@@ -91,6 +91,7 @@ class JittorDataLoader: | |||
self.dataset.dataset.set_attrs(batch_size=1) | |||
# 用户提供了 collate_fn,则会自动代替 jittor 提供 collate_batch 函数 | |||
# self._collate_fn = _collate_fn | |||
self.cur_batch_indices = None | |||
def __iter__(self): | |||
# TODO 第一次迭代后不能设置collate_fn,设置是无效的 | |||
@@ -3,7 +3,7 @@ __all__ = [ | |||
'prepare_torch_dataloader' | |||
] | |||
from typing import Optional, Callable, Sequence, Union, Tuple, Dict, Mapping | |||
from typing import Optional, Callable, Sequence, Union, Tuple, Dict, Mapping, List | |||
from fastNLP.core.dataset import DataSet | |||
from fastNLP.core.collators import Collator | |||
@@ -78,6 +78,7 @@ class TorchDataLoader(DataLoader): | |||
if sampler is None and batch_sampler is None: | |||
sampler = RandomSampler(dataset, shuffle=shuffle) | |||
shuffle=False | |||
super().__init__(dataset=dataset, batch_size=batch_size, shuffle=shuffle, sampler=sampler, | |||
batch_sampler=batch_sampler, num_workers=num_workers, collate_fn=None, | |||
@@ -154,6 +155,14 @@ class TorchDataLoader(DataLoader): | |||
else: | |||
raise ValueError(f"Only when the collate_fn is a fastNLP Collator, set_ignore() is allowed.") | |||
def get_batch_indices(self) -> List[int]: | |||
""" | |||
获取当前 batch 的 idx | |||
:return: | |||
""" | |||
return self.cur_batch_indices | |||
def prepare_torch_dataloader(ds_or_db: Union[DataSet, DataBundle, Sequence[DataSet], Mapping[str, DataSet]], | |||
batch_size: int = 1, | |||
@@ -1,5 +1,5 @@ | |||
import functools | |||
class DummyClass: | |||
def __call__(self, *args, **kwargs): | |||
return | |||
def __init__(self, *args, **kwargs): | |||
pass |
@@ -162,7 +162,7 @@ class TestCallbackEvents: | |||
def test_every(self): | |||
# 这里是什么样的事件是不影响的,因为我们是与 Trainer 拆分开了进行测试; | |||
event_state = Events.on_train_begin() # 什么都不输入是应当默认 every=1; | |||
event_state = Event.on_train_begin() # 什么都不输入是应当默认 every=1; | |||
@Filter(every=event_state.every, once=event_state.once, filter_fn=event_state.filter_fn) | |||
def _fn(data): | |||
return data | |||
@@ -174,7 +174,7 @@ class TestCallbackEvents: | |||
_res.append(cu_res) | |||
assert _res == list(range(100)) | |||
event_state = Events.on_train_begin(every=10) | |||
event_state = Event.on_train_begin(every=10) | |||
@Filter(every=event_state.every, once=event_state.once, filter_fn=event_state.filter_fn) | |||
def _fn(data): | |||
return data | |||
@@ -187,7 +187,7 @@ class TestCallbackEvents: | |||
assert _res == [w - 1 for w in range(10, 101, 10)] | |||
def test_once(self): | |||
event_state = Events.on_train_begin(once=10) | |||
event_state = Event.on_train_begin(once=10) | |||
@Filter(once=event_state.once) | |||
def _fn(data): | |||
@@ -220,7 +220,7 @@ def test_callback_events_torch(): | |||
return True | |||
return False | |||
event_state = Events.on_train_begin(filter_fn=filter_fn) | |||
event_state = Event.on_train_begin(filter_fn=filter_fn) | |||
@Filter(filter_fn=event_state.filter_fn) | |||
def _fn(trainer, data): | |||
@@ -2,9 +2,6 @@ import os | |||
import pytest | |||
from typing import Any | |||
from dataclasses import dataclass | |||
from torch.utils.data import DataLoader | |||
from torch.optim import SGD | |||
import torch.distributed as dist | |||
from pathlib import Path | |||
import re | |||
import time | |||
@@ -20,6 +17,11 @@ from tests.helpers.datasets.torch_data import TorchArgMaxDataset | |||
from torchmetrics import Accuracy | |||
from fastNLP.core.log import logger | |||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH | |||
if _NEED_IMPORT_TORCH: | |||
from torch.utils.data import DataLoader | |||
from torch.optim import SGD | |||
import torch.distributed as dist | |||
@dataclass | |||
class ArgMaxDatasetConfig: | |||
@@ -550,7 +552,7 @@ def test_trainer_checkpoint_callback_2( | |||
if version == 0: | |||
callbacks = [ | |||
TrainerCheckpointCallback( | |||
CheckpointCallback( | |||
monitor="acc", | |||
folder=path, | |||
every_n_epochs=None, | |||
@@ -558,12 +560,13 @@ def test_trainer_checkpoint_callback_2( | |||
topk=None, | |||
last=False, | |||
on_exception=None, | |||
model_save_fn=model_save_fn | |||
model_save_fn=model_save_fn, | |||
save_object="trainer" | |||
) | |||
] | |||
elif version == 1: | |||
callbacks = [ | |||
TrainerCheckpointCallback( | |||
CheckpointCallback( | |||
monitor="acc", | |||
folder=path, | |||
every_n_epochs=None, | |||
@@ -571,7 +574,8 @@ def test_trainer_checkpoint_callback_2( | |||
topk=1, | |||
last=True, | |||
on_exception=None, | |||
model_save_fn=model_save_fn | |||
model_save_fn=model_save_fn, | |||
save_object="trainer" | |||
) | |||
] | |||
@@ -12,9 +12,7 @@ import os | |||
import pytest | |||
from typing import Any | |||
from dataclasses import dataclass | |||
from torch.utils.data import DataLoader | |||
from torch.optim import SGD | |||
import torch.distributed as dist | |||
from pathlib import Path | |||
import re | |||
@@ -29,7 +27,11 @@ from torchmetrics import Accuracy | |||
from fastNLP.core.metrics import Metric | |||
from fastNLP.core.log import logger | |||
from fastNLP.core.callbacks import MoreEvaluateCallback | |||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH | |||
if _NEED_IMPORT_TORCH: | |||
from torch.utils.data import DataLoader | |||
from torch.optim import SGD | |||
import torch.distributed as dist | |||
@dataclass | |||
class ArgMaxDatasetConfig: | |||
@@ -17,6 +17,7 @@ def test_get_element_shape_dtype(): | |||
@pytest.mark.parametrize('backend', ['raw', None, 'numpy', 'torch', 'jittor', 'paddle']) | |||
@pytest.mark.torch | |||
@pytest.mark.paddle | |||
@pytest.mark.jittor | |||
def test_get_padder_run(backend): | |||
if not _NEED_IMPORT_TORCH and backend == 'torch': | |||
pytest.skip("No torch") | |||
@@ -1,7 +1,7 @@ | |||
import numpy as np | |||
import pytest | |||
from fastNLP.core.collators.padders.paddle_padder import paddleTensorPadder, paddleSequencePadder, paddleNumberPadder | |||
from fastNLP.core.collators.padders.paddle_padder import PaddleTensorPadder, PaddleSequencePadder, PaddleNumberPadder | |||
from fastNLP.core.collators.padders.exceptions import DtypeError | |||
from fastNLP.envs.imports import _NEED_IMPORT_PADDLE | |||
@@ -10,9 +10,9 @@ if _NEED_IMPORT_PADDLE: | |||
@pytest.mark.paddle | |||
class TestpaddleNumberPadder: | |||
class TestPaddleNumberPadder: | |||
def test_run(self): | |||
padder = paddleNumberPadder(ele_dtype=int, dtype=int, pad_val=-1) | |||
