Browse Source

tutorial 的 ipynb 文件

tags/v0.4.10
ChenXin 6 years ago
parent
commit
674c3d1028
3 changed files with 1111 additions and 1775 deletions
  1. +0
    -1775
      tutorials/fastnlp_1min_tutorial.ipynb
  2. +280
    -0
      tutorials/quickstart.ipynb
  3. +831
    -0
      tutorials/tutorial_one.ipynb

+ 0
- 1775
tutorials/fastnlp_1min_tutorial.ipynb
File diff suppressed because it is too large
View File


+ 280
- 0
tutorials/quickstart.ipynb View File

@@ -0,0 +1,280 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"# 快速入门"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'raw_sentence': A series of escapades demonstrating the adage that what is good for the goose is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story . type=str,\n",
"'label': 1 type=str}"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from fastNLP.io import CSVLoader\n",
"\n",
"loader = CSVLoader(headers=('raw_sentence', 'label'), sep='\\t')\n",
"dataset = loader.load(\"./sample_data/tutorial_sample_dataset.csv\")\n",
"dataset[0]"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'raw_sentence': A series of escapades demonstrating the adage that what is good for the goose is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story . type=str,\n",
"'label': 1 type=str,\n",
"'sentence': a series of escapades demonstrating the adage that what is good for the goose is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story . type=str,\n",
"'words': ['a', 'series', 'of', 'escapades', 'demonstrating', 'the', 'adage', 'that', 'what', 'is', 'good', 'for', 'the', 'goose', 'is', 'also', 'good', 'for', 'the', 'gander', ',', 'some', 'of', 'which', 'occasionally', 'amuses', 'but', 'none', 'of', 'which', 'amounts', 'to', 'much', 'of', 'a', 'story', '.'] type=list}"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# 将所有字母转为小写, 并所有句子变成单词序列\n",
"dataset.apply(lambda x: x['raw_sentence'].lower(), new_field_name='sentence')\n",
"dataset.apply(lambda x: x['sentence'].split(), new_field_name='words', is_input=True)\n",
"dataset[0]"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'raw_sentence': A series of escapades demonstrating the adage that what is good for the goose is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story . type=str,\n",
"'label': 1 type=str,\n",
"'sentence': a series of escapades demonstrating the adage that what is good for the goose is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story . type=str,\n",
"'words': [4, 1, 6, 1, 1, 2, 1, 11, 153, 10, 28, 17, 2, 1, 10, 1, 28, 17, 2, 1, 5, 154, 6, 149, 1, 1, 23, 1, 6, 149, 1, 8, 30, 6, 4, 35, 3] type=list}"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from fastNLP import Vocabulary\n",
"\n",
"# 使用Vocabulary类统计单词,并将单词序列转化为数字序列\n",
"vocab = Vocabulary(min_freq=2).from_dataset(dataset, field_name='words')\n",
"vocab.index_dataset(dataset, field_name='words',new_field_name='words')\n",
"dataset[0]"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'raw_sentence': A series of escapades demonstrating the adage that what is good for the goose is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story . type=str,\n",
"'label': 1 type=str,\n",
"'sentence': a series of escapades demonstrating the adage that what is good for the goose is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story . type=str,\n",
"'words': [4, 1, 6, 1, 1, 2, 1, 11, 153, 10, 28, 17, 2, 1, 10, 1, 28, 17, 2, 1, 5, 154, 6, 149, 1, 1, 23, 1, 6, 149, 1, 8, 30, 6, 4, 35, 3] type=list,\n",
"'target': 1 type=int}"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# 将label转为整数,并设置为 target\n",
"dataset.apply(lambda x: int(x['label']), new_field_name='target', is_target=True)\n",
"dataset[0]"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"CNNText(\n",
" (embed): Embedding(\n",
