get_loss(**output_dict) + loss = self.get_loss(**pred_dict) if not (isinstance(loss, torch.Tensor) and len(loss.size()) == 0): if not isinstance(loss, torch.Tensor): diff --git a/fastNLP/core/metrics.py b/fastNLP/core/metrics.py index b1fc110b..d83c4022 100644 --- a/fastNLP/core/metrics.py +++ b/fastNLP/core/metrics.py @@ -1,4 +1,3 @@ - import inspect import warnings from collections import defaultdict @@ -7,11 +6,12 @@ import numpy as np import torch from fastNLP.core.utils import CheckError +from fastNLP.core.utils import CheckRes from fastNLP.core.utils import _build_args from fastNLP.core.utils import _check_arg_dict_list from fastNLP.core.utils import get_func_signature from fastNLP.core.utils import seq_lens_to_masks -from fastNLP.core.utils import CheckRes + class MetricBase(object): def __init__(self): @@ -59,9 +59,10 @@ class MetricBase(object): func_args = [arg for arg in func_spect.args if arg != 'self'] for func_param, input_param in self.param_map.items(): if func_param not in func_args: - raise NameError(f"Parameter `{func_param}` is not in {get_func_signature(self.evaluate)}. Please check the " - f"initialization parameters, or change the signature of" - f" {get_func_signature(self.evaluate)}.") + raise NameError( + f"Parameter `{func_param}` is not in {get_func_signature(self.evaluate)}. Please check the " + f"initialization parameters, or change the signature of" + f" {get_func_signature(self.evaluate)}.") # evaluate should not have varargs. if func_spect.varargs: @@ -71,7 +72,7 @@ class MetricBase(object): def get_metric(self, reset=True): raise NotImplemented - def _fast_call_evaluate(self, pred_dict, target_dict): + def _fast_param_map(self, pred_dict, target_dict): """ Only used as inner function. When the pred_dict, target is unequivocal. Don't need users to pass key_map. @@ -80,7 +81,9 @@ class MetricBase(object): :param target_dict: :return: boolean, whether to go on codes in self.__call__(). When False, don't go on. """ - return False + if len(self.param_map) == 2 and len(pred_dict) == 1 and len(target_dict) == 1: + return pred_dict.values[0] and target_dict.values[0] + return None def __call__(self, pred_dict, target_dict, check=False): """ @@ -103,13 +106,15 @@ class MetricBase(object): raise TypeError(f"{self.__class__.__name__}.evaluate has to be callable, not {type(self.evaluate)}.") if not check: - if self._fast_call_evaluate(pred_dict=pred_dict, target_dict=target_dict): + fast_param = self._fast_param_map(pred_dict=pred_dict, target_dict=target_dict) + if fast_param is not None: + self.evaluate(*fast_param) return if not self._checked: # 1. check consistence between signature and param_map func_spect = inspect.getfullargspec(self.evaluate) - func_args = set([arg for arg in func_spect.args if arg!='self']) + func_args = set([arg for arg in func_spect.args if arg != 'self']) for func_arg, input_arg in self.param_map.items(): if func_arg not in func_args: raise NameError(f"`{func_arg}` not in {get_func_signature(self.evaluate)}.") @@ -117,7 +122,7 @@ class MetricBase(object): # 2. only part of the param_map are passed, left are not for arg in func_args: if arg not in self.param_map: - self.param_map[arg] = arg #This param does not need mapping. + self.param_map[arg] = arg # This param does not need mapping. self._evaluate_args = func_args self._reverse_param_map = {input_arg: func_arg for func_arg, input_arg in self.param_map.items()} @@ -149,14 +154,14 @@ class MetricBase(object): replaced_missing = list(missing) for idx, func_arg in enumerate(missing): replaced_missing[idx] = f"{self.param_map[func_arg]}" + f"(assign to `{func_arg}` " \ - f"in `{self.__class__.__name__}`)" + f"in `{self.__class__.__name__}`)" check_res = CheckRes(missing=replaced_missing, - unused=check_res.unused, - duplicated=duplicated, - required=check_res.required, - all_needed=check_res.all_needed, - varargs=check_res.varargs) + unused=check_res.unused, + duplicated=duplicated, + required=check_res.required, + all_needed=check_res.all_needed, + varargs=check_res.varargs) if check_res.missing or check_res.duplicated or check_res.varargs: raise CheckError(check_res=check_res, @@ -168,6 +173,7 @@ class MetricBase(object): return + class AccuracyMetric(MetricBase): def __init__(self, pred=None, target=None, masks=None, seq_lens=None): super().