padder = PaddleNumberPadder(ele_dtype=int, dtype=int, pad_val=-1) | |||
a = [1, 2, 3] | |||
t_a = padder(a) | |||
assert isinstance(t_a, paddle.Tensor) | |||
@@ -20,9 +20,9 @@ class TestpaddleNumberPadder: | |||
@pytest.mark.paddle | |||
class TestpaddleSequencePadder: | |||
class TestPaddleSequencePadder: | |||
def test_run(self): | |||
padder = paddleSequencePadder(ele_dtype=int, dtype=int, pad_val=-1) | |||
padder = PaddleSequencePadder(ele_dtype=int, dtype=int, pad_val=-1) | |||
a = [[1, 2, 3], [3]] | |||
a = padder(a) | |||
shape = a.shape | |||
@@ -32,20 +32,20 @@ class TestpaddleSequencePadder: | |||
assert (a == b).sum().item() == shape[0]*shape[1] | |||
def test_dtype_check(self): | |||
padder = paddleSequencePadder(ele_dtype=np.zeros(3, dtype=np.int32).dtype, dtype=int, pad_val=-1) | |||
padder = PaddleSequencePadder(ele_dtype=np.zeros(3, dtype=np.int32).dtype, dtype=int, pad_val=-1) | |||
with pytest.raises(DtypeError): | |||
padder = paddleSequencePadder(ele_dtype=str, dtype=int, pad_val=-1) | |||
padder = paddleSequencePadder(ele_dtype='int64', dtype=int, pad_val=-1) | |||
padder = paddleSequencePadder(ele_dtype=np.int32, dtype=None, pad_val=-1) | |||
padder = PaddleSequencePadder(ele_dtype=str, dtype=int, pad_val=-1) | |||
padder = PaddleSequencePadder(ele_dtype='int64', dtype=int, pad_val=-1) | |||
padder = PaddleSequencePadder(ele_dtype=np.int32, dtype=None, pad_val=-1) | |||
a = padder([[1], [2, 322]]) | |||
# assert (a>67).sum()==0 # 因为int8的范围为-67 - 66 | |||
padder = paddleSequencePadder(ele_dtype=np.zeros(2).dtype, dtype=None, pad_val=-1) | |||
padder = PaddleSequencePadder(ele_dtype=np.zeros(2).dtype, dtype=None, pad_val=-1) | |||
@pytest.mark.paddle | |||
class TestpaddleTensorPadder: | |||
class TestPaddleTensorPadder: | |||
def test_run(self): | |||
padder = paddleTensorPadder(ele_dtype=paddle.zeros((3,)).dtype, dtype=paddle.zeros((3,)).dtype, pad_val=-1) | |||
padder = PaddleTensorPadder(ele_dtype=paddle.zeros((3,)).dtype, dtype=paddle.zeros((3,)).dtype, pad_val=-1) | |||
a = [paddle.zeros((3,)), paddle.zeros((2,))] | |||
a = padder(a) | |||
shape = a.shape | |||
@@ -74,7 +74,7 @@ class TestpaddleTensorPadder: | |||
[[0, -1], [-1, -1], [-1, -1]]]) | |||
assert (a == b).sum().item() == shape[0]*shape[1]*shape[2] | |||
padder = paddleTensorPadder(ele_dtype=paddle.zeros((3, )).dtype, dtype=paddle.zeros((3, )).dtype, pad_val=-1) | |||
padder = PaddleTensorPadder(ele_dtype=paddle.zeros((3, )).dtype, dtype=paddle.zeros((3, )).dtype, pad_val=-1) | |||
a = [paddle.zeros((3, 2)), paddle.zeros((2, 2))] | |||
a = padder(a) | |||
shape = a.shape | |||
@@ -85,7 +85,7 @@ class TestpaddleTensorPadder: | |||
]) | |||
assert (a == b).sum().item() == shape[0]*shape[1]*shape[2] | |||
padder = paddleTensorPadder(ele_dtype=paddle.zeros((3, 2)).dtype, dtype=None, pad_val=-1) | |||
padder = PaddleTensorPadder(ele_dtype=paddle.zeros((3, 2)).dtype, dtype=None, pad_val=-1) | |||
a = [np.zeros((3, 2), dtype=np.float32), np.zeros((2, 2), dtype=np.float32)] | |||
a = padder(a) | |||
shape = a.shape | |||
@@ -96,11 +96,11 @@ class TestpaddleTensorPadder: | |||
assert (a == b).sum().item() == shape[0]*shape[1]*shape[2] | |||
def test_dtype_check(self): | |||
padder = paddleTensorPadder(ele_dtype=np.zeros(3, dtype=np.int8).dtype, dtype=int, pad_val=-1) | |||
padder = PaddleTensorPadder(ele_dtype=np.zeros(3, dtype=np.int8).dtype, dtype=int, pad_val=-1) | |||
with pytest.raises(DtypeError): | |||
padder = paddleTensorPadder(ele_dtype=str, dtype=int, pad_val=-1) | |||
padder = paddleTensorPadder(ele_dtype='int64', dtype=int, pad_val=-1) | |||
padder = paddleTensorPadder(ele_dtype=int, dtype='int64', pad_val=-1) | |||
padder = PaddleTensorPadder(ele_dtype=str, dtype=int, pad_val=-1) | |||
padder = PaddleTensorPadder(ele_dtype='int64', dtype=int, pad_val=-1) | |||
padder = PaddleTensorPadder(ele_dtype=int, dtype='int64', pad_val=-1) | |||
def test_v1(self): | |||
print(paddle.zeros((3, )).dtype) |
@@ -23,7 +23,6 @@ class TestRawSequencePadder: | |||
assert (a == b).sum().item() == shape[0]*shape[1] | |||
def test_dtype_check(self): | |||
with pytest.raises(DtypeError): | |||
padder = RawSequencePadder(pad_val=-1, ele_dtype=np.zeros(3, dtype=np.int8).dtype, dtype=int) | |||
padder = RawSequencePadder(pad_val=-1, ele_dtype=np.zeros(3, dtype=np.int8).dtype, dtype=int) | |||
with pytest.raises(DtypeError): | |||
padder = RawSequencePadder(pad_val=-1, ele_dtype=str, dtype=int) |
@@ -4,7 +4,7 @@ import pytest | |||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH, _NEED_IMPORT_PADDLE, _NEED_IMPORT_JITTOR | |||
from fastNLP.core.collators.new_collator import Collator | |||
from fastNLP.core.collators.collator import Collator | |||
def _assert_equal(d1, d2): | |||
@@ -1,10 +1,7 @@ | |||
import pytest | |||
from typing import Any | |||
from dataclasses import dataclass | |||
from torch.optim import SGD | |||
from torch.utils.data import DataLoader | |||
from torchmetrics import Accuracy | |||
import torch.distributed as dist | |||
from fastNLP.core.controllers.trainer import Trainer | |||
from fastNLP.core.callbacks.callback_event import Event | |||
@@ -12,6 +9,12 @@ from tests.helpers.models.torch_model import TorchNormalModel_Classification_1 | |||
from tests.helpers.datasets.torch_data import TorchNormalDataset_Classification | |||
from tests.helpers.callbacks.helper_callbacks import RecordTrainerEventTriggerCallback | |||
from tests.helpers.utils import magic_argv_env_context, Capturing | |||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH | |||
if _NEED_IMPORT_TORCH: | |||
from torch.optim import SGD | |||
from torch.utils.data import DataLoader | |||
from torchmetrics import Accuracy | |||
import torch.distributed as dist | |||
@dataclass | |||
@@ -96,10 +99,10 @@ def test_trainer_event_trigger_1( | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() | |||
Event_attrs = Event.__dict__ | |||
for k, v in Event_attrs.items(): | |||
if isinstance(v, staticmethod): | |||
assert k in output[0] | |||
Event_attrs = Event.__dict__ | |||
for k, v in Event_attrs.items(): | |||
if isinstance(v, staticmethod): | |||
assert k in output[0] | |||
@pytest.mark.torch | |||
@pytest.mark.parametrize("driver,device", [("torch", "cpu")]) # , ("torch", 6), ("torch", [6, 7]) | |||
@@ -211,7 +214,101 @@ def test_trainer_event_trigger_2( | |||
) | |||
trainer.run() | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() | |||