" 177, 50\n",
" (dropout): Dropout(p=0.0)\n",
" )\n",
" (conv_pool): ConvMaxpool(\n",
" (convs): ModuleList(\n",
" (0): Conv1d(50, 3, kernel_size=(3,), stride=(1,), padding=(2,))\n",
" (1): Conv1d(50, 4, kernel_size=(4,), stride=(1,), padding=(2,))\n",
" (2): Conv1d(50, 5, kernel_size=(5,), stride=(1,), padding=(2,))\n",
" )\n",
" )\n",
" (dropout): Dropout(p=0.1)\n",
" (fc): Linear(in_features=12, out_features=5, bias=True)\n",
")"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from fastNLP.models import CNNText\n",
"model = CNNText((len(vocab),50), num_classes=5, padding=2, dropout=0.1)\n",
"model"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(62, 15)"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# 分割训练集/验证集\n",
"train_data, dev_data = dataset.split(0.2)\n",
"len(train_data), len(dev_data)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"input fields after batch(if batch size is 2):\n",
"\twords: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 26]) \n",
"target fields after batch(if batch size is 2):\n",
"\ttarget: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n",
"\n",
"training epochs started 2019-05-09-10-59-39\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=20), HTML(value='')), layout=Layout(display='…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Evaluation at Epoch 1/10. Step:2/20. AccuracyMetric: acc=0.333333\n",
"\n",
"Evaluation at Epoch 2/10. Step:4/20. AccuracyMetric: acc=0.533333\n",
"\n",
"Evaluation at Epoch 3/10. Step:6/20. AccuracyMetric: acc=0.533333\n",
"\n",
"Evaluation at Epoch 4/10. Step:8/20. AccuracyMetric: acc=0.533333\n",
"\n",
"Evaluation at Epoch 5/10. Step:10/20. AccuracyMetric: acc=0.6\n",
"\n",
"Evaluation at Epoch 6/10. Step:12/20. AccuracyMetric: acc=0.8\n",
"\n",
"Evaluation at Epoch 7/10. Step:14/20. AccuracyMetric: acc=0.8\n",
"\n",
"Evaluation at Epoch 8/10. Step:16/20. AccuracyMetric: acc=0.733333\n",
"\n",
"Evaluation at Epoch 9/10. Step:18/20. AccuracyMetric: acc=0.733333\n",
"\n",
"Evaluation at Epoch 10/10. Step:20/20. AccuracyMetric: acc=0.733333\n",
"\n",
"\n",
"In Epoch:6/Step:12, got best dev performance:AccuracyMetric: acc=0.8\n",
"Reloaded the best model.\n"
]
},
{
"data": {
"text/plain": [
"{'best_eval': {'AccuracyMetric': {'acc': 0.8}},\n",
" 'best_epoch': 6,\n",
" 'best_step': 12,\n",
" 'seconds': 0.22}"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from fastNLP import Trainer, CrossEntropyLoss, AccuracyMetric\n",
"\n",
"# 定义trainer并进行训练\n",
"trainer = Trainer(model=model, train_data=train_data, dev_data=dev_data,\n",
" loss=CrossEntropyLoss(), metrics=AccuracyMetric())\n",
"trainer.train()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
}
},
"nbformat": 4,
"nbformat_minor": 1
}

+ 831
- 0
tutorials/tutorial_one.ipynb View File

@@ -0,0 +1,831 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"# 详细指南"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 数据读入"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'raw_sentence': A series of escapades demonstrating the adage that what is good for the goose is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story . type=str,\n",
"'label': 1 type=str}"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from fastNLP.io import CSVLoader\n",
"\n",
"loader = CSVLoader(headers=('raw_sentence', 'label'), sep='\\t')\n",
"dataset = loader.load(\"./sample_data/tutorial_sample_dataset.csv\")\n",
"dataset[0]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Instance表示一个样本,由一个或多个field(域,属性,特征)组成,每个field有名字和值。\n",
"\n",
"在初始化Instance时即可定义它包含的域,使用 \"field_name=field_value\"的写法。"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'raw_sentence': fake data type=str,\n",
"'label': 0 type=str}"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from fastNLP import Instance\n",