__init__() @@ -187,7 +193,7 @@ class AccuracyMetric(MetricBase): :param target_dict: :return: boolean, whether to go on codes in self.__call__(). When False, don't go on. """ - if len(pred_dict)==1 and len(target_dict)==1: + if len(pred_dict) == 1 and len(target_dict) == 1: pred = list(pred_dict.values())[0] target = list(target_dict.values())[0] self.evaluate(pred=pred, target=target) @@ -207,7 +213,7 @@ class AccuracyMetric(MetricBase): None, None, torch.Size([B], torch.Size([B]). ignored if masks are provided. :return: dict({'acc': float}) """ - #TODO 这里报错需要更改,因为pred是啥用户并不知道。需要告知用户真实的value + # TODO 这里报错需要更改,因为pred是啥用户并不知道。需要告知用户真实的value if not isinstance(pred, torch.Tensor): raise TypeError(f"`pred` in {get_func_signature(self.evaluate)} must be torch.Tensor," f"got {type(pred)}.") @@ -220,14 +226,14 @@ class AccuracyMetric(MetricBase): f"got {type(masks)}.") elif seq_lens is not None and not isinstance(seq_lens, torch.Tensor): raise TypeError(f"`seq_lens` in {get_func_signature(self.evaluate)} must be torch.Tensor," - f"got {type(seq_lens)}.") + f"got {type(seq_lens)}.") if masks is None and seq_lens is not None: masks = seq_lens_to_masks(seq_lens=seq_lens, float=True) - if pred.size()==target.size(): + if pred.size() == target.size(): pass - elif len(pred.size())==len(target.size())+1: + elif len(pred.size()) == len(target.size()) + 1: pred = pred.argmax(dim=-1) else: raise RuntimeError(f"In {get_func_signature(self.evaluate)}, when pred have " @@ -241,18 +247,17 @@ class AccuracyMetric(MetricBase): self.acc_count += torch.sum(torch.eq(pred, target).float() * masks.float()).item() self.total += torch.sum(masks.float()).item() else: - self.acc_count += torch.sum(torch.eq(pred, target).float()).item() + self.acc_count += torch.sum(torch.eq(pred, target).float()).item() self.total += np.prod(list(pred.size())) def get_metric(self, reset=True): - evaluate_result = {'acc': round(self.acc_count/self.total, 6)} + evaluate_result = {'acc': round(self.acc_count / self.total, 6)} if reset: self.acc_count = 0 self.total = 0 return evaluate_result - def _prepare_metrics(metrics): """ @@ -274,7 +279,8 @@ def _prepare_metrics(metrics): raise TypeError(f"{metric_name}.get_metric must be callable, got {type(metric.get_metric)}.") _metrics.append(metric) else: - raise TypeError(f"The type of metric in metrics must be `fastNLP.MetricBase`, not `{type(metric)}`.") + raise TypeError( + f"The type of metric in metrics must be `fastNLP.MetricBase`, not `{type(metric)}`.") elif isinstance(metrics, MetricBase): _metrics = [metrics] else: @@ -296,6 +302,7 @@ class Evaluator(object): """ raise NotImplementedError + class ClassifyEvaluator(Evaluator): def __init__(self): super(ClassifyEvaluator, self).__init__() @@ -331,6 +338,7 @@ class SeqLabelEvaluator(Evaluator): accuracy = total_correct / total_count return {"accuracy": float(accuracy)} + class SeqLabelEvaluator2(Evaluator): # 上面的evaluator应该是错误的 def __init__(self, seq_lens_field_name='word_seq_origin_len'): @@ -363,7 +371,7 @@ class SeqLabelEvaluator2(Evaluator): if x_i in self.end_tagidx_set: truth_count += 1 for j in range(start, idx_i + 1): - if y_[j]!=x_[j]: + if y_[j] != x_[j]: flag = False break if flag: @@ -376,8 +384,7 @@ class SeqLabelEvaluator2(Evaluator): R = corr_count / (float(truth_count) + 1e-6) F = 2 * P * R / (P + R + 1e-6) - return {"P": P, 'R':R, 'F': F} - + return {"P": P, 'R': R, 'F': F} class SNLIEvaluator(Evaluator): @@ -559,10 +566,6 @@ def f1_score(y_true, y_pred, labels=None, pos_label=1, average='binary'): return 2 * precision * recall / (precision + recall) if (precision + recall) > 0 else 0 -def classification_report(y_true, y_pred, labels=None, target_names=None, digits=2): - raise NotImplementedError - - def accuracy_topk(y_true, y_prob, k=1): """Compute accuracy of y_true matching top-k probable labels in y_prob. diff --git a/fastNLP/core/optimizer.py b/fastNLP/core/optimizer.py index 5075fa02..469c5632 100644 --- a/fastNLP/core/optimizer.py +++ b/fastNLP/core/optimizer.py @@ -4,40 +4,13 @@ import torch class Optimizer(object): def __init__(self, model_params, **kwargs): if model_params is not None and not hasattr(model_params, "__next__"): - raise RuntimeError("model parameters should be a generator, rather