Event_attrs = Event.__dict__ | |||
for k, v in Event_attrs.items(): | |||
if isinstance(v, staticmethod): | |||
assert k in output[0] | |||
@pytest.mark.parametrize("driver,device", [("torch", "cpu"), ("torch", 6)]) | |||
@pytest.mark.torch | |||
@magic_argv_env_context | |||
def test_trainer_event_trigger_3( | |||
model_and_optimizers: TrainerParameters, | |||
driver, | |||
device, | |||
n_epochs=2, | |||
): | |||
import re | |||
once_message_1 = "This message should be typed 1 times." | |||
once_message_2 = "test_filter_fn" | |||
once_message_3 = "once message 3" | |||
twice_message = "twice message hei hei" | |||
@Trainer.on(Event.on_train_epoch_begin(every=2)) | |||
def train_epoch_begin_1(trainer): | |||
print(once_message_1) | |||
@Trainer.on(Event.on_train_epoch_begin()) | |||
def train_epoch_begin_2(trainer): | |||
print(twice_message) | |||
@Trainer.on(Event.on_train_epoch_begin(once=2)) | |||
def train_epoch_begin_3(trainer): | |||
print(once_message_3) | |||
def filter_fn(filter, trainer): | |||
if trainer.cur_epoch_idx == 1: | |||
return True | |||
else: | |||
return False | |||
@Trainer.on(Event.on_train_epoch_end(filter_fn=filter_fn)) | |||
def test_filter_fn(trainer): | |||
print(once_message_2) | |||
with Capturing() as output: | |||
trainer = Trainer( | |||
model=model_and_optimizers.model, | |||
driver=driver, | |||
device=device, | |||
optimizers=model_and_optimizers.optimizers, | |||
train_dataloader=model_and_optimizers.train_dataloader, | |||
evaluate_dataloaders=model_and_optimizers.evaluate_dataloaders, | |||
input_mapping=model_and_optimizers.input_mapping, | |||
output_mapping=model_and_optimizers.output_mapping, | |||
metrics=model_and_optimizers.metrics, | |||
n_epochs=n_epochs, | |||
) | |||
trainer.run() | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() | |||
once_pattern_1 = re.compile(once_message_1) | |||
once_pattern_2 = re.compile(once_message_2) | |||
once_pattern_3 = re.compile(once_message_3) | |||
twice_pattern = re.compile(twice_message) | |||
once_res_1 = once_pattern_1.findall(output[0]) | |||
assert len(once_res_1) == 1 | |||
once_res_2 = once_pattern_2.findall(output[0]) | |||
assert len(once_res_2) == 1 | |||
once_res_3 = once_pattern_3.findall(output[0]) | |||
assert len(once_res_3) == 1 | |||
twice_res = twice_pattern.findall(output[0]) | |||
assert len(twice_res) == 2 | |||
@@ -1,22 +1,22 @@ | |||
import pytest | |||
from fastNLP.core.controllers.trainer import Trainer | |||
from fastNLP.core.callbacks import Events | |||
from fastNLP.core.callbacks import Event | |||
from tests.helpers.utils import magic_argv_env_context | |||
@magic_argv_env_context | |||
def test_trainer_torch_without_evaluator(): | |||
@Trainer.on(Events.on_train_epoch_begin(every=10)) | |||
@Trainer.on(Event.on_train_epoch_begin(every=10), marker="test_trainer_other_things") | |||
def fn1(trainer): | |||
pass | |||
@Trainer.on(Events.on_train_batch_begin(every=10)) | |||
@Trainer.on(Event.on_train_batch_begin(every=10), marker="test_trainer_other_things") | |||
def fn2(trainer, batch, indices): | |||
pass | |||
with pytest.raises(AssertionError): | |||
@Trainer.on(Events.on_train_batch_begin(every=10)) | |||
with pytest.raises(BaseException): | |||
@Trainer.on(Event.on_train_batch_begin(every=10), marker="test_trainer_other_things") | |||
def fn3(trainer, batch): | |||
pass | |||
@@ -2,9 +2,7 @@ | |||
注意这一文件中的测试函数都应当是在 `test_trainer_w_evaluator_torch.py` 中已经测试过的测试函数的基础上加上 metrics 和 evaluator 修改而成; | |||
""" | |||
import pytest | |||
from torch.optim import SGD | |||
from torch.utils.data import DataLoader | |||
import torch.distributed as dist | |||
from dataclasses import dataclass | |||
from typing import Any | |||
from torchmetrics import Accuracy | |||
@@ -14,7 +12,11 @@ from tests.helpers.models.torch_model import TorchNormalModel_Classification_1 | |||
from tests.helpers.datasets.torch_data import TorchNormalDataset_Classification, TorchArgMaxDataset | |||
from tests.helpers.callbacks.helper_callbacks import RecordLossCallback, RecordMetricCallback | |||
from tests.helpers.utils import magic_argv_env_context | |||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH | |||
if _NEED_IMPORT_TORCH: | |||
from torch.optim import SGD | |||
from torch.utils.data import DataLoader | |||
import torch.distributed as dist | |||
@dataclass | |||
class NormalClassificationTrainTorchConfig: | |||
@@ -2,9 +2,7 @@ import os.path | |||
import subprocess | |||
import sys | |||
import pytest | |||
import torch.distributed as dist | |||
from torch.optim import SGD | |||
from torch.utils.data import DataLoader | |||
from dataclasses import dataclass | |||
from typing import Any | |||
from pathlib import Path | |||
@@ -16,6 +14,11 @@ from tests.helpers.callbacks.helper_callbacks import RecordLossCallback | |||
from tests.helpers.callbacks.helper_callbacks_torch import RecordAccumulationStepsCallback_Torch | |||
from tests.helpers.utils import magic_argv_env_context, Capturing | |||
from fastNLP.core import rank_zero_rm | |||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH | |||
if _NEED_IMPORT_TORCH: | |||
import torch.distributed as dist | |||
from torch.optim import SGD | |||
from torch.utils.data import DataLoader | |||
@dataclass | |||
@@ -286,6 +289,7 @@ def test_trainer_on_exception( | |||
dist.destroy_process_group() | |||
@pytest.mark.torch | |||
@pytest.mark.parametrize("version", [0, 1, 2, 3]) | |||
@magic_argv_env_context | |||
def test_torch_distributed_launch_1(version): | |||
@@ -11,7 +11,7 @@ class Test_WrapDataLoader: | |||
for sanity_batches in all_sanity_batches: | |||
data = NormalSampler(num_of_data=1000) | |||
wrapper = _TruncatedDataLoader(dataloader=data, num_batches=sanity_batches) | |||
dataloader = iter(wrapper(dataloader=data)) | |||
dataloader = iter(wrapper) | |||
mark = 0 | |||
while True: | |||
try: | |||
@@ -32,8 +32,7 @@ class Test_WrapDataLoader: | |||
dataset = TorchNormalDataset(num_of_data=1000) | |||
dataloader = DataLoader(dataset, batch_size=bs, shuffle=True) | |||
wrapper = _TruncatedDataLoader(dataloader, num_batches=sanity_batches) | |||
dataloader = wrapper(dataloader) | |||
dataloader = iter(dataloader) | |||
dataloader = iter(wrapper) | |||
all_supposed_running_data_num = 0 | |||
while True: | |||
try: | |||
@@ -55,6 +54,5 @@ class Test_WrapDataLoader: | |||
dataset = TorchNormalDataset(num_of_data=1000) | |||