"\n",
"dataset.append(Instance(raw_sentence='fake data', label='0'))\n",
"dataset[-1]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 数据处理"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'raw_sentence': A series of escapades demonstrating the adage that what is good for the goose is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story . type=str,\n",
"'label': 1 type=str,\n",
"'sentence': a series of escapades demonstrating the adage that what is good for the goose is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story . type=str,\n",
"'words': [4, 1, 6, 1, 1, 2, 1, 11, 153, 10, 28, 17, 2, 1, 10, 1, 28, 17, 2, 1, 5, 154, 6, 149, 1, 1, 23, 1, 6, 149, 1, 8, 30, 6, 4, 35, 3] type=list,\n",
"'target': 1 type=int}"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from fastNLP import Vocabulary\n",
"\n",
"# 将所有字母转为小写, 并所有句子变成单词序列\n",
"dataset.apply(lambda x: x['raw_sentence'].lower(), new_field_name='sentence')\n",
"dataset.apply_field(lambda x: x.split(), field_name='sentence', new_field_name='words')\n",
"\n",
"# 使用Vocabulary类统计单词,并将单词序列转化为数字序列\n",
"vocab = Vocabulary(min_freq=2).from_dataset(dataset, field_name='words')\n",
"vocab.index_dataset(dataset, field_name='words',new_field_name='words')\n",
"\n",
"# 将label转为整数\n",
"dataset.apply(lambda x: int(x['label']), new_field_name='target')\n",
"dataset[0]"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'raw_sentence': A series of escapades demonstrating the adage that what is good for the goose is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story . type=str,\n",
"'label': 1 type=str,\n",
"'sentence': a series of escapades demonstrating the adage that what is good for the goose is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story . type=str,\n",
"'words': [4, 1, 6, 1, 1, 2, 1, 11, 153, 10, 28, 17, 2, 1, 10, 1, 28, 17, 2, 1, 5, 154, 6, 149, 1, 1, 23, 1, 6, 149, 1, 8, 30, 6, 4, 35, 3] type=list,\n",
"'target': 1 type=int,\n",
"'seq_len': 37 type=int}\n"
]
}
],
"source": [
"# 增加长度信息\n",
"dataset.apply_field(lambda x: len(x), field_name='words', new_field_name='seq_len')\n",
"print(dataset[0])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 使用内置模块CNNText\n",
"设置为符合内置模块的名称"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"CNNText(\n",
" (embed): Embedding(\n",
" 177, 50\n",
" (dropout): Dropout(p=0.0)\n",
" )\n",
" (conv_pool): ConvMaxpool(\n",
" (convs): ModuleList(\n",
" (0): Conv1d(50, 3, kernel_size=(3,), stride=(1,), padding=(2,))\n",
" (1): Conv1d(50, 4, kernel_size=(4,), stride=(1,), padding=(2,))\n",
" (2): Conv1d(50, 5, kernel_size=(5,), stride=(1,), padding=(2,))\n",
" )\n",
" )\n",
" (dropout): Dropout(p=0.1)\n",
" (fc): Linear(in_features=12, out_features=5, bias=True)\n",
")"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from fastNLP.models import CNNText\n",
"\n",
"model_cnn = CNNText((len(vocab),50), num_classes=5, padding=2, dropout=0.1)\n",
"model_cnn"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"我们在使用内置模块的时候,还应该使用应该注意把 field 设定成符合内置模型输入输出的名字。"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"words\n",
"seq_len\n",
"target\n"
]
}
],
"source": [
"from fastNLP import Const\n",
"\n",
"dataset.rename_field('words', Const.INPUT)\n",
"dataset.rename_field('seq_len', Const.INPUT_LEN)\n",
"dataset.rename_field('target', Const.TARGET)\n",
"\n",
"dataset.set_input(Const.INPUT, Const.INPUT_LEN)\n",
"dataset.set_target(Const.TARGET)\n",
"\n",
"print(Const.INPUT)\n",
"print(Const.INPUT_LEN)\n",
"print(Const.TARGET)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 分割训练集/验证集/测试集"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"(64, 7, 7)"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"train_dev_data, test_data = dataset.split(0.1)\n",
"train_data, dev_data = train_dev_data.split(0.1)\n",