than {}".format(type(model_params))) + raise RuntimeError("model parameters should be a generator, rather than {}.".format(type(model_params))) self.model_params = model_params self.settings = kwargs class SGD(Optimizer): - def __init__(self, *args, **kwargs): - model_params, lr, momentum = None, 0.01, 0.9 - if len(args) == 0 and len(kwargs) == 0: - # SGD() - pass - elif len(args) == 1 and len(kwargs) == 0: - if isinstance(args[0], float) or isinstance(args[0], int): - # SGD(0.001) - lr = args[0] - elif hasattr(args[0], "__next__"): - # SGD(model.parameters()) args[0] is a generator - model_params = args[0] - else: - raise RuntimeError("Not supported type {}.".format(type(args[0]))) - elif 2 >= len(kwargs) > 0 and len(args) <= 1: - # SGD(lr=0.01), SGD(lr=0.01, momentum=0.9), SGD(model.parameters(), lr=0.1, momentum=0.9) - if len(args) == 1: - if hasattr(args[0], "__next__"): - model_params = args[0] - else: - raise RuntimeError("Not supported type {}.".format(type(args[0]))) - if not all(key in ("lr", "momentum") for key in kwargs): - raise RuntimeError("Invalid SGD arguments. Expect {}, got {}.".format(("lr", "momentum"), kwargs)) - lr = kwargs.get("lr", 0.01) - momentum = kwargs.get("momentum", 0.9) - else: - raise RuntimeError("SGD only accept 0 or 1 sequential argument, but got {}: {}".format(len(args), args)) - + def __init__(self, model_params=None, lr=0.01, momentum=0): super(SGD, self).__init__(model_params, lr=lr, momentum=momentum) def construct_from_pytorch(self, model_params): @@ -49,30 +22,7 @@ class SGD(Optimizer): class Adam(Optimizer): - def __init__(self, *args, **kwargs): - model_params, lr, weight_decay = None, 0.01, 0.9 - if len(args) == 0 and len(kwargs) == 0: - pass - elif len(args) == 1 and len(kwargs) == 0: - if isinstance(args[0], float) or isinstance(args[0], int): - lr = args[0] - elif hasattr(args[0], "__next__"): - model_params = args[0] - else: - raise RuntimeError("Not supported type {}.".format(type(args[0]))) - elif 2 >= len(kwargs) > 0 and len(args) <= 1: - if len(args) == 1: - if hasattr(args[0], "__next__"): - model_params = args[0] - else: - raise RuntimeError("Not supported type {}.".format(type(args[0]))) - if not all(key in ("lr", "weight_decay") for key in kwargs): - raise RuntimeError("Invalid Adam arguments. Expect {}, got {}.".format(("lr", "weight_decay"), kwargs)) - lr = kwargs.get("lr", 0.01) - weight_decay = kwargs.get("weight_decay", 0.9) - else: - raise RuntimeError("Adam only accept 0 or 1 sequential argument, but got {}: {}".format(len(args), args)) - + def __init__(self, model_params=None, lr=0.01, weight_decay=0): super(Adam, self).__init__(model_params, lr=lr, weight_decay=weight_decay) def construct_from_pytorch(self, model_params): diff --git a/fastNLP/core/trainer.py b/fastNLP/core/trainer.py index 95749c73..57c79369 100644 --- a/fastNLP/core/trainer.py +++ b/fastNLP/core/trainer.py @@ -1,6 +1,7 @@ import os import time from datetime import datetime +from datetime import timedelta from tqdm import tqdm import torch @@ -22,17 +23,16 @@ from fastNLP.core.utils import _check_forward_error from fastNLP.core.utils import _check_loss_evaluate from fastNLP.core.utils import _move_dict_value_to_device from fastNLP.core.utils import get_func_signature - +from fastNLP.core.utils import _relocate_pbar class Trainer(object): """Main Training Loop """ - def __init__(self, train_data, model, losser=None, metrics=None, n_epochs=3, batch_size=32, update_every=50, validate_every=-1, dev_data=None, use_cuda=False, save_path=None, optimizer=Adam(lr=0.01, weight_decay=0), check_code_level=0, - metric_key=None, sampler=RandomSampler()): + metric_key=None, sampler=RandomSampler(), use_tqdm=True): """ :param DataSet train_data: the training data @@ -54,6 +54,7 @@ class Trainer(object): :: metric_key="-PPL" # language model gets better as perplexity gets smaller :param sampler: method used to generate batch data. + :param use_tqdm: boolean, use tqdm to show train progress. """ super(Trainer, self).__init__() @@ -117,19 +118,23 @@ class Trainer(object): else: self.optimizer = optimizer.construct_from_pytorch(self.model.parameters()) + self.use_tqdm = use_tqdm + if self.use_tqdm: + tester_verbose = 0 + else: + tester_verbose = 1 + if self.dev_data is not None: self.tester = Tester(model=self.model, data=self.dev_data, metrics=self.metrics, batch_size=self.batch_size, use_cuda=self.use_cuda, - verbose=0) + verbose=tester_verbose) self.step = 0 self.start_time = None # start timestamp - # print(self.