@@ -1,16 +1,12 @@ | |||||
from typing import Union, Callable, Dict, Optional, Any | |||||
from abc import ABC | |||||
__all__ = [ | __all__ = [ | ||||
'Callback', | 'Callback', | ||||
] | ] | ||||
from typing import Union, Callable, Dict, Optional, Any | |||||
from .callback_events import Events, EventsList, Filter | from .callback_events import Events, EventsList, Filter | ||||
from .utils import _get_monitor_value | |||||
from fastNLP.core.callbacks.callback_events import _SingleEventState | from fastNLP.core.callbacks.callback_events import _SingleEventState | ||||
from fastNLP.core.log import logger | |||||
from fastNLP.core.utils import apply_to_collection | |||||
from fastNLP.core.utils.utils import _check_valid_parameters_number | |||||
class Callback: | class Callback: | ||||
@@ -278,135 +274,3 @@ class _CallbackWrapper(Callback): | |||||
@property | @property | ||||
def callback_name(self): | def callback_name(self): | ||||
return self.fn.__name__ | return self.fn.__name__ | ||||
class CanItemDataType(ABC): | |||||
""" | |||||
检测可以进行传输的对象。 | |||||
""" | |||||
@classmethod | |||||
def __subclasshook__(cls, subclass: Any) -> Union[bool, Any]: | |||||
if cls is CanItemDataType: | |||||
item = getattr(subclass, 'item', None) | |||||
return callable(item) | |||||
return NotImplemented | |||||
class HasMonitorCallback(Callback): | |||||
def __init__(self, monitor, larger_better, must_have_monitor=False): | |||||
self.set_monitor(monitor, larger_better) | |||||
self.must_have_moinitor = must_have_monitor | |||||
def set_monitor(self, monitor, larger_better): | |||||
if callable(monitor): # 检查是否能够接受一个参数 | |||||
_check_valid_parameters_number(monitor, expected_params=['results'], fn_name='monitor') | |||||
self.monitor = monitor | |||||
else: | |||||
self.monitor = str(monitor) if monitor is not None else None | |||||
self.larger_better = bool(larger_better) | |||||
if larger_better: | |||||
self.monitor_value = float('-inf') | |||||
else: | |||||
self.monitor_value = float('inf') | |||||
self._real_monitor = self.monitor | |||||
def on_after_trainer_initialized(self, trainer, driver): | |||||
""" | |||||
如果本身的 monitor 没有设置,则根据 Trainer 中的 monitor 设置 monitor 。 | |||||
同时对于必须要有 monitor 设置的 callback ,该函数会进行检查。 | |||||
:param trainer: | |||||
:param driver: | |||||
:return: | |||||
""" | |||||
if self.monitor is None and trainer.monitor is not None: | |||||
self.set_monitor(monitor=trainer.monitor, larger_better=trainer.larger_better) | |||||
if self.must_have_moinitor and self.monitor is None: | |||||
raise RuntimeError(f"No `monitor` is set for {self.__class__.__name__}. " | |||||
f"You can set it in the initialization or through Trainer.") | |||||
def get_monitor_value(self, results:Dict)->Union[float, None]: | |||||
""" | |||||
获取 monitor 的值,如果 monitor 没有直接找到,会尝试使用匹配的方式寻找,并把匹配到的设置到 self._real_monitor 属性上。 | |||||
:param results: | |||||
:return: 如果为 None ,表明此次没有找到合适的monitor | |||||
""" | |||||
if len(results)==0: | |||||
return None | |||||
# 保证所有的 tensor 都被转换为了 python 特定的类型 | |||||
results = apply_to_collection(results, dtype=CanItemDataType, function=lambda x: x.item()) | |||||
use_monitor, monitor_value = _get_monitor_value(monitor=self.monitor, | |||||
real_monitor=self._real_monitor, | |||||
res=results) | |||||
if monitor_value is None: | |||||
return monitor_value | |||||