dataloader = DataLoader(dataset, batch_size=bs, shuffle=True) | |||
wrapper = _TruncatedDataLoader(dataloader, num_batches=sanity_batches) | |||
dataloader = wrapper(dataloader) | |||
length.append(len(dataloader)) | |||
length.append(len(wrapper)) | |||
assert length == reduce(lambda x, y: x+y, [all_sanity_batches for _ in range(len(bses))]) |
@@ -15,7 +15,7 @@ else: | |||
class Model (Module): | |||
class Model(Module): | |||
def __init__ (self): | |||
super (Model, self).__init__() | |||
self.conv1 = nn.Conv (3, 32, 3, 1) # no padding | |||
@@ -45,6 +45,7 @@ class Model (Module): | |||
return x | |||
@pytest.mark.jittor | |||
@pytest.mark.skip("Skip jittor tests now.") | |||
class TestSingleDevice: | |||
def test_on_gpu_without_fp16(self): | |||
@@ -13,12 +13,13 @@ from tests.helpers.models.torch_model import TorchNormalModel_Classification_1 | |||
from tests.helpers.datasets.torch_data import TorchNormalDataset, TorchArgMaxDataset | |||
from tests.helpers.utils import magic_argv_env_context | |||
from fastNLP.core import rank_zero_rm | |||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH | |||
if _NEED_IMPORT_TORCH: | |||
import torch | |||
import torch.distributed as dist | |||
from torch.utils.data import DataLoader, BatchSampler | |||
import torch | |||
import torch.distributed as dist | |||
from torch.utils.data import DataLoader, BatchSampler | |||
def generate_driver(num_labels, feature_dimension, device=[0,1], fp16=False, output_from_new_proc="only_error"): | |||
def generate_driver(num_labels, feature_dimension, device=[0,1], fp16=False, output_from_new_proc="all"): | |||
torch_model = TorchNormalModel_Classification_1(num_labels, feature_dimension) | |||
torch_opt = torch.optim.Adam(params=torch_model.parameters(), lr=0.01) | |||
device = [torch.device(i) for i in device] | |||
@@ -72,108 +73,100 @@ def dataloader_with_randomsampler(dataset, batch_size, shuffle, drop_last, seed= | |||
# | |||
############################################################################ | |||
@pytest.mark.torch | |||
@magic_argv_env_context | |||
def test_multi_drivers(): | |||
""" | |||
测试使用了多个 TorchDDPDriver 的情况。 | |||
""" | |||
generate_driver(10, 10) | |||
generate_driver(20, 10) | |||
with pytest.raises(RuntimeError): | |||
# 设备设置不同,应该报错 | |||
generate_driver(20, 3, device=[0,1,2]) | |||
assert False | |||
dist.barrier() | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() | |||
@pytest.mark.torch | |||
class TestDDPDriverFunction: | |||
""" | |||
测试 TorchDDPDriver 一些简单函数的测试类,基本都是测试能否运行、是否存在 import 错误等问题 | |||
""" | |||
@classmethod | |||
def setup_class(cls): | |||
cls.driver = generate_driver(10, 10) | |||
@magic_argv_env_context | |||
def test_multi_drivers(self): | |||
def test_simple_functions(self): | |||
""" | |||
测试使用了多个 TorchDDPDriver 的情况。 | |||
简单测试多个函数 | |||
""" | |||
driver2 = generate_driver(20, 10) | |||
with pytest.raises(RuntimeError): | |||
# 设备设置不同,应该报错 | |||
driver3 = generate_driver(20, 3, device=[0,1,2]) | |||
assert False | |||
dist.barrier() | |||
driver = generate_driver(10, 10) | |||
@magic_argv_env_context | |||
def test_move_data_to_device(self): | |||
""" | |||
这个函数仅调用了torch_move_data_to_device,测试例在tests/core/utils/test_torch_utils.py中 | |||
就不重复测试了 | |||
测试 move_data_to_device 函数。这个函数仅调用了 torch_move_data_to_device ,测试例在 | |||
tests/core/utils/test_torch_utils.py中,就不重复测试了 | |||
""" | |||
self.driver.move_data_to_device(torch.rand((32, 64))) | |||
driver.move_data_to_device(torch.rand((32, 64))) | |||
dist.barrier() | |||
@magic_argv_env_context | |||
def test_is_distributed(self): | |||
""" | |||
测试 is_distributed 函数 | |||
""" | |||
assert self.driver.is_distributed() == True | |||
assert driver.is_distributed() == True | |||
dist.barrier() | |||
@magic_argv_env_context | |||
def test_get_no_sync_context(self): | |||
""" | |||
测试 get_no_sync_context 函数 | |||
""" | |||
res = self.driver.get_model_no_sync_context() | |||
res = driver.get_model_no_sync_context() | |||
dist.barrier() | |||
@magic_argv_env_context | |||
def test_is_global_zero(self): | |||
""" | |||
测试 is_global_zero 函数 | |||
""" | |||
self.driver.is_global_zero() | |||
driver.is_global_zero() | |||
dist.barrier() | |||
@magic_argv_env_context | |||
def test_unwrap_model(self): | |||
""" | |||
测试 unwrap_model 函数 | |||
""" | |||
self.driver.unwrap_model() | |||
driver.unwrap_model() | |||
dist.barrier() | |||
@magic_argv_env_context | |||
def test_get_local_rank(self): | |||
""" | |||
测试 get_local_rank 函数 | |||
""" | |||
self.driver.get_local_rank() | |||
driver.get_local_rank() | |||
dist.barrier() | |||
@magic_argv_env_context | |||
def test_all_gather(self): | |||
""" | |||
测试 all_gather 函数 | |||
详细的测试在 test_dist_utils.py 中完成 | |||
""" | |||
obj = { | |||
"rank": self.driver.global_rank | |||
"rank": driver.global_rank | |||
} | |||
obj_list = self.driver.all_gather(obj, group=None) | |||
obj_list = driver.all_gather(obj, group=None) | |||
for i, res in enumerate(obj_list): | |||
assert res["rank"] == i | |||
@magic_argv_env_context | |||
@pytest.mark.parametrize("src_rank", ([0, 1])) | |||
def test_broadcast_object(self, src_rank): | |||
""" | |||
测试 broadcast_object 函数 | |||
详细的函数在 test_dist_utils.py 中完成 | |||
""" | |||
if self.driver.global_rank == src_rank: | |||
if driver.global_rank == 0: | |||
obj = { | |||
"rank": self.driver.global_rank | |||
"rank": driver.global_rank | |||
} | |||
else: | |||
obj = None | |||
res = self.driver.broadcast_object(obj, src=src_rank) | |||
assert res["rank"] == src_rank | |||
res = driver.broadcast_object(obj, src=0) | |||
assert res["rank"] == 0 | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() | |||
############################################################################ | |||
# | |||
@@ -187,7 +180,6 @@ class TestSetDistReproDataloader: | |||
@classmethod | |||
def setup_class(cls): | |||
cls.device = [0, 1] | |||
cls.driver = generate_driver(10, 10, device=cls.device) | |||
def setup_method(self): | |||
self.dataset = TorchNormalDataset(40) | |||
@@ -204,17 +196,20 @@ class TestSetDistReproDataloader: | |||
测试 set_dist_repro_dataloader 中 dist 为 BucketedBatchSampler 时的表现 | |||
此时应该将 batch_sampler 替换为 dist 对应的 BucketedBatchSampler | |||
""" | |||
driver = generate_driver(10, 10, device=self.device) | |||
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=not shuffle) | |||