__dict__) - def train(self): """Start Training. @@ -155,8 +160,10 @@ class Trainer(object): else: path = os.path.join(self.save_path, 'tensorboard_logs_{}'.format(self.start_time)) self._summary_writer = SummaryWriter(path) - - self._tqdm_train() + if self.use_tqdm: + self._tqdm_train() + else: + self._print_train() finally: self._summary_writer.close() @@ -196,31 +203,67 @@ class Trainer(object): eval_res = self._do_validation() eval_str = "Epoch {}/{}. Step:{}/{}. ".format(epoch, self.n_epochs, self.step, total_steps) + \ self.tester._format_eval_results(eval_res) - pbar = self._relocate_pbar(pbar, print_str=eval_str, total=total_steps, initial=self.step) - time.sleep(0.1) + pbar = _relocate_pbar(pbar, print_str=eval_str) if self.validate_every < 0 and self.dev_data: eval_res = self._do_validation() eval_str = "Epoch {}/{}. Step:{}/{}. ".format(epoch, self.n_epochs, self.step, total_steps) + \ self.tester._format_eval_results(eval_res) - pbar = self._relocate_pbar(pbar, print_str=eval_str, total=total_steps, initial=self.step) + pbar = _relocate_pbar(pbar, print_str=eval_str) if epoch!=self.n_epochs: data_iterator = Batch(self.train_data, batch_size=self.batch_size, sampler=self.sampler, as_numpy=False) pbar.close() - def _relocate_pbar(self, pbar, total, initial, print_str=None): - postfix = pbar.postfix - desc = pbar.desc - pbar.close() - avg_time = pbar.avg_time - start_t = pbar.start_t - if print_str: - print(print_str) - pbar = tqdm(total=total, postfix=postfix, desc=desc, leave=False, initial=initial, dynamic_ncols=True) - pbar.start_t = start_t - pbar.avg_time = avg_time - pbar.sp(pbar.__repr__()) - return pbar + + def _print_train(self): + """ + + :param data_iterator: + :param model: + :param epoch: + :param start: + :return: + """ + epoch = 1 + start = time.time() + while epoch <= self.n_epochs: + + data_iterator = Batch(self.train_data, batch_size=self.batch_size, sampler=self.sampler, + as_numpy=False) + + for batch_x, batch_y in data_iterator: + # TODO 这里可能会遇到问题,万一用户在model内部修改了prediction的device就会有问题 + _move_dict_value_to_device(batch_x, batch_y, device=self._model_device) + prediction = self._data_forward(self.model, batch_x) + loss = self._compute_loss(prediction, batch_y) + self._grad_backward(loss) + self._update() + self._summary_writer.add_scalar("loss", loss.item(), global_step=self.step) + for name, param in self.model.named_parameters(): + if param.requires_grad: + self._summary_writer.add_scalar(name + "_mean", param.mean(), global_step=self.step) + # self._summary_writer.add_scalar(name + "_std", param.std(), global_step=self.step) + # self._summary_writer.add_scalar(name + "_grad_sum", param.sum(), global_step=self.step) + if self.print_every > 0 and self.step % self.print_every == 0: + end = time.time() + diff = timedelta(seconds=round(end - start)) + print_output = "[epoch: {:>3} step: {:>4}] train loss: {:>4.6} time: {}".format( + epoch, self.step, loss.data, diff) + print(print_output) + + if (self.validate_every > 0 and self.step % self.validate_every == 0 and + self.dev_data is not None): + self._do_validation() + + self.step += 1 + + # validate_every override validation at end of epochs + if self.dev_data and self.validate_every <= 0: + self._do_validation() + epoch += 1 + + + def _do_validation(self): res = self.tester.test() diff --git a/fastNLP/core/utils.py b/fastNLP/core/utils.py index 6d11686c..9fc091a7 100644 --- a/fastNLP/core/utils.py +++ b/fastNLP/core/utils.py @@ -7,9 +7,12 @@ from collections import namedtuple import numpy as np import torch +from tqdm import tqdm CheckRes = namedtuple('CheckRes', ['missing', 'unused', 'duplicated', 'required', 'all_needed', 'varargs'], verbose=False) + + def save_pickle(obj, pickle_path, file_name): """Save an object into a pickle file. @@ -53,6 +56,7 @@ def pickle_exist(pickle_path, pickle_name): else: return False + def _build_args(func, **kwargs): spect = inspect.getfullargspec(func) if spect.varkw is not None: @@ -108,7 +112,7 @@ def _check_arg_dict_list(func, args): assert callable(func) and isinstance(arg_dict_list, (list, tuple)) assert len(arg_dict_list) > 0 and isinstance(arg_dict_list[0], dict) spect = inspect.getfullargspec(func) - all_args = set([arg for arg in spect.args if arg!