# 第一次运行 | |||||
if isinstance(self.monitor, str) and self._real_monitor == self.monitor and use_monitor != self.monitor: | |||||
logger.warning(f"We can not find `{self.monitor}` in the evaluation result (with keys as {list(results.keys())}), " | |||||
f"we use the `{use_monitor}` as the monitor for `{self.__class__.__name__}`.") | |||||
# 检测到此次和上次不同。 | |||||
elif isinstance(self.monitor, str) and self._real_monitor != self.monitor and use_monitor != self._real_monitor: | |||||
logger.warning(f"Change of monitor detected for `{self.__class__.__name__}`. " | |||||
f"The expected monitor is:`{self.monitor}`, last used monitor is:" | |||||
f"`{self._real_monitor}` and current monitor is:`{use_monitor}`. Please consider using a " | |||||
f"customized monitor function when the evaluation results are varying between validation.") | |||||
self._real_monitor = use_monitor | |||||
return monitor_value | |||||
def is_better_monitor_value(self, monitor_value: float, keep_if_better=True): | |||||
""" | |||||
检测 monitor_value 是否是更好的 | |||||
:param monitor_value: 待检查的 monitor_value 。如果为 None ,返回 False | |||||
:param keep_if_better: 如果传入的 monitor_value 值更好,则将其保存下来。 | |||||
:return: | |||||
""" | |||||
if monitor_value is None: | |||||
return False | |||||
better = self.is_former_monitor_value_better(monitor_value, self.monitor_value) | |||||
if keep_if_better and better: | |||||
self.monitor_value = monitor_value | |||||
return better | |||||
def is_former_monitor_value_better(self, monitor_value1, monitor_value2): | |||||
""" | |||||
传入的两个值中,是否monitor_value1的结果更好。 | |||||
:param monitor_value1: | |||||
:param monitor_value2: | |||||
:return: | |||||
""" | |||||
if monitor_value1 is None and monitor_value2 is None: | |||||
return True | |||||
if monitor_value1 is None: | |||||
return False | |||||
if monitor_value2 is None: | |||||
return True | |||||
better = False | |||||
if (self.larger_better and monitor_value1 > monitor_value2) or \ | |||||
(not self.larger_better and monitor_value1 < monitor_value2): | |||||
better = True | |||||
return better | |||||
@property | |||||
def monitor_name(self): | |||||
""" | |||||
返回 monitor 的名字,如果 monitor 是个 callable 的函数,则返回该函数的名称。 | |||||
:return: | |||||
""" | |||||
if callable(self.monitor): | |||||
try: | |||||
monitor_name = self.monitor.__qualname__ | |||||
except: | |||||
monitor_name = self.monitor.__name__ | |||||
elif self.monitor is None: | |||||
return None | |||||
else: | |||||
# 这里是能是monitor,而不能是real_monitor,因为用户再次运行的时候real_monitor被初始化为monitor了 | |||||
monitor_name = str(self.monitor) | |||||
return monitor_name |
@@ -10,9 +10,9 @@ from copy import deepcopy | |||||
import fastNLP | import fastNLP | ||||
from .callback import HasMonitorCallback | |||||
from .has_monitor_callback import HasMonitorCallback | |||||
from fastNLP.core.log import logger | from fastNLP.core.log import logger | ||||
from fastNLP.envs import FASTNLP_LAUNCH_TIME | |||||
from fastNLP.envs import FASTNLP_LAUNCH_TIME, FASTNLP_GLOBAL_RANK | |||||
from fastNLP.core.utils import synchronize_safe_rm, synchronize_mkdir | from fastNLP.core.utils import synchronize_safe_rm, synchronize_mkdir | ||||
@@ -217,7 +217,8 @@ class CheckpointCallback(HasMonitorCallback): | |||||
:return: | :return: | ||||
""" | """ | ||||
folder = self.timestamp_path.joinpath(folder_name) | folder = self.timestamp_path.joinpath(folder_name) | ||||