batch_sampler = BucketedBatchSampler(self.dataset, self.dataset._data, batch_size=4, shuffle=shuffle) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, batch_sampler, False) | |||
replaced_loader = driver.set_dist_repro_dataloader(dataloader, batch_sampler, False) | |||
assert not (replaced_loader is dataloader) | |||
assert isinstance(replaced_loader.batch_sampler, BucketedBatchSampler) | |||
assert replaced_loader.batch_sampler is batch_sampler | |||
self.check_distributed_sampler(replaced_loader.batch_sampler) | |||
self.check_set_dist_repro_dataloader(dataloader, replaced_loader, shuffle) | |||
self.check_set_dist_repro_dataloader(driver, dataloader, replaced_loader, shuffle) | |||
dist.barrier() | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() | |||
@magic_argv_env_context | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
@@ -223,9 +218,10 @@ class TestSetDistReproDataloader: | |||
测试 set_dist_repro_dataloader 中 dist 为 RandomSampler 时的表现 | |||
此时应该将 batch_sampler.sampler 替换为 dist 对应的 RandomSampler | |||
""" | |||
driver = generate_driver(10, 10, device=self.device) | |||
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=not shuffle) | |||
sampler = RandomSampler(self.dataset, shuffle=shuffle) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, sampler, False) | |||
replaced_loader = driver.set_dist_repro_dataloader(dataloader, sampler, False) | |||
assert not (replaced_loader is dataloader) | |||
assert isinstance(replaced_loader.batch_sampler, BatchSampler) | |||
@@ -234,9 +230,11 @@ class TestSetDistReproDataloader: | |||
assert replaced_loader.batch_sampler.sampler is sampler | |||
assert replaced_loader.batch_sampler.batch_size == dataloader.batch_sampler.batch_size | |||
self.check_distributed_sampler(replaced_loader.batch_sampler.sampler) | |||
self.check_set_dist_repro_dataloader(dataloader, replaced_loader, shuffle) | |||
self.check_set_dist_repro_dataloader(driver, dataloader, replaced_loader, shuffle) | |||
dist.barrier() | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() | |||
""" | |||
传入的参数 `dist` 为 None 的情况,这种情况出现在 trainer 和 evaluator 的初始化过程中,用户指定了 `use_dist_sampler` | |||
@@ -251,15 +249,17 @@ class TestSetDistReproDataloader: | |||
测试 set_dist_repro_dataloader 中 dist 为 None、reproducible 为 True 时的表现 | |||
当用户在 driver 之外初始化了分布式环境时,fastnlp 不支持进行断点重训,此时应该报错 | |||
""" | |||
driver = generate_driver(10, 10, device=self.device) | |||
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=True) | |||
with pytest.raises(RuntimeError): | |||
# 应当抛出 RuntimeError | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, None, True) | |||
replaced_loader = driver.set_dist_repro_dataloader(dataloader, None, True) | |||
dist.barrier() | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() | |||
@magic_argv_env_context | |||
# @pytest.mark.parametrize("shuffle", ([True, False])) | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
def test_with_dist_none_reproducible_false_dataloader_reproducible_batch_sampler(self, shuffle): | |||
""" | |||
@@ -268,21 +268,24 @@ class TestSetDistReproDataloader: | |||
此时传入的 dataloader 的 batch_sampler 应该已经执行了 set_distributed,产生一个新的 dataloader,其 batch_sampler | |||
和原 dataloader 相同 | |||
""" | |||
driver = generate_driver(10, 10, device=self.device) | |||
dataloader = dataloader_with_bucketedbatchsampler(self.dataset, self.dataset._data, 4, shuffle, False) | |||
dataloader.batch_sampler.set_distributed( | |||
num_replicas=self.driver.world_size, | |||
rank=self.driver.global_rank, | |||
num_replicas=driver.world_size, | |||
rank=driver.global_rank, | |||
pad=True | |||
) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, None, False) | |||
replaced_loader = driver.set_dist_repro_dataloader(dataloader, None, False) | |||
assert not (replaced_loader is dataloader) | |||
assert isinstance(replaced_loader.batch_sampler, BucketedBatchSampler) | |||
assert replaced_loader.batch_sampler.batch_size == 4 | |||
self.check_distributed_sampler(dataloader.batch_sampler) | |||
self.check_set_dist_repro_dataloader(dataloader, replaced_loader, shuffle) | |||
self.check_set_dist_repro_dataloader(driver, dataloader, replaced_loader, shuffle) | |||
dist.barrier() | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() | |||
@magic_argv_env_context | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
@@ -292,12 +295,13 @@ class TestSetDistReproDataloader: | |||
此时传入的 dataloader 的 batch_sampler.sampler 应该已经执行了 set_distributed,产生一个新的 dataloader,其 | |||
batch_sampler.sampler 和原 dataloader 相同 | |||
""" | |||
driver = generate_driver(10, 10, device=self.device) | |||
dataloader = dataloader_with_randomsampler(self.dataset, 4, shuffle, False, unrepeated=False) | |||
dataloader.batch_sampler.sampler.set_distributed( | |||
num_replicas=self.driver.world_size, | |||
rank=self.driver.global_rank | |||
num_replicas=driver.world_size, | |||
rank=driver.global_rank | |||
) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, None, False) | |||
replaced_loader = driver.set_dist_repro_dataloader(dataloader, None, False) | |||
assert not (replaced_loader is dataloader) | |||
assert isinstance(replaced_loader.batch_sampler, BatchSampler) | |||
@@ -307,9 +311,11 @@ class TestSetDistReproDataloader: | |||
assert replaced_loader.batch_sampler.batch_size == 4 | |||
assert replaced_loader.batch_sampler.drop_last == False | |||
self.check_distributed_sampler(replaced_loader.batch_sampler.sampler) | |||
self.check_set_dist_repro_dataloader(dataloader, replaced_loader, shuffle) | |||
self.check_set_dist_repro_dataloader(driver, dataloader, replaced_loader, shuffle) | |||
dist.barrier() | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() | |||
@magic_argv_env_context | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
@@ -318,11 +324,14 @@ class TestSetDistReproDataloader: | |||
测试 set_dist_repro_dataloader 中 dist 为 None、reproducible 为 False 、dataloader 为一般情况时的表现 | |||
此时直接返回原来的 dataloader,不做任何处理。 | |||
""" | |||
driver = generate_driver(10, 10, device=self.device) | |||
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=shuffle) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, None, False) | |||
replaced_loader = driver.set_dist_repro_dataloader(dataloader, None, False) | |||
assert replaced_loader is dataloader | |||
dist.barrier() | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() | |||
""" | |||
传入的参数 `dist` 为 'dist' 的情况,这种情况出现在 trainer 的初始化过程中,用户指定了 `use_dist_sampler` 参数 | |||