='self']) + all_args = set([arg for arg in spect.args if arg != 'self']) defaults = [] if spect.defaults is not None: defaults = [arg for arg in spect.defaults] @@ -130,6 +134,7 @@ def _check_arg_dict_list(func, args): all_needed=list(all_args), varargs=varargs) + def get_func_signature(func): """ @@ -153,7 +158,7 @@ def get_func_signature(func): class_name = func.__self__.__class__.__name__ signature = inspect.signature(func) signature_str = str(signature) - if len(signature_str)>2: + if len(signature_str) > 2: _self = '(self, ' else: _self = '(self' @@ -176,12 +181,13 @@ def _is_function_or_method(func): return False return True + def _check_function_or_method(func): if not _is_function_or_method(func): raise TypeError(f"{type(func)} is not a method or function.") -def _move_dict_value_to_device(*args, device:torch.device): +def _move_dict_value_to_device(*args, device: torch.device): """ move data to model's device, element in *args should be dict. This is a inplace change. @@ -206,7 +212,8 @@ class CheckError(Exception): CheckError. Used in losses.LossBase, metrics.MetricBase. """ - def __init__(self, check_res:CheckRes, func_signature:str): + + def __init__(self, check_res: CheckRes, func_signature: str): errs = [f'The following problems occurred when calling `{func_signature}`'] if check_res.varargs: @@ -228,8 +235,9 @@ IGNORE_CHECK_LEVEL = 0 WARNING_CHECK_LEVEL = 1 STRICT_CHECK_LEVEL = 2 -def _check_loss_evaluate(prev_func_signature:str, func_signature:str, check_res:CheckRes, - pred_dict:dict, target_dict:dict, dataset, check_level=0): + +def _check_loss_evaluate(prev_func_signature: str, func_signature: str, check_res: CheckRes, + pred_dict: dict, target_dict: dict, dataset, check_level=0): errs = [] unuseds = [] _unused_field = [] @@ -268,8 +276,8 @@ def _check_loss_evaluate(prev_func_signature:str, func_signature:str, check_res: f"target is {list(target_dict.keys())}).") if _miss_out_dataset: _tmp = (f"You might need to provide {_miss_out_dataset} in DataSet and set it as target(Right now " - f"target is {list(target_dict.keys())}) or output it " - f"in {prev_func_signature}(Right now it outputs {list(pred_dict.keys())}).") + f"target is {list(target_dict.keys())}) or output it " + f"in {prev_func_signature}(Right now it outputs {list(pred_dict.keys())}).") if _unused_field: _tmp += f"You can use DataSet.rename_field() to rename the field in `unused field:`. " suggestions.append(_tmp) @@ -277,15 +285,15 @@ def _check_loss_evaluate(prev_func_signature:str, func_signature:str, check_res: if check_res.duplicated: errs.append(f"\tduplicated param: {check_res.duplicated}.") suggestions.append(f"Delete {check_res.duplicated} in the output of " - f"{prev_func_signature} or do not set {check_res.duplicated} as targets. ") + f"{prev_func_signature} or do not set {check_res.duplicated} as targets. ") if check_level == STRICT_CHECK_LEVEL: errs.extend(unuseds) - if len(errs)>0: + if len(errs) > 0: errs.insert(0, f'The following problems occurred when calling {func_signature}') sugg_str = "" - if len(suggestions)>1: + if len(suggestions) > 1: for idx, sugg in enumerate(suggestions): sugg_str += f'({idx+1}). {sugg}' else: @@ -332,10 +340,10 @@ def _check_forward_error(forward_func, batch_x, dataset, check_level): if check_level == STRICT_CHECK_LEVEL: errs.extend(_unused) - if len(errs)>0: + if len(errs) > 0: errs.insert(0, f'The following problems occurred when calling {func_signature}') sugg_str = "" - if len(suggestions)>1: + if len(suggestions) > 1: for idx, sugg in enumerate(suggestions): sugg_str += f'({idx+1}). {sugg}' else: @@ -357,11 +365,11 @@ def seq_lens_to_masks(seq_lens, float=True): :return: list, np.ndarray or torch.Tensor, shape will be (B, max_length) """ if isinstance(seq_lens, np.ndarray): - assert len(np.shape(seq_lens))==1, f"seq_lens can only have one dimension, got {len(np.shape(seq_lens))}." + assert len(np.shape(seq_lens)) == 1, f"seq_lens can only have one dimension, got {len(np.shape(seq_lens))}." assert seq_lens.dtype in (int, np.int32, np.int64), f"seq_lens can only be integer, not {seq_lens.dtype}." raise NotImplemented elif isinstance(seq_lens, torch.LongTensor): - assert len(seq_lens.size())==1, f"seq_lens can only have one dimension, got {len(seq_lens.size())==1}." + assert len(seq_lens.size()) == 1, f"seq_lens can only have one dimension, got {len(seq_lens.size())==1}." batch_size = seq_lens.size(0) max_len = seq_lens.max() indexes = torch.arange(max_len).view(1, -1).repeat(batch_size, 1).to(seq_lens.device) @@ -376,3 +384,54 @@ def seq_lens_to_masks(seq_lens, float=True): else: raise NotImplemented + +def seq_mask(seq_len, max_len): + """Create sequence mask. + + :param seq_len: list or torch.Tensor, the lengths of sequences in a batch. + :param max_len: int, the maximum sequence length in a batch. + :return mask: torch.LongTensor, [batch_size, max_len] + + """ + if not isinstance(seq_len, torch.Tensor): + seq_len = torch.LongTensor(seq_len) + seq_len = seq_len.view(-1, 1).long() # [batch_size, 1] + seq_range = torch.arange(start=0, end=max_len, dtype=torch.long, device=seq_len.device).view(1, -1) # [1, max_len] + return torch.gt(seq_len, seq_range) # [batch_size, max_len] + + +def _relocate_pbar(pbar:tqdm, print_str:str): + """ + + When using tqdm, you cannot print. If you print, the tqdm will duplicate. By using this function, print_str will + show above tqdm. + :param pbar: tqdm + :param print_str: + :return: + """ + + params = ['desc', 'total', 'leave', 'file', 'ncols', 'mininterval', 'maxinterval', 'miniters', 'ascii', 'disable', + 'unit', 'unit_scale', 'dynamic_ncols', 'smoothing', 'bar_format', 'initial', 'position', 'postfix', 'unit_divisor', + 'gui'] + + attr_map = {'file': 'fp', 'initial':'n', 'position':'pos'} + + param_dict = {} + for param in params: + attr_name = param + if param in attr_map: + attr_name = attr_map[param] + value = getattr(pbar, attr_name) + if attr_name == 'pos': + value = abs(value) + param_dict[param] = value + + pbar.close() + avg_time = pbar.avg_time + start_t = pbar.start_t + print(print_str) + pbar = tqdm(**param_dict) + pbar.start_t = start_t + pbar.avg_time = avg_time + pbar.sp(pbar.__repr__()) + return pbar \ No newline at end of file diff --git a/fastNLP/io/embed_loader.py b/fastNLP/io/embed_loader.py index 6e557c2b..779b7fd0 100644 --- a/fastNLP/io/embed_loader.py +++ b/fastNLP/io/embed_loader.py @@ -105,9 +105,9 @@ class EmbedLoader(BaseLoader): if np.sum(hit_flags) < len(vocab): # some words from vocab are missing in pre-trained embedding - # we normally sample them + # we normally sample each dimension vocab_embed = embedding_matrix[np.where(hit_flags)] - mean, cov = vocab_embed.mean(axis=0), np.cov(vocab_embed.T) - sampled_vectors = np.random.multivariate_normal(mean, cov, size=(len(vocab) - np.sum(hit_flags),)) + sampled_vectors = np.random.normal(vocab_embed.mean(axis=0), vocab_embed.std(axis=0), + size=(len(vocab) - np.sum(hit_flags), emb_dim)) embedding_matrix[np.where(1 - hit_flags)] = sampled_vectors return embedding_matrix diff --git a/fastNLP/modules/encoder/char_embedding.py b/fastNLP/modules/encoder/char_embedding.py index 1ca3b5ba..249a73ad 100644 --- a/fastNLP/modules/encoder/char_embedding.py +++ b/fastNLP/modules/encoder/char_embedding.py @@ -43,7 +43,7 @@ class ConvCharEmbedding(nn.Module): # [batch_size*sent_length, feature_maps[i], 1, width - kernels[i] + 1] y = torch.squeeze(y, 2) # [batch_size*sent_length, feature_maps[i], width - kernels[i] + 1] - y = F.tanh(y) + y = torch.tanh(y) y, __ = torch.max(y, 2) # [batch_size*sent_length, feature_maps[i]] feats.append(y) diff --git a/test/core/test_dataset.py b/test/core/test_dataset.py index 786e7248..8ca2ed86 100644 --- a/test/core/test_dataset.py +++ b/test/core/test_dataset.py @@ -44,6 +44,9 @@ class TestDataSet(unittest.TestCase): self.assertEqual(dd.field_arrays["y"].content, [[1, 2, 3, 4]] * 10) self.assertEqual(dd.field_arrays["z"].content, [[5, 6]] * 10) + with self.assertRaises(RuntimeError): + dd.add_field("??", [[1, 2]] * 40) + def test_delete_field(self): dd = DataSet() dd.add_field("x", [[1, 2, 3]] * 10) @@ -65,8 +68,66 @@ class TestDataSet(unittest.TestCase): self.assertTrue(isinstance(sub_ds, DataSet)) self.assertEqual(len(sub_ds), 10) + def test_get_item_error(self): + with self.assertRaises(RuntimeError): + ds = DataSet({"x": [[1, 2, 3, 4]] * 10, "y": [[5, 