synchronize_mkdir(folder) | |||||
if int(os.environ.get(FASTNLP_GLOBAL_RANK, 0)) == 0: # 只在进程0上创建 | |||||
synchronize_mkdir(folder) | |||||
_fn = getattr(trainer, self.save_fn_name) | _fn = getattr(trainer, self.save_fn_name) | ||||
_fn( | _fn( | ||||
folder=folder, | folder=folder, | ||||
@@ -4,7 +4,7 @@ __all__ = [ | |||||
from typing import Dict, Union, Callable | from typing import Dict, Union, Callable | ||||
from .callback import HasMonitorCallback | |||||
from .has_monitor_callback import HasMonitorCallback | |||||
from fastNLP.core.utils.exceptions import EarlyStopException | from fastNLP.core.utils.exceptions import EarlyStopException | ||||
@@ -0,0 +1,189 @@ | |||||
__all__ = [ | |||||
'HasMonitorCallback', | |||||
'ExecuteOnceBetterMonitor' | |||||
] | |||||
from typing import Dict, Union, Any | |||||
from abc import ABC | |||||
from fastNLP.core.utils import apply_to_collection | |||||
from fastNLP.core.callbacks import Callback | |||||
from fastNLP.core.callbacks.utils import _get_monitor_value | |||||
from fastNLP.core.log import logger | |||||
from fastNLP.core.utils.utils import _check_valid_parameters_number | |||||
class CanItemDataType(ABC): | |||||
""" | |||||
检测可以进行传输的对象。 | |||||
""" | |||||
@classmethod | |||||
def __subclasshook__(cls, subclass: Any) -> Union[bool, Any]: | |||||
if cls is CanItemDataType: | |||||
item = getattr(subclass, 'item', None) | |||||
return callable(item) | |||||
return NotImplemented | |||||
class HasMonitorCallback(Callback): | |||||
def __init__(self, monitor, larger_better, must_have_monitor=False): | |||||
""" | |||||
该 callback 不直接进行使用,作为其它相关 callback 的父类使用,如果 callback 有使用 monitor 可以继承该函数里面实现了 | |||||
(1)判断monitor合法性;(2)在需要时, 根据trainer的monitor设置自己的monitor名称。 | |||||
:param monitor: 监控的 metric 值。如果在 evaluation 结果中没有找到完全一致的名称,将使用 最短公共字符串算法 找到最匹配 | |||||
的那个作为 monitor 。如果为 None,将尝试使用 Trainer 设置的 monitor 。也可以传入一个函数,接受参数为 evaluation 的结 | |||||
果(字典类型),返回一个 float 值作为 monitor 的结果。 | |||||
:param larger_better: monitor 是否时越大越好 | |||||
:param must_have_monitor: 这个 callback 是否必须有 monitor 设置。如果设置为 True ,且没检测到设置 monitor 会报错。 | |||||
""" | |||||
self.set_monitor(monitor, larger_better) | |||||
self.must_have_moinitor = must_have_monitor | |||||
def set_monitor(self, monitor, larger_better): | |||||
if callable(monitor): # 检查是否能够接受一个参数 | |||||
_check_valid_parameters_number(monitor, expected_params=['results'], fn_name='monitor') | |||||
self.monitor = monitor | |||||
else: | |||||
self.monitor = str(monitor) if monitor is not None else None | |||||
self.larger_better = bool(larger_better) | |||||
if larger_better: | |||||
self.monitor_value = float('-inf') | |||||
else: | |||||
self.monitor_value = float('inf') | |||||
self._real_monitor = self.monitor | |||||
def on_after_trainer_initialized(self, trainer, driver): | |||||
""" | |||||
如果本身的 monitor 没有设置,则根据 Trainer 中的 monitor 设置 monitor 。 | |||||
同时对于必须要有 monitor 设置的 callback ,该函数会进行检查。 | |||||
:param trainer: | |||||
:param driver: | |||||
:return: | |||||
""" | |||||
if self.monitor is None and trainer.monitor is not None: | |||||
self.set_monitor(monitor=trainer.monitor, larger_better=trainer.larger_better) | |||||
if self.must_have_moinitor and self.monitor is None: | |||||
raise RuntimeError(f"No `monitor` is set for {self.__class__.__name__}. " | |||||
f"You can set it in the initialization or through Trainer.") | |||||