@@ -337,12 +346,13 @@ class TestSetDistReproDataloader: | |||
的表现 | |||
此时应该返回一个新的 dataloader,其batch_sampler 和原 dataloader 相同,且应该正确地设置了分布式相关的属性 | |||
""" | |||
driver = generate_driver(10, 10, device=self.device) | |||
dataloader = DataLoader( | |||
dataset=self.dataset, | |||
batch_sampler=BucketedBatchSampler(self.dataset, self.dataset._data, batch_size=4, shuffle=shuffle) | |||
) | |||
dataloader = dataloader_with_bucketedbatchsampler(self.dataset, self.dataset._data, 4, shuffle, False) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, "dist", False) | |||
replaced_loader = driver.set_dist_repro_dataloader(dataloader, "dist", False) | |||
assert not (replaced_loader is dataloader) | |||
assert isinstance(replaced_loader.batch_sampler, BucketedBatchSampler) | |||
@@ -351,6 +361,8 @@ class TestSetDistReproDataloader: | |||
assert replaced_loader.drop_last == dataloader.drop_last | |||
self.check_distributed_sampler(replaced_loader.batch_sampler) | |||
dist.barrier() | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() | |||
@magic_argv_env_context | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
@@ -361,8 +373,9 @@ class TestSetDistReproDataloader: | |||
此时应该返回一个新的 dataloader,其 batch_sampler.sampler 和原 dataloader 相同,且应该正确地设置了分布式相关 | |||
的属性 | |||
""" | |||
driver = generate_driver(10, 10, device=self.device) | |||
dataloader = dataloader_with_randomsampler(self.dataset, 4, shuffle, False, unrepeated=False) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, "dist", False) | |||
replaced_loader = driver.set_dist_repro_dataloader(dataloader, "dist", False) | |||
assert not (replaced_loader is dataloader) | |||
assert not (replaced_loader.batch_sampler is dataloader.batch_sampler) | |||
@@ -372,6 +385,8 @@ class TestSetDistReproDataloader: | |||
assert replaced_loader.batch_sampler.sampler.shuffle == shuffle | |||
self.check_distributed_sampler(replaced_loader.batch_sampler.sampler) | |||
dist.barrier() | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() | |||
@magic_argv_env_context | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
@@ -381,8 +396,9 @@ class TestSetDistReproDataloader: | |||
此时应该返回一个新的 dataloader,并替换其 batch_sampler.sampler 为 RandomSampler,且应该正确设置了分布式相关 | |||
的属性 | |||
""" | |||
driver = generate_driver(10, 10, device=self.device) | |||
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=shuffle) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, "dist", False) | |||
replaced_loader = driver.set_dist_repro_dataloader(dataloader, "dist", False) | |||
assert not (replaced_loader is dataloader) | |||
assert isinstance(replaced_loader.batch_sampler, BatchSampler) | |||
@@ -392,6 +408,8 @@ class TestSetDistReproDataloader: | |||
assert replaced_loader.batch_sampler.sampler.shuffle == shuffle | |||
self.check_distributed_sampler(replaced_loader.batch_sampler.sampler) | |||
dist.barrier() | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() | |||
""" | |||
传入的参数 `dist` 为 'unrepeatdist' 的情况,这种情况出现在 evaluator 的初始化过程中,用户指定了 `use_dist_sampler` 参数 | |||
@@ -407,8 +425,9 @@ class TestSetDistReproDataloader: | |||
此时应该返回一个新的 dataloader,且将原来的 Sampler 替换为 UnrepeatedRandomSampler,且正确地设置了分布式相关 | |||
的属性 | |||
""" | |||
driver = generate_driver(10, 10, device=self.device) | |||
dataloader = dataloader_with_randomsampler(self.dataset, 4, shuffle, False, unrepeated=False) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, "unrepeatdist", False) | |||
replaced_loader = driver.set_dist_repro_dataloader(dataloader, "unrepeatdist", False) | |||
assert not (replaced_loader is dataloader) | |||
assert isinstance(replaced_loader.batch_sampler, BatchSampler) | |||
@@ -418,6 +437,8 @@ class TestSetDistReproDataloader: | |||
assert replaced_loader.batch_sampler.sampler.shuffle == shuffle | |||
self.check_distributed_sampler(replaced_loader.batch_sampler.sampler) | |||
dist.barrier() | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() | |||
@magic_argv_env_context | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
@@ -427,8 +448,9 @@ class TestSetDistReproDataloader: | |||
的表现 | |||
此时应该返回一个新的 dataloader,且重新实例化了原来的 Sampler | |||
""" | |||
driver = generate_driver(10, 10, device=self.device) | |||
dataloader = dataloader_with_randomsampler(self.dataset, 4, shuffle, False, unrepeated=True) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, "unrepeatdist", False) | |||
replaced_loader = driver.set_dist_repro_dataloader(dataloader, "unrepeatdist", False) | |||
assert not (replaced_loader is dataloader) | |||
assert isinstance(replaced_loader.batch_sampler, BatchSampler) | |||
@@ -439,6 +461,8 @@ class TestSetDistReproDataloader: | |||
assert replaced_loader.drop_last == dataloader.drop_last | |||
self.check_distributed_sampler(replaced_loader.batch_sampler.sampler) | |||
dist.barrier() | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() | |||
@magic_argv_env_context | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
@@ -448,8 +472,9 @@ class TestSetDistReproDataloader: | |||
此时应该返回一个新的 dataloader,且将 sampler 替换为 UnrepeatedSequentialSampler,并正确地设置了分布式相关 | |||
的属性 | |||
""" | |||
driver = generate_driver(10, 10, device=self.device) | |||
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=shuffle) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, "unrepeatdist", False) | |||
replaced_loader = driver.set_dist_repro_dataloader(dataloader, "unrepeatdist", False) | |||
assert not (replaced_loader is dataloader) | |||
assert isinstance(replaced_loader.batch_sampler, BatchSampler) | |||
@@ -459,6 +484,8 @@ class TestSetDistReproDataloader: | |||
assert replaced_loader.drop_last == dataloader.drop_last | |||
self.check_distributed_sampler(replaced_loader.batch_sampler.sampler) | |||
dist.barrier() | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() | |||
def check_distributed_sampler(self, sampler): | |||
""" | |||
@@ -469,7 +496,7 @@ class TestSetDistReproDataloader: | |||
if not isinstance(sampler, UnrepeatedSampler): | |||
assert sampler.pad == True | |||
def check_set_dist_repro_dataloader(self, dataloader, replaced_loader, shuffle): | |||
def check_set_dist_repro_dataloader(self, driver, dataloader, replaced_loader, shuffle): | |||
""" | |||
测试多卡下 set_dist_repro_dataloader 函数的执行结果是否正确 | |||
""" | |||
@@ -501,8 +528,8 @@ class TestSetDistReproDataloader: | |||
drop_last=False, | |||
) | |||
new_loader.batch_sampler.set_distributed( | |||
num_replicas=self.driver.world_size, | |||