"len(train_data), len(dev_data), len(test_data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 训练(model_cnn)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### loss\n",
"训练模型需要提供一个损失函数\n",
"\n",
"下面提供了一个在分类问题中常用的交叉熵损失。注意它的**初始化参数**。\n",
"\n",
"pred参数对应的是模型的forward返回的dict的一个key的名字,这里是\"output\"。\n",
"\n",
"target参数对应的是dataset作为标签的field的名字,这里是\"label_seq\"。"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"from fastNLP import CrossEntropyLoss\n",
"\n",
"# loss = CrossEntropyLoss()\n",
"# 等价于\n",
"loss = CrossEntropyLoss(pred=Const.OUTPUT, target=Const.TARGET)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Metric\n",
"定义评价指标\n",
"\n",
"这里使用准确率。参数的“命名规则”跟上面类似。\n",
"\n",
"pred参数对应的是模型的predict方法返回的dict的一个key的名字,这里是\"predict\"。\n",
"\n",
"target参数对应的是dataset作为标签的field的名字,这里是\"label_seq\"。"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"from fastNLP import AccuracyMetric\n",
"\n",
"# metrics=AccuracyMetric()\n",
"# 等价于\n",
"metrics=AccuracyMetric(pred=Const.OUTPUT, target=Const.TARGET)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"input fields after batch(if batch size is 2):\n",
"\twords: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 16]) \n",
"\tseq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n",
"target fields after batch(if batch size is 2):\n",
"\ttarget: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n",
"\n",
"training epochs started 2019-05-12-21-38-34\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=20), HTML(value='')), layout=Layout(display='…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Evaluation at Epoch 1/10. Step:2/20. AccuracyMetric: acc=0.285714\n",
"\n",
"Evaluation at Epoch 2/10. Step:4/20. AccuracyMetric: acc=0.428571\n",
"\n",
"Evaluation at Epoch 3/10. Step:6/20. AccuracyMetric: acc=0.428571\n",
"\n",
"Evaluation at Epoch 4/10. Step:8/20. AccuracyMetric: acc=0.428571\n",
"\n",
"Evaluation at Epoch 5/10. Step:10/20. AccuracyMetric: acc=0.428571\n",
"\n",
"Evaluation at Epoch 6/10. Step:12/20. AccuracyMetric: acc=0.428571\n",
"\n",
"Evaluation at Epoch 7/10. Step:14/20. AccuracyMetric: acc=0.428571\n",
"\n",
"Evaluation at Epoch 8/10. Step:16/20. AccuracyMetric: acc=0.857143\n",
"\n",
"Evaluation at Epoch 9/10. Step:18/20. AccuracyMetric: acc=0.857143\n",
"\n",
"Evaluation at Epoch 10/10. Step:20/20. AccuracyMetric: acc=0.857143\n",
"\n",
"\n",
"In Epoch:8/Step:16, got best dev performance:AccuracyMetric: acc=0.857143\n",
"Reloaded the best model.\n"
]
},
{
"data": {
"text/plain": [
"{'best_eval': {'AccuracyMetric': {'acc': 0.857143}},\n",
" 'best_epoch': 8,\n",
" 'best_step': 16,\n",
" 'seconds': 0.21}"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from fastNLP import Trainer\n",
"\n",
"trainer = Trainer(model=model_cnn, train_data=train_data, dev_data=dev_data, loss=loss, metrics=metrics)\n",
"trainer.train()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 测试(model_cnn)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[tester] \n",
"AccuracyMetric: acc=0.857143\n"
]
},
{
"data": {
"text/plain": [
"{'AccuracyMetric': {'acc': 0.857143}}"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from fastNLP import Tester\n",
"\n",
"tester = Tester(test_data, model_cnn, metrics=AccuracyMetric())\n",
"tester.test()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 编写自己的模型\n",
"\n",
"完全支持 pytorch 的模型,与 pytorch 唯一不同的是返回结果是一个字典,字典中至少需要包含 \"pred\" 这个字段"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"import torch.nn as nn\n",
"\n",
"class LSTMText(nn.Module):\n",
" def __init__(self, vocab_size, embedding_dim, output_dim, hidden_dim=64, num_layers=2, dropout=0.5):\n",
" super().__init__()\n",
"\n",
" self.embedding = nn.Embedding(vocab_size, embedding_dim)\n",
" self.lstm = nn.LSTM(embedding_dim, hidden_dim, num_layers=num_layers, bidirectional=True, dropout=dropout)\n",