def get_monitor_value(self, results:Dict)->Union[float, None]: | |||||
""" | |||||
获取 monitor 的值,如果 monitor 没有直接找到,会尝试使用匹配的方式寻找,并把匹配到的设置到 self._real_monitor 属性上。 | |||||
:param results: | |||||
:return: 如果为 None ,表明此次没有找到合适的monitor | |||||
""" | |||||
if len(results)==0: | |||||
return None | |||||
# 保证所有的 tensor 都被转换为了 python 特定的类型 | |||||
results = apply_to_collection(results, dtype=CanItemDataType, function=lambda x: x.item()) | |||||
use_monitor, monitor_value = _get_monitor_value(monitor=self.monitor, | |||||
real_monitor=self._real_monitor, | |||||
res=results) | |||||
if monitor_value is None: | |||||
return monitor_value | |||||
# 第一次运行 | |||||
if isinstance(self.monitor, str) and self._real_monitor == self.monitor and use_monitor != self.monitor: | |||||
logger.warning(f"We can not find `{self.monitor}` in the evaluation result (with keys as {list(results.keys())}), " | |||||
f"we use the `{use_monitor}` as the monitor for `{self.__class__.__name__}`.") | |||||
# 检测到此次和上次不同。 | |||||
elif isinstance(self.monitor, str) and self._real_monitor != self.monitor and use_monitor != self._real_monitor: | |||||
logger.warning(f"Change of monitor detected for `{self.__class__.__name__}`. " | |||||
f"The expected monitor is:`{self.monitor}`, last used monitor is:" | |||||
f"`{self._real_monitor}` and current monitor is:`{use_monitor}`. Please consider using a " | |||||
f"customized monitor function when the evaluation results are varying between validation.") | |||||
self._real_monitor = use_monitor | |||||
return monitor_value | |||||
def is_better_monitor_value(self, monitor_value: float, keep_if_better=True): | |||||
""" | |||||
检测 monitor_value 是否是更好的 | |||||
:param monitor_value: 待检查的 monitor_value 。如果为 None ,返回 False | |||||
:param keep_if_better: 如果传入的 monitor_value 值更好,则将其保存下来。 | |||||
:return: | |||||
""" | |||||
if monitor_value is None: | |||||
return False | |||||
better = self.is_former_monitor_value_better(monitor_value, self.monitor_value) | |||||
if keep_if_better and better: | |||||
self.monitor_value = monitor_value | |||||
return better | |||||
def is_better_results(self, results, keep_if_better=True): | |||||
""" | |||||
检测给定的 results 是否比上一次更好,如果本次 results 中没有找到相关的monitor 返回 False。 | |||||
:param results: on_valid_ends() 接口中传入的 evaluation 结果。 | |||||
:param keep_if_better: 当返回为 True 时,是否保存到 self.monitor_value 中。 | |||||
:return: | |||||
""" | |||||
monitor_value = self.get_monitor_value(results) | |||||
if monitor_value is None: | |||||
return False | |||||
return self.is_better_monitor_value(monitor_value, keep_if_better=keep_if_better) | |||||
def is_former_monitor_value_better(self, monitor_value1, monitor_value2): | |||||
""" | |||||
传入的两个值中,是否monitor_value1的结果更好。 | |||||
:param monitor_value1: | |||||
:param monitor_value2: | |||||
:return: | |||||
""" | |||||
if monitor_value1 is None and monitor_value2 is None: | |||||
return True | |||||
if monitor_value1 is None: | |||||
return False | |||||
if monitor_value2 is None: | |||||
return True | |||||
better = False | |||||
if (self.larger_better and monitor_value1 > monitor_value2) or \ | |||||
(not self.larger_better and monitor_value1 < monitor_value2): | |||||
better = True | |||||
return better | |||||
@property | |||||
def monitor_name(self): | |||||
""" | |||||