6]] * 10}) + _ = ds[40:] + + with self.assertRaises(KeyError): + ds = DataSet({"x": [[1, 2, 3, 4]] * 10, "y": [[5, 6]] * 10}) + _ = ds["kom"] + + def test_len_(self): + ds = DataSet({"x": [[1, 2, 3, 4]] * 40, "y": [[5, 6]] * 40}) + self.assertEqual(len(ds), 40) + + ds = DataSet() + self.assertEqual(len(ds), 0) + def test_apply(self): ds = DataSet({"x": [[1, 2, 3, 4]] * 40, "y": [[5, 6]] * 40}) ds.apply(lambda ins: ins["x"][::-1], new_field_name="rx") self.assertTrue("rx" in ds.field_arrays) self.assertEqual(ds.field_arrays["rx"].content[0], [4, 3, 2, 1]) + + def test_contains(self): + ds = DataSet({"x": [[1, 2, 3, 4]] * 40, "y": [[5, 6]] * 40}) + self.assertTrue("x" in ds) + self.assertTrue("y" in ds) + self.assertFalse("z" in ds) + + def test_rename_field(self): + ds = DataSet({"x": [[1, 2, 3, 4]] * 10, "y": [[5, 6]] * 10}) + ds.rename_field("x", "xx") + self.assertTrue("xx" in ds) + self.assertFalse("x" in ds) + + with self.assertRaises(KeyError): + ds.rename_field("yyy", "oo") + + def test_input_target(self): + ds = DataSet({"x": [[1, 2, 3, 4]] * 10, "y": [[5, 6]] * 10}) + ds.set_input("x") + ds.set_target("y") + self.assertTrue(ds.field_arrays["x"].is_input) + self.assertTrue(ds.field_arrays["y"].is_target) + + with self.assertRaises(KeyError): + ds.set_input("xxx") + with self.assertRaises(KeyError): + ds.set_input("yyy") + + def test_get_input_name(self): + ds = DataSet({"x": [[1, 2, 3, 4]] * 10, "y": [[5, 6]] * 10}) + self.assertEqual(ds.get_input_name(), [_ for _ in ds.field_arrays if ds.field_arrays[_].is_input]) + + def test_get_target_name(self): + ds = DataSet({"x": [[1, 2, 3, 4]] * 10, "y": [[5, 6]] * 10}) + self.assertEqual(ds.get_target_name(), [_ for _ in ds.field_arrays if ds.field_arrays[_].is_target]) + + +class TestDataSetIter(unittest.TestCase): + def test__repr__(self): + ds = DataSet({"x": [[1, 2, 3, 4]] * 10, "y": [[5, 6]] * 10}) + for iter in ds: + self.assertEqual(iter.__repr__(), "{'x': [1, 2, 3, 4],\n'y': [5, 6]}") diff --git a/test/core/test_instance.py b/test/core/test_instance.py index abe6b7f7..1342ba2c 100644 --- a/test/core/test_instance.py +++ b/test/core/test_instance.py @@ -27,3 +27,9 @@ class TestCase(unittest.TestCase): self.assertEqual(ins["x"], [1, 2, 3]) self.assertEqual(ins["y"], [4, 5, 6]) self.assertEqual(ins["z"], [1, 1, 1]) + + def test_repr(self): + fields = {"x": [1, 2, 3], "y": [4, 5, 6], "z": [1, 1, 1]} + ins = Instance(**fields) + # simple print, that is enough. + print(ins) diff --git a/test/core/test_loss.py b/test/core/test_loss.py index 1124860b..9b77d0a1 100644 --- a/test/core/test_loss.py +++ b/test/core/test_loss.py @@ -271,40 +271,32 @@ class TestLoss(unittest.TestCase): loss3 = get_loss_3({'predict': predict}, {'truth': truth}) assert loss1 == loss2 and loss1 == loss3 - """ - get_loss_4 = LossFunc(func4) - loss4 = get_loss_4({'a': 1, 'b': 3}, {}) - print(loss4) - assert loss4 == (1 + 3) * 2 - - get_loss_5 = LossFunc(func4) - loss5 = get_loss_5({'a': 1, 'b': 3}, {'c': 4}) - print(loss5) - assert loss5 == (1 + 3) * 4 - - get_loss_6 = LossFunc(func6) - loss6 = get_loss_6({'a': 1, 'b': 3}, {'c': 4}) - print(loss6) - assert loss6 == (1 + 3) * 4 - - get_loss_7 = LossFunc(func6, c='cc') - loss7 = get_loss_7({'a': 1, 'b': 3}, {'cc': 4}) - print(loss7) - assert loss7 == (1 + 3) * 4 - """ - class TestLoss_v2(unittest.TestCase): def test_CrossEntropyLoss(self): - ce = loss.CrossEntropyLoss(input="my_predict", target="my_truth") + ce = loss.CrossEntropyLoss(pred="my_predict", target="my_truth") a = torch.randn(3, 5, requires_grad=False) b = torch.empty(3, dtype=torch.long).random_(5) ans = ce({"my_predict": a}, {"my_truth": b}) self.assertEqual(ans, torch.nn.functional.cross_entropy(a, b)) def test_BCELoss(self): - bce = loss.BCELoss(input="my_predict", target="my_truth") + bce = loss.BCELoss(pred="my_predict", target="my_truth") a = torch.sigmoid(torch.randn((3, 5), requires_grad=False)) b = torch.randn((3, 5), requires_grad=False) ans = bce({"my_predict": a}, {"my_truth": b}) self.assertEqual(ans, torch.nn.functional.binary_cross_entropy(a, b)) + + def test_L1Loss(self): + l1 = loss.L1Loss(pred="my_predict", target="my_truth") + a = torch.randn(3, 5, requires_grad=False) + b = torch.randn(3, 5) + ans = l1({"my_predict": a}, {"my_truth": b}) + self.assertEqual(ans, torch.nn.functional.l1_loss(a, b)) + + def test_NLLLoss(self): + l1 = loss.NLLLoss(pred="my_predict", target="my_truth") + a = F.log_softmax(torch.randn(3, 5, requires_grad=False), dim=0) + b = torch.tensor([1, 0, 4]) + ans = l1({"my_predict": a}, {"my_truth": b}) + self.assertEqual(ans, torch.nn.functional.nll_loss(a, b)) diff --git a/test/core/test_optimizer.py b/test/core/test_optimizer.py index ab18b9be..7b29b826 100644 --- a/test/core/test_optimizer.py +++ b/test/core/test_optimizer.py @@ -11,9 +11,6 @@ class TestOptim(unittest.TestCase): self.assertTrue("lr" in optim.