rank=self.driver.global_rank, | |||
num_replicas=driver.world_size, | |||
rank=driver.global_rank, | |||
pad=True | |||
) | |||
new_loader.batch_sampler.load_state_dict(sampler_states) | |||
@@ -512,8 +539,8 @@ class TestSetDistReproDataloader: | |||
# 重新构造 dataloader | |||
new_loader = dataloader_with_randomsampler(replaced_loader.dataset, batch_size, shuffle, drop_last=False) | |||
new_loader.batch_sampler.sampler.set_distributed( | |||
num_replicas=self.driver.world_size, | |||
rank=self.driver.global_rank | |||
num_replicas=driver.world_size, | |||
rank=driver.global_rank | |||
) | |||
new_loader.batch_sampler.sampler.load_state_dict(sampler_states) | |||
for idx, batch in enumerate(new_loader): | |||
@@ -534,11 +561,6 @@ class TestSaveLoad: | |||
测试多卡情况下 save 和 load 相关函数的表现 | |||
""" | |||
@classmethod | |||
def setup_class(cls): | |||
# 不在这里 setup 的话会报错 | |||
cls.driver = generate_driver(10, 10) | |||
def setup_method(self): | |||
self.dataset = TorchArgMaxDataset(10, 20) | |||
@@ -552,26 +574,26 @@ class TestSaveLoad: | |||
path = "model" | |||
dataloader = DataLoader(self.dataset, batch_size=2) | |||
self.driver1, self.driver2 = generate_driver(10, 10), generate_driver(10, 10) | |||
driver1, driver2 = generate_driver(10, 10), generate_driver(10, 10) | |||
self.driver1.save_model(path, only_state_dict) | |||
driver1.save_model(path, only_state_dict) | |||
# 同步 | |||
dist.barrier() | |||
self.driver2.load_model(path, only_state_dict) | |||
driver2.load_model(path, only_state_dict) | |||
for idx, batch in enumerate(dataloader): | |||
batch = self.driver1.move_data_to_device(batch) | |||
res1 = self.driver1.model( | |||
batch = driver1.move_data_to_device(batch) | |||
res1 = driver1.model( | |||
batch, | |||
fastnlp_fn=self.driver1.model.module.model.evaluate_step, | |||
fastnlp_fn=driver1.model.module.model.evaluate_step, | |||
# Driver.model -> DataParallel.module -> _FleetWrappingModel.model | |||
fastnlp_signature_fn=None, | |||
wo_auto_param_call=False, | |||
) | |||
res2 = self.driver2.model( | |||
res2 = driver2.model( | |||
batch, | |||
fastnlp_fn=self.driver2.model.module.model.evaluate_step, | |||
fastnlp_fn=driver2.model.module.model.evaluate_step, | |||
fastnlp_signature_fn=None, | |||
wo_auto_param_call=False, | |||
) | |||
@@ -580,6 +602,9 @@ class TestSaveLoad: | |||
finally: | |||
rank_zero_rm(path) | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() | |||
@magic_argv_env_context | |||
@pytest.mark.parametrize("only_state_dict", ([True, False])) | |||
@pytest.mark.parametrize("fp16", ([True, False])) | |||
@@ -593,7 +618,7 @@ class TestSaveLoad: | |||
path = "model.ckp" | |||
num_replicas = len(device) | |||
self.driver1, self.driver2 = generate_driver(10, 10, device=device, fp16=fp16), \ | |||
driver1, driver2 = generate_driver(10, 10, device=device, fp16=fp16), \ | |||
generate_driver(10, 10, device=device, fp16=False) | |||
dataloader = dataloader_with_bucketedbatchsampler( | |||
self.dataset, | |||
@@ -603,8 +628,8 @@ class TestSaveLoad: | |||
drop_last=False | |||
) | |||
dataloader.batch_sampler.set_distributed( | |||
num_replicas=self.driver1.world_size, | |||
rank=self.driver1.global_rank, | |||
num_replicas=driver1.world_size, | |||
rank=driver1.global_rank, | |||
pad=True | |||
) | |||
num_consumed_batches = 2 | |||
@@ -623,7 +648,7 @@ class TestSaveLoad: | |||
# 保存状态 | |||
sampler_states = dataloader.batch_sampler.state_dict() | |||
save_states = {"num_consumed_batches": num_consumed_batches} | |||
self.driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True) | |||
driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True) | |||
# 加载 | |||
# 更改 batch_size | |||
dataloader = dataloader_with_bucketedbatchsampler( | |||
@@ -634,11 +659,11 @@ class TestSaveLoad: | |||
drop_last=False | |||
) | |||
dataloader.batch_sampler.set_distributed( | |||
num_replicas=self.driver2.world_size, | |||
rank=self.driver2.global_rank, | |||
num_replicas=driver2.world_size, | |||
rank=driver2.global_rank, | |||
pad=True | |||
) | |||
load_states = self.driver2.load(Path(path), dataloader, only_state_dict, should_load_model=True) | |||
load_states = driver2.load(Path(path), dataloader, only_state_dict, should_load_model=True) | |||
replaced_loader = load_states.pop("dataloader") | |||
# 1. 检查 optimizer 的状态 | |||
# TODO optimizer 的 state_dict 总是为空 | |||
@@ -652,7 +677,7 @@ class TestSaveLoad: | |||
# 3. 检查 fp16 是否被加载 | |||
if fp16: | |||
assert isinstance(self.driver2.grad_scaler, torch.cuda.amp.GradScaler) | |||
assert isinstance(driver2.grad_scaler, torch.cuda.amp.GradScaler) | |||
# 4. 检查 model 的参数是否正确 | |||
# 5. 检查 batch_idx | |||
@@ -664,16 +689,16 @@ class TestSaveLoad: | |||
left_x_batches.update(batch["x"]) | |||
left_y_batches.update(batch["y"]) | |||
res1 = self.driver1.model( | |||
res1 = driver1.model( | |||
batch, | |||
fastnlp_fn=self.driver1.model.module.model.evaluate_step, | |||
fastnlp_fn=driver1.model.module.model.evaluate_step, | |||
# Driver.model -> DataParallel.module -> _FleetWrappingModel.model | |||
fastnlp_signature_fn=None, | |||
wo_auto_param_call=False, | |||
) | |||
res2 = self.driver2.model( | |||
res2 = driver2.model( | |||
batch, | |||
fastnlp_fn=self.driver2.model.module.model.evaluate_step, | |||
fastnlp_fn=driver2.model.module.model.evaluate_step, | |||
fastnlp_signature_fn=None, | |||
wo_auto_param_call=False, | |||
) | |||
@@ -686,6 +711,9 @@ class TestSaveLoad: | |||
finally: | |||
rank_zero_rm(path) | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() | |||
@magic_argv_env_context | |||
@pytest.mark.parametrize("only_state_dict", ([True, False])) | |||
@pytest.mark.parametrize("fp16", ([True, False])) | |||
@@ -700,13 +728,13 @@ class TestSaveLoad: | |||
num_replicas = len(device) | |||
self.driver1 = generate_driver(10, 10, device=device, fp16=fp16) | |||
self.driver2 = generate_driver(10, 10, device=device, fp16=False) | |||
driver1 = generate_driver(10, 10, device=device, fp16=fp16) | |||
driver2 = generate_driver(10, 10, device=device, fp16=False) | |||
dataloader = dataloader_with_randomsampler(self.dataset, 4, True, False, unrepeated=False) | |||
dataloader.batch_sampler.sampler.set_distributed( | |||
num_replicas=self.driver1.world_size, | |||
rank=self.driver1.global_rank, | |||
num_replicas=driver1.world_size, | |||
rank=driver1.global_rank, | |||
pad=True | |||
) | |||
num_consumed_batches = 2 | |||