返回 monitor 的名字,如果 monitor 是个 callable 的函数,则返回该函数的名称。 | |||||
:return: | |||||
""" | |||||
if callable(self.monitor): | |||||
try: | |||||
monitor_name = self.monitor.__qualname__ | |||||
except: | |||||
monitor_name = self.monitor.__name__ | |||||
elif self.monitor is None: | |||||
return None | |||||
else: | |||||
# 这里是能是monitor,而不能是real_monitor,因为用户再次运行的时候real_monitor被初始化为monitor了 | |||||
monitor_name = str(self.monitor) | |||||
return monitor_name | |||||
class ExecuteOnceBetterMonitor(HasMonitorCallback): | |||||
def __init__(self, monitor, larger_better, execute_fn): | |||||
""" | |||||
当监控的 monitor 结果更好的时候,调用 execute_fn 函数。 | |||||
:param monitor: 监控的 metric 值。如果在 evaluation 结果中没有找到完全一致的名称,将使用 最短公共字符串算法 找到最匹配 | |||||
的那个作为 monitor 。如果为 None,将尝试使用 Trainer 设置的 monitor 。也可以传入一个函数,接受参数为 evaluation 的结 | |||||
果(字典类型),返回一个 float 值作为 monitor 的结果。 | |||||
:param larger_better: monitor 是否时越大越好 | |||||
:param execute_fn: 一个可执行的函数,不接受任何参数,不反回值。在 monitor 取得更好结果的时候会调用。 | |||||
""" | |||||
super().__init__(monitor, larger_better, must_have_monitor=True) | |||||
_check_valid_parameters_number(execute_fn, expected_params=[], fn_name='execute_fn') | |||||
self.execute_fn = execute_fn() | |||||
def on_validate_end(self, trainer, results): | |||||
if self.is_better_results(results): | |||||
self.execute_fn() |
@@ -4,7 +4,7 @@ __all__ = [ | |||||
import os | import os | ||||
from typing import Optional, Callable, Union | from typing import Optional, Callable, Union | ||||
from .callback import HasMonitorCallback | |||||
from .has_monitor_callback import HasMonitorCallback | |||||
from io import BytesIO | from io import BytesIO | ||||
import shutil | import shutil | ||||
@@ -80,10 +80,7 @@ class LoadBestModelCallback(HasMonitorCallback): | |||||
self.get_monitor_value(sanity_check_res) | self.get_monitor_value(sanity_check_res) | ||||
def on_validate_end(self, trainer, results): | def on_validate_end(self, trainer, results): | ||||
monitor_value = self.get_monitor_value(results) | |||||
if monitor_value is None: | |||||
return | |||||
if self.is_better_monitor_value(monitor_value, keep_if_better=True): | |||||
if self.is_better_results(results, keep_if_better=True): | |||||
if self.real_save_folder: | if self.real_save_folder: | ||||
trainer.save_model(folder=self.real_save_folder, only_state_dict=self.only_state_dict, | trainer.save_model(folder=self.real_save_folder, only_state_dict=self.only_state_dict, | ||||
model_save_fn=self.model_save_fn) | model_save_fn=self.model_save_fn) | ||||
@@ -8,7 +8,7 @@ __all__ = [ | |||||
'RichCallback' | 'RichCallback' | ||||
] | ] | ||||
from .callback import HasMonitorCallback | |||||
from .has_monitor_callback import HasMonitorCallback | |||||
from fastNLP.core.callbacks.utils import _get_monitor_value | from fastNLP.core.callbacks.utils import _get_monitor_value | ||||
from fastNLP.core.utils import f_rich_progress | from fastNLP.core.utils import f_rich_progress | ||||
from fastNLP.core.log import logger | from fastNLP.core.log import logger | ||||
@@ -27,7 +27,7 @@ def initialize_torch_driver(driver: str, device: Optional[Union[str, torch.devic | |||||
# world_size 和 rank | # world_size 和 rank | ||||
if FASTNLP_BACKEND_LAUNCH in os.environ: | if FASTNLP_BACKEND_LAUNCH in os.environ: | ||||
if device is not None: | if device is not None: | ||||