__dict__["settings"]) self.assertTrue("momentum" in optim.__dict__["settings"]) - optim = SGD(0.001) - self.assertEqual(optim.__dict__["settings"]["lr"], 0.001) - optim = SGD(lr=0.001) self.assertEqual(optim.__dict__["settings"]["lr"], 0.001) @@ -25,17 +22,12 @@ class TestOptim(unittest.TestCase): _ = SGD("???") with self.assertRaises(RuntimeError): _ = SGD(0.001, lr=0.002) - with self.assertRaises(RuntimeError): - _ = SGD(lr=0.009, shit=9000) def test_Adam(self): optim = Adam(torch.nn.Linear(10, 3).parameters()) self.assertTrue("lr" in optim.__dict__["settings"]) self.assertTrue("weight_decay" in optim.__dict__["settings"]) - optim = Adam(0.001) - self.assertEqual(optim.__dict__["settings"]["lr"], 0.001) - optim = Adam(lr=0.001) self.assertEqual(optim.__dict__["settings"]["lr"], 0.001) diff --git a/test/core/test_trainer.py b/test/core/test_trainer.py index 5dce64a5..2975f39c 100644 --- a/test/core/test_trainer.py +++ b/test/core/test_trainer.py @@ -32,14 +32,14 @@ class TrainerTestGround(unittest.TestCase): model = NaiveClassifier(2, 1) trainer = Trainer(train_set, model, - losser=BCELoss(input="predict", target="y"), + losser=BCELoss(pred="predict", target="y"), metrics=AccuracyMetric(pred="predict", target="y"), n_epochs=10, batch_size=32, update_every=1, - validate_every=-1, + validate_every=10, dev_data=dev_set, - optimizer=SGD(0.1), - check_code_level=2 - ) - trainer.train() + optimizer=SGD(lr=0.1), + check_code_level=2, + use_tqdm=True) + trainer.train() \ No newline at end of file diff --git a/test/io/test_embed_loader.py b/test/io/test_embed_loader.py index fc1e7124..60e3710e 100644 --- a/test/io/test_embed_loader.py +++ b/test/io/test_embed_loader.py @@ -1,12 +1,12 @@ import unittest from fastNLP.core.vocabulary import Vocabulary +from fastNLP.io.embed_loader import EmbedLoader class TestEmbedLoader(unittest.TestCase): def test_case(self): vocab = Vocabulary() vocab.update(["the", "in", "I", "to", "of", "hahaha"]) - # TODO: np.cov在linux上segment fault,原因未知 - # embedding = EmbedLoader().fast_load_embedding(50, "../data_for_tests/glove.6B.50d_test.txt", vocab) - # self.assertEqual(tuple(embedding.shape), (len(vocab), 50)) + embedding = EmbedLoader().fast_load_embedding(50, "test/data_for_tests/glove.6B.50d_test.txt", vocab) + self.assertEqual(tuple(embedding.shape), (len(vocab), 50)) diff --git a/test/test_tutorial.py b/test/test_tutorial.py index fe6a9d86..f3648b4f 100644 --- a/test/test_tutorial.py +++ b/test/test_tutorial.py @@ -71,20 +71,16 @@ class TestTutorial(unittest.TestCase): # 实例化Trainer,传入模型和数据,进行训练 copy_model = deepcopy(model) - overfit_trainer = Trainer(model=copy_model, train_data=test_data, dev_data=test_data, - losser=CrossEntropyLoss(input="output", target="label_seq"), - metrics=AccuracyMetric(pred="predict", target="label_seq"), - save_path="./save", - batch_size=4, - n_epochs=10) + overfit_trainer = Trainer(train_data=test_data, model=copy_model, + losser=CrossEntropyLoss(pred="output", target="label_seq"), + metrics=AccuracyMetric(pred="predict", target="label_seq"), n_epochs=10, batch_size=4, + dev_data=test_data, save_path="./save") overfit_trainer.train() - trainer = Trainer(model=model, train_data=train_data, dev_data=test_data, - losser=CrossEntropyLoss(input="output", target="label_seq"), - metrics=AccuracyMetric(pred="predict", target="label_seq"), - save_path="./save", - batch_size=4, - n_epochs=10) + trainer = Trainer(train_data=train_data, model=model, + losser=CrossEntropyLoss(pred="output", target="label_seq"), + metrics=AccuracyMetric(pred="predict", target="label_seq"), n_epochs=10, batch_size=4, + dev_data=test_data, save_path="./save") trainer.train() print('Train finished!')