" self.fc = nn.Linear(hidden_dim * 2, output_dim)\n",
" self.dropout = nn.Dropout(dropout)\n",
"\n",
" def forward(self, words):\n",
" # (input) words : (batch_size, seq_len)\n",
" words = words.permute(1,0)\n",
" # words : (seq_len, batch_size)\n",
"\n",
" embedded = self.dropout(self.embedding(words))\n",
" # embedded : (seq_len, batch_size, embedding_dim)\n",
" output, (hidden, cell) = self.lstm(embedded)\n",
" # output: (seq_len, batch_size, hidden_dim * 2)\n",
" # hidden: (num_layers * 2, batch_size, hidden_dim)\n",
" # cell: (num_layers * 2, batch_size, hidden_dim)\n",
"\n",
" hidden = torch.cat((hidden[-2, :, :], hidden[-1, :, :]), dim=1)\n",
" hidden = self.dropout(hidden)\n",
" # hidden: (batch_size, hidden_dim * 2)\n",
"\n",
" pred = self.fc(hidden.squeeze(0))\n",
" # result: (batch_size, output_dim)\n",
" return {\"pred\":pred}"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"input fields after batch(if batch size is 2):\n",
"\twords: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 16]) \n",
"\tseq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n",
"target fields after batch(if batch size is 2):\n",
"\ttarget: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n",
"\n",
"training epochs started 2019-05-12-21-38-36\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=20), HTML(value='')), layout=Layout(display='…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Evaluation at Epoch 1/10. Step:2/20. AccuracyMetric: acc=0.571429\n",
"\n",
"Evaluation at Epoch 2/10. Step:4/20. AccuracyMetric: acc=0.571429\n",
"\n",
"Evaluation at Epoch 3/10. Step:6/20. AccuracyMetric: acc=0.571429\n",
"\n",
"Evaluation at Epoch 4/10. Step:8/20. AccuracyMetric: acc=0.571429\n",
"\n",
"Evaluation at Epoch 5/10. Step:10/20. AccuracyMetric: acc=0.714286\n",
"\n",
"Evaluation at Epoch 6/10. Step:12/20. AccuracyMetric: acc=0.857143\n",
"\n",
"Evaluation at Epoch 7/10. Step:14/20. AccuracyMetric: acc=0.857143\n",
"\n",
"Evaluation at Epoch 8/10. Step:16/20. AccuracyMetric: acc=0.857143\n",
"\n",
"Evaluation at Epoch 9/10. Step:18/20. AccuracyMetric: acc=0.857143\n",
"\n",
"Evaluation at Epoch 10/10. Step:20/20. AccuracyMetric: acc=0.857143\n",
"\n",
"\n",
"In Epoch:6/Step:12, got best dev performance:AccuracyMetric: acc=0.857143\n",
"Reloaded the best model.\n"
]
},
{
"data": {
"text/plain": [
"{'best_eval': {'AccuracyMetric': {'acc': 0.857143}},\n",
" 'best_epoch': 6,\n",
" 'best_step': 12,\n",
" 'seconds': 2.15}"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model_lstm = LSTMText(len(vocab),50,5)\n",
"trainer = Trainer(model=model_lstm, train_data=train_data, dev_data=dev_data, loss=loss, metrics=metrics)\n",
"trainer.train()"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[tester] \n",
"AccuracyMetric: acc=0.857143\n"
]
},
{
"data": {
"text/plain": [
"{'AccuracyMetric': {'acc': 0.857143}}"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tester = Tester(test_data, model_lstm, metrics=AccuracyMetric())\n",
"tester.test()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 使用 Batch编写自己的训练过程"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 0 Avg Loss: 3.11 18ms\n",
"Epoch 1 Avg Loss: 2.88 30ms\n",
"Epoch 2 Avg Loss: 2.69 42ms\n",
"Epoch 3 Avg Loss: 2.47 54ms\n",
"Epoch 4 Avg Loss: 2.38 67ms\n",
"Epoch 5 Avg Loss: 2.10 78ms\n",
"Epoch 6 Avg Loss: 2.06 91ms\n",
"Epoch 7 Avg Loss: 1.92 103ms\n",
"Epoch 8 Avg Loss: 1.91 114ms\n",
"Epoch 9 Avg Loss: 1.76 126ms\n",
"[tester] \n",
"AccuracyMetric: acc=0.571429\n"
]
},
{
"data": {
"text/plain": [
"{'AccuracyMetric': {'acc': 0.571429}}"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from fastNLP import BucketSampler\n",
"from fastNLP import Batch\n",
"import torch\n",
"import time\n",
"\n",