logger.info("Parameter `device` would be ignored when you are using `torch.distributed.run` to pull " | |||||
logger.warning_once("Parameter `device` would be ignored when you are using `torch.distributed.run` to pull " | |||||
"up your script. And we will directly get the local device via " | "up your script. And we will directly get the local device via " | ||||
"`os.environ['LOCAL_RANK']`.") | "`os.environ['LOCAL_RANK']`.") | ||||
return TorchDDPDriver(model, torch.device(f"cuda:{os.environ['LOCAL_RANK']}"), True, **kwargs) | return TorchDDPDriver(model, torch.device(f"cuda:{os.environ['LOCAL_RANK']}"), True, **kwargs) | ||||
@@ -25,7 +25,7 @@ __all__ = [ | |||||
from .utils import optimizer_state_to_device | from .utils import optimizer_state_to_device | ||||
from fastNLP.core.drivers.driver import Driver | from fastNLP.core.drivers.driver import Driver | ||||
from fastNLP.core.drivers.torch_driver.utils import _build_fp16_env | |||||
from fastNLP.core.drivers.torch_driver.utils import _build_fp16_env, DummyGradScaler | |||||
from fastNLP.core.utils import apply_to_collection, torch_move_data_to_device | from fastNLP.core.utils import apply_to_collection, torch_move_data_to_device | ||||
from fastNLP.envs import rank_zero_call | from fastNLP.envs import rank_zero_call | ||||
from fastNLP.envs import FASTNLP_SEED_WORKERS, FASTNLP_GLOBAL_RANK, FASTNLP_MODEL_FILENAME, FASTNLP_CHECKPOINT_FILENAME | from fastNLP.envs import FASTNLP_SEED_WORKERS, FASTNLP_GLOBAL_RANK, FASTNLP_MODEL_FILENAME, FASTNLP_CHECKPOINT_FILENAME | ||||
@@ -224,6 +224,11 @@ class TorchDriver(Driver): | |||||
optimizer_state["state"] = optimizer_state_to_device(optimizer_state["state"], torch.device("cpu")) | optimizer_state["state"] = optimizer_state_to_device(optimizer_state["state"], torch.device("cpu")) | ||||
optimizers_state_dict[f"optimizer{i}"] = optimizer_state # 注意这里没有使用 deepcopy,测试是不需要的; | optimizers_state_dict[f"optimizer{i}"] = optimizer_state # 注意这里没有使用 deepcopy,测试是不需要的; | ||||
# 4. 保存fp16的状态 | |||||
if not isinstance(self.grad_scaler, DummyGradScaler): | |||||
grad_scaler_state_dict = self.grad_scaler.state_dict() | |||||
states['grad_scaler_state_dict'] = grad_scaler_state_dict | |||||
logger.debug("Save optimizer state dict") | logger.debug("Save optimizer state dict") | ||||
states["optimizers_state_dict"] = optimizers_state_dict | states["optimizers_state_dict"] = optimizers_state_dict | ||||
torch.save(states, Path(folder).joinpath(FASTNLP_CHECKPOINT_FILENAME)) | torch.save(states, Path(folder).joinpath(FASTNLP_CHECKPOINT_FILENAME)) | ||||
@@ -232,7 +237,7 @@ class TorchDriver(Driver): | |||||
states = torch.load(folder.joinpath(FASTNLP_CHECKPOINT_FILENAME)) | states = torch.load(folder.joinpath(FASTNLP_CHECKPOINT_FILENAME)) | ||||
# 1. 加载 optimizers 的状态; | # 1. 加载 optimizers 的状态; | ||||
optimizers_state_dict = states["optimizers_state_dict"] | |||||
optimizers_state_dict = states.pop("optimizers_state_dict") | |||||
for i in range(len(self.optimizers)): | for i in range(len(self.optimizers)): | ||||
optimizer: torch.optim.Optimizer = self.optimizers[i] | optimizer: torch.optim.Optimizer = self.optimizers[i] | ||||
optimizer.load_state_dict(optimizers_state_dict[f"optimizer{i}"]) | optimizer.load_state_dict(optimizers_state_dict[f"optimizer{i}"]) | ||||
@@ -244,26 +249,37 @@ class TorchDriver(Driver): | |||||
