| @@ -36,7 +36,7 @@ class Saver: | |||||
| model_save_fn:Callable=None, **kwargs): | model_save_fn:Callable=None, **kwargs): | ||||
| if folder is None: | if folder is None: | ||||
| folder = Path.cwd().absolute() | folder = Path.cwd().absolute() | ||||
| logger.info(f"Parameter `folder` is None, and we will use {folder} to save and load your model.") | |||||
| logger.info(f"Parameter `folder` is None, and fastNLP will use {folder} to save and load your model.") | |||||
| folder = Path(folder) | folder = Path(folder) | ||||
| if not folder.exists(): | if not folder.exists(): | ||||
| folder.mkdir(parents=True, exist_ok=True) | folder.mkdir(parents=True, exist_ok=True) | ||||
| @@ -6,7 +6,7 @@ python -m torch.distributed.launch --nproc_per_node 2 tests/core/controllers/_te | |||||
| import argparse | import argparse | ||||
| import os | import os | ||||
| os.environ["CUDA_VISIBLE_DEVICES"] = "1,2" | |||||
| os.environ["CUDA_VISIBLE_DEVICES"] = "0, 1" | |||||
| import sys | import sys | ||||
| path = os.path.abspath(__file__) | path = os.path.abspath(__file__) | ||||
| @@ -224,7 +224,7 @@ def test_trainer_event_trigger_2( | |||||
| assert k in output[0] | assert k in output[0] | ||||
| @pytest.mark.parametrize("driver,device", [("torch", "cpu"), ("torch", 6)]) | |||||
| @pytest.mark.parametrize("driver,device", [("torch", "cpu"), ("torch", 0)]) | |||||
| @pytest.mark.torch | @pytest.mark.torch | ||||
| @magic_argv_env_context | @magic_argv_env_context | ||||
| def test_trainer_event_trigger_3( | def test_trainer_event_trigger_3( | ||||
| @@ -1,6 +1,9 @@ | |||||
| import pytest | import pytest | ||||
| import numpy as np | import numpy as np | ||||
| from datasets import Dataset as HfDataset | |||||
| from fastNLP.envs import _module_available | |||||
| if _module_available('datasets'): | |||||
| from datasets import Dataset as HfDataset | |||||
| from fastNLP.core.dataloaders.jittor_dataloader import JittorDataLoader | from fastNLP.core.dataloaders.jittor_dataloader import JittorDataLoader | ||||
| from fastNLP.core.dataset import DataSet as Fdataset | from fastNLP.core.dataset import DataSet as Fdataset | ||||
| @@ -40,7 +40,7 @@ def test_get_single_device(driver, device): | |||||
| @pytest.mark.torch | @pytest.mark.torch | ||||
| @pytest.mark.parametrize( | @pytest.mark.parametrize( | ||||
| "device", | "device", | ||||
| [[0, 2, 3], -1] | |||||
| [[0, 1], -1] | |||||
| ) | ) | ||||
| @pytest.mark.parametrize( | @pytest.mark.parametrize( | ||||
| "driver", | "driver", | ||||
| @@ -102,7 +102,7 @@ class TestAccuracy: | |||||
| metric_kwargs=metric_kwargs, | metric_kwargs=metric_kwargs, | ||||
| sklearn_metric=sklearn_accuracy, | sklearn_metric=sklearn_accuracy, | ||||
| ), | ), | ||||
| [(rank, processes, torch.device(f'cuda:{rank+4}')) for rank in range(processes)] | |||||
| [(rank, processes, torch.device(f'cuda:{rank}')) for rank in range(processes)] | |||||
| ) | ) | ||||
| else: | else: | ||||
| device = torch.device( | device = torch.device( | ||||
| @@ -177,6 +177,6 @@ class TestClassfiyFPreRecMetric: | |||||
| metric_class=ClassifyFPreRecMetric, | metric_class=ClassifyFPreRecMetric, | ||||
| metric_kwargs=metric_kwargs, | metric_kwargs=metric_kwargs, | ||||
| metric_result=ground_truth), | metric_result=ground_truth), | ||||
| [(rank, NUM_PROCESSES, torch.device(f'cuda:{rank+4}')) for rank in range(NUM_PROCESSES)]) | |||||
| [(rank, NUM_PROCESSES, torch.device(f'cuda:{rank}')) for rank in range(NUM_PROCESSES)]) | |||||
| pool.close() | pool.close() | ||||
| pool.join() | pool.join() | ||||