"model = CNNText((len(vocab),50), num_classes=5, padding=2, dropout=0.1)\n",
"\n",
"def train(epoch, data):\n",
" optim = torch.optim.Adam(model.parameters(), lr=0.001)\n",
" lossfunc = torch.nn.CrossEntropyLoss()\n",
" batch_size = 32\n",
"\n",
" # 定义一个Batch,传入DataSet,规定batch_size和去batch的规则。\n",
" # 顺序(Sequential),随机(Random),相似长度组成一个batch(Bucket)\n",
" train_sampler = BucketSampler(batch_size=batch_size, seq_len_field_name='seq_len')\n",
" train_batch = Batch(batch_size=batch_size, dataset=data, sampler=train_sampler)\n",
" \n",
" start_time = time.time()\n",
" for i in range(epoch):\n",
" loss_list = []\n",
" for batch_x, batch_y in train_batch:\n",
" optim.zero_grad()\n",
" output = model(batch_x['words'])\n",
" loss = lossfunc(output['pred'], batch_y['target'])\n",
" loss.backward()\n",
" optim.step()\n",
" loss_list.append(loss.item())\n",
" print('Epoch {:d} Avg Loss: {:.2f}'.format(i, sum(loss_list) / len(loss_list)),end=\" \")\n",
" print('{:d}ms'.format(round((time.time()-start_time)*1000)))\n",
" loss_list.clear()\n",
" \n",
"train(10, train_data)\n",
"tester = Tester(test_data, model, metrics=AccuracyMetric())\n",
"tester.test()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 使用 Callback 实现自己想要的效果"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"input fields after batch(if batch size is 2):\n",
"\twords: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 16]) \n",
"\tseq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n",
"target fields after batch(if batch size is 2):\n",
"\ttarget: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n",
"\n",
"training epochs started 2019-05-12-21-38-40\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=20), HTML(value='')), layout=Layout(display='…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Evaluation at Epoch 1/10. Step:2/20. AccuracyMetric: acc=0.285714\n",
"\n",
"Sum Time: 51ms\n",
"\n",
"\n",
"Evaluation at Epoch 2/10. Step:4/20. AccuracyMetric: acc=0.285714\n",
"\n",
"Sum Time: 69ms\n",
"\n",
"\n",
"Evaluation at Epoch 3/10. Step:6/20. AccuracyMetric: acc=0.285714\n",
"\n",
"Sum Time: 91ms\n",
"\n",
"\n",
"Evaluation at Epoch 4/10. Step:8/20. AccuracyMetric: acc=0.571429\n",
"\n",
"Sum Time: 107ms\n",
"\n",
"\n",
"Evaluation at Epoch 5/10. Step:10/20. AccuracyMetric: acc=0.571429\n",
"\n",
"Sum Time: 125ms\n",
"\n",
"\n",
"Evaluation at Epoch 6/10. Step:12/20. AccuracyMetric: acc=0.571429\n",
"\n",
"Sum Time: 142ms\n",
"\n",
"\n",
"Evaluation at Epoch 7/10. Step:14/20. AccuracyMetric: acc=0.571429\n",
"\n",
"Sum Time: 158ms\n",
"\n",
"\n",
"Evaluation at Epoch 8/10. Step:16/20. AccuracyMetric: acc=0.571429\n",
"\n",
"Sum Time: 176ms\n",
"\n",
"\n",
"Evaluation at Epoch 9/10. Step:18/20. AccuracyMetric: acc=0.714286\n",
"\n",
"Sum Time: 193ms\n",
"\n",
"\n",
"Evaluation at Epoch 10/10. Step:20/20. AccuracyMetric: acc=0.857143\n",
"\n",
"Sum Time: 212ms\n",
"\n",
"\n",
"\n",
"In Epoch:10/Step:20, got best dev performance:AccuracyMetric: acc=0.857143\n",
"Reloaded the best model.\n"
]
},
{
"data": {
"text/plain": [
"{'best_eval': {'AccuracyMetric': {'acc': 0.857143}},\n",
" 'best_epoch': 10,\n",
" 'best_step': 20,\n",
" 'seconds': 0.2}"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from fastNLP import Callback\n",
"\n",
"start_time = time.time()\n",
"\n",
"class MyCallback(Callback):\n",
" def on_epoch_end(self):\n",
" print('Sum Time: {:d}ms\\n\\n'.format(round((time.time()-start_time)*1000)))\n",
" \n",
"\n",
"model = CNNText((len(vocab),50), num_classes=5, padding=2, dropout=0.1)\n",
"trainer = Trainer(model=model, train_data=train_data, dev_data=dev_data,\n",
" loss=CrossEntropyLoss(), metrics=AccuracyMetric(), callbacks=[MyCallback()])\n",
"trainer.train()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
}
},
"nbformat": 4,
"nbformat_minor": 1
}

Loading…
Cancel
Save