res = torch.load(folder.joinpath(FASTNLP_MODEL_FILENAME), map_location='cpu') | res = torch.load(folder.joinpath(FASTNLP_MODEL_FILENAME), map_location='cpu') | ||||
if only_state_dict: | if only_state_dict: | ||||
model.load_state_dict(res) | model.load_state_dict(res) | ||||
logger.debug("Load model state dict.") | |||||
logger.debug("Load model state dict...") | |||||
else: | else: | ||||
model.load_state_dict(res.state_dict()) | model.load_state_dict(res.state_dict()) | ||||
logger.debug("Load model.") | |||||
# 3. 恢复 sampler 的状态; | |||||
logger.debug("Load model...") | |||||
# 3. 加载fp16的状态 | |||||
if 'grad_scaler_state_dict' in states: | |||||
grad_scaler_state_dict = states.pop('grad_scaler_state_dict') | |||||
if not isinstance(self.grad_scaler, DummyGradScaler): | |||||
self.grad_scaler.load_state_dict(grad_scaler_state_dict) | |||||
logger.debug("Load grad_scaler state dict...") | |||||
elif not isinstance(self.grad_scaler, DummyGradScaler): | |||||
logger.warning(f"Checkpoint {folder} is not trained with fp16=True, while resume to a fp16=True training, " | |||||
f"the training process may be unstable.") | |||||
# 4. 恢复 sampler 的状态; | |||||
dataloader_args = self.get_dataloader_args(dataloader) | dataloader_args = self.get_dataloader_args(dataloader) | ||||
if isinstance(dataloader_args.batch_sampler, ReproducibleBatchSampler): | if isinstance(dataloader_args.batch_sampler, ReproducibleBatchSampler): | ||||
sampler = dataloader_args.batch_sampler | sampler = dataloader_args.batch_sampler | ||||
elif isinstance(dataloader_args.sampler, ReproducibleSampler): | elif isinstance(dataloader_args.sampler, ReproducibleSampler): | ||||
sampler = dataloader_args.sampler | sampler = dataloader_args.sampler | ||||
elif self.is_distributed(): | elif self.is_distributed(): | ||||
raise RuntimeError("It is not allowed to use checkpoint retraining when you do not use our or `ReproducibleSampler`.") | |||||
raise RuntimeError("It is not allowed to use checkpoint retraining when you do not use our or " | |||||
"`ReproducibleSampler`.") | |||||
else: | else: | ||||
sampler = RandomBatchSampler( | sampler = RandomBatchSampler( | ||||
batch_sampler=dataloader_args.batch_sampler if dataloader_args.batch_sampler is not None else dataloader_args.sampler, | batch_sampler=dataloader_args.batch_sampler if dataloader_args.batch_sampler is not None else dataloader_args.sampler, | ||||
batch_size=dataloader_args.batch_size, | batch_size=dataloader_args.batch_size, | ||||
drop_last=dataloader_args.drop_last | drop_last=dataloader_args.drop_last | ||||
) | ) | ||||
sampler.load_state_dict(states['sampler_states']) | |||||
sampler.load_state_dict(states.pop('sampler_states')) | |||||
states["dataloader"] = self.set_dist_repro_dataloader(dataloader, sampler) | states["dataloader"] = self.set_dist_repro_dataloader(dataloader, sampler) | ||||
# 4. 修改 trainer_state.batch_idx_in_epoch | # 4. 修改 trainer_state.batch_idx_in_epoch | ||||
@@ -203,7 +203,7 @@ def _check_valid_parameters_number(fn, expected_params:List[str], fn_name=None): | |||||
:return: | :return: | ||||
""" | """ | ||||
if fn_name is not None: | if fn_name is not None: | ||||
assert callable(fn), f"{fn_name} should be callable, instead of {type(fn)}." | |||||
assert callable(fn), f"`{fn_name}` should be callable, instead of `{type(fn)}`." | |||||
parameters = list(inspect.signature(fn).parameters.values()) | parameters = list(inspect.signature(fn).parameters.values()) | ||||
if inspect.ismethod(fn): | if inspect.ismethod(fn): | ||||
@@ -606,16 +606,38 @@ def seq_len_to_mask(seq_len, max_len=None): | |||||
return mask | return mask | ||||
def wait_to_success(fn, no=False): | |||||
def wait_filepath(path, exist=True): | |||||
""" | |||||
等待当 path 的存在状态为 {exist} 时返回 | |||||
:param path: 待检测的 path | |||||
:param exist: 为 True 时表明检测这个 path 存在就返回; 为 False 表明检测到这个 path 不存在 返回。 | |||||
:return: | |||||
""" | |||||
if isinstance(path, str): | |||||
path = Path(path) | |||||
assert isinstance(path, Path) | |||||
count = 0 | |||||
while True: | while True: | ||||
sleep(0.01) | sleep(0.01) | ||||
if (no and not fn()) or (not no and fn()): | |||||
if path.exists() == exist: | |||||
break | break | ||||
count += 1 | |||||
if count % 1000 == 0: | |||||
msg = 'create' if exist else 'delete' | |||||
logger.warning(f"Waiting path:{path} to {msg} for {count*0.01} seconds...") | |||||
# 这个是因为在分布式文件系统中可能会发生错误,rank0下发删除成功后就运行走了,但实际的删除需要rank0的机器发送到远程文件系统再去执行,这个时候 | |||||
# 在rank0那里,确实已经删除成功了,但是在远程文件系统那里这个操作还没完成,rank1读取的时候还是读取到存在这个文件; | |||||
def synchronize_safe_rm(path: Optional[Union[str, Path]]): | def synchronize_safe_rm(path: Optional[Union[str, Path]]): | ||||
""" | |||||
这个是因为在分布式文件系统中可能会发生错误,rank0下发删除成功后就运行走了,但实际的删除需要rank0的机器发送到远程文件系统再去执行,这个时候 | |||||
在rank0那里,确实已经删除成功了,但是在远程文件系统那里这个操作还没完成,rank1读取的时候还是读取到存在这个文件; | |||||
该函数会保证所有进程都检测到 path 删除之后才退出,请保证不同进程上 path 是完全一样的,否则会陷入死锁状态。 | |||||
:param path: | |||||
:return: | |||||
""" | |||||
if path is None: | if path is None: | ||||
return | return | ||||
if isinstance(path, str): | if isinstance(path, str): | ||||
@@ -624,7 +646,7 @@ def synchronize_safe_rm(path: Optional[Union[str, Path]]): | |||||
return | return | ||||
if int(os.environ.get(FASTNLP_GLOBAL_RANK, 0)) == 0: | if int(os.environ.get(FASTNLP_GLOBAL_RANK, 0)) == 0: | ||||
_recursive_rm(path) | _recursive_rm(path) | ||||
wait_to_success(path.exists, no=True) | |||||
wait_filepath(path, exist=False) | |||||
def _recursive_rm(path: Path): | def _recursive_rm(path: Path): | ||||
@@ -643,6 +665,8 @@ def _recursive_rm(path: Path): | |||||
def synchronize_mkdir(path: Optional[Union[str, Path]]): | def synchronize_mkdir(path: Optional[Union[str, Path]]): | ||||
""" | """ | ||||
注意该函数是用来创建文件夹,如果需要创建一个文件,不要使用该函数; | 注意该函数是用来创建文件夹,如果需要创建一个文件,不要使用该函数; | ||||
该函数会保证所有进程都检测到 path 创建之后才退出,请保证不同进程上 path 是完全一样的,否则会陷入死锁状态。 | |||||
""" | """ | ||||
if path is None: | if path is None: | ||||
return | return | ||||
@@ -652,7 +676,7 @@ def synchronize_mkdir(path: Optional[Union[str, Path]]): | |||||
if int(os.environ.get(FASTNLP_GLOBAL_RANK, 0)) == 0: | if int(os.environ.get(FASTNLP_GLOBAL_RANK, 0)) == 0: | ||||
path.mkdir(parents=True, exist_ok=True) | path.mkdir(parents=True, exist_ok=True) | ||||
wait_to_success(path.exists) | |||||
wait_filepath(path, exist=True) | |||||
def get_class_that_defined_method(method): | def get_class_that_defined_method(method): | ||||
@@ -1,6 +1,6 @@ | |||||
import os | import os | ||||
from fastNLP.envs.set_env import dump_fastnlp_backend | |||||
from fastNLP.envs.set_backend import dump_fastnlp_backend | |||||
from tests.helpers.utils import Capturing | from tests.helpers.utils import Capturing | ||||
from fastNLP.core import synchronize_safe_rm | from fastNLP.core import synchronize_safe_rm | ||||