@@ -726,18 +754,18 @@ class TestSaveLoad: | |||
sampler_states = dataloader.batch_sampler.sampler.state_dict() | |||
save_states = {"num_consumed_batches": num_consumed_batches} | |||
if only_state_dict: | |||
self.driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True) | |||
driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True) | |||
else: | |||
self.driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True, input_spec=[torch.ones((16, 10))]) | |||
driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True, input_spec=[torch.ones((16, 10))]) | |||
# 加载 | |||
# 更改 batch_size | |||
dataloader = dataloader_with_randomsampler(self.dataset, 2, True, False, unrepeated=False) | |||
dataloader.batch_sampler.sampler.set_distributed( | |||
num_replicas=self.driver2.world_size, | |||
rank=self.driver2.global_rank, | |||
num_replicas=driver2.world_size, | |||
rank=driver2.global_rank, | |||
pad=True | |||
) | |||
load_states = self.driver2.load(Path(path), dataloader, only_state_dict, should_load_model=True) | |||
load_states = driver2.load(Path(path), dataloader, only_state_dict, should_load_model=True) | |||
replaced_loader = load_states.pop("dataloader") | |||
# 1. 检查 optimizer 的状态 | |||
@@ -753,7 +781,7 @@ class TestSaveLoad: | |||
assert replaced_loader.batch_sampler.sampler.shuffle == sampler_states["shuffle"] | |||
# 3. 检查 fp16 是否被加载 | |||
if fp16: | |||
assert isinstance(self.driver2.grad_scaler, torch.cuda.amp.GradScaler) | |||
assert isinstance(driver2.grad_scaler, torch.cuda.amp.GradScaler) | |||
# 4. 检查 model 的参数是否正确 | |||
# 5. 检查 batch_idx | |||
@@ -765,16 +793,16 @@ class TestSaveLoad: | |||
left_x_batches.update(batch["x"]) | |||
left_y_batches.update(batch["y"]) | |||
res1 = self.driver1.model( | |||
res1 = driver1.model( | |||
batch, | |||
fastnlp_fn=self.driver1.model.module.model.evaluate_step, | |||
fastnlp_fn=driver1.model.module.model.evaluate_step, | |||
# Driver.model -> DataParallel.module -> _FleetWrappingModel.model | |||
fastnlp_signature_fn=None, | |||
wo_auto_param_call=False, | |||
) | |||
res2 = self.driver2.model( | |||
res2 = driver2.model( | |||
batch, | |||
fastnlp_fn=self.driver2.model.module.model.evaluate_step, | |||
fastnlp_fn=driver2.model.module.model.evaluate_step, | |||
fastnlp_signature_fn=None, | |||
wo_auto_param_call=False, | |||
) | |||
@@ -786,4 +814,7 @@ class TestSaveLoad: | |||
assert len(left_y_batches | already_seen_y_set) == len(self.dataset) / num_replicas | |||
finally: | |||
rank_zero_rm(path) | |||
rank_zero_rm(path) | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() |
@@ -2,12 +2,14 @@ import pytest | |||
from fastNLP.core.drivers import TorchSingleDriver, TorchDDPDriver | |||
from fastNLP.core.drivers.torch_driver.initialize_torch_driver import initialize_torch_driver | |||
from fastNLP.envs import get_gpu_count | |||
from tests.helpers.models.torch_model import TorchNormalModel_Classification_1 | |||
from tests.helpers.utils import magic_argv_env_context | |||
import torch | |||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH | |||
if _NEED_IMPORT_TORCH: | |||
import torch | |||
from torch import device as torchdevice | |||
else: | |||
from fastNLP.core.utils.dummy_class import DummyClass as torchdevice | |||
@pytest.mark.torch | |||
def test_incorrect_driver(): | |||
@@ -20,7 +22,7 @@ def test_incorrect_driver(): | |||
@pytest.mark.torch | |||
@pytest.mark.parametrize( | |||
"device", | |||
["cpu", "cuda:0", 0, torch.device("cuda:0")] | |||
["cpu", "cuda:0", 0, torchdevice("cuda:0")] | |||
) | |||
@pytest.mark.parametrize( | |||
"driver", | |||
@@ -83,7 +85,6 @@ def test_get_ddp(driver, device): | |||
("driver", "device"), | |||
[("torch_ddp", "cpu")] | |||
) | |||
@magic_argv_env_context | |||
def test_get_ddp_cpu(driver, device): | |||
""" | |||
测试试图在 cpu 上初始化分布式训练的情况 | |||
@@ -96,13 +97,12 @@ def test_get_ddp_cpu(driver, device): | |||
@pytest.mark.torch | |||
@pytest.mark.parametrize( | |||
"device", | |||
[-2, [0, torch.cuda.device_count() + 1, 3], [-2], torch.cuda.device_count() + 1] | |||
[-2, [0, 20, 3], [-2], 20] | |||
) | |||
@pytest.mark.parametrize( | |||
"driver", | |||
["torch", "torch_ddp"] | |||
) | |||
@magic_argv_env_context | |||
def test_device_out_of_range(driver, device): | |||
""" | |||
测试传入的device超过范围的情况 | |||
@@ -7,15 +7,20 @@ import copy | |||
import socket | |||
import pytest | |||
import numpy as np | |||
import torch | |||
import torch.distributed | |||
from torch.multiprocessing import Pool, set_start_method | |||
from sklearn.metrics import accuracy_score as sklearn_accuracy | |||
from fastNLP.core.dataset import DataSet | |||
from fastNLP.core.metrics.accuracy import Accuracy | |||
from fastNLP.core.metrics.metric import Metric | |||
from .utils import find_free_network_port, setup_ddp, _assert_allclose | |||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH | |||
if _NEED_IMPORT_TORCH: | |||
import torch | |||
import torch.distributed | |||
from torch.multiprocessing import Pool, set_start_method | |||
else: | |||
from fastNLP.core.utils.dummy_class import DummyClass as set_start_method | |||
set_start_method("spawn", force=True) | |||
@@ -26,7 +31,7 @@ pool = None | |||
def _test(local_rank: int, | |||
world_size: int, | |||
device: torch.device, | |||
device: "torch.device", | |||
dataset: DataSet, | |||
metric_class: Type[Metric], | |||
metric_kwargs: Dict[str, Any], | |||
@@ -2,18 +2,23 @@ from functools import partial | |||
import copy | |||
import pytest | |||
import torch | |||
import numpy as np | |||
from torch.multiprocessing import Pool, set_start_method | |||
from fastNLP.core.metrics import ClassifyFPreRecMetric | |||
from fastNLP.core.dataset import DataSet | |||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH | |||
from .utils import find_free_network_port, setup_ddp | |||
if _NEED_IMPORT_TORCH: | |||
import torch | |||
from torch.multiprocessing import Pool, set_start_method | |||
else: | |||
from fastNLP.core.utils.dummy_class import DummyClass as set_start_method | |||
set_start_method("spawn", force=True) | |||
def _test(local_rank: int, world_size: int, device: torch.device, | |||
def _test(local_rank: int, world_size: int, device: "torch.device", | |||
dataset: DataSet, metric_class, metric_kwargs, metric_result): | |||
metric = metric_class(**metric_kwargs) | |||
# dataset 也类似(每个进程有自己的一个) | |||
@@ -5,16 +5,21 @@ import os, sys | |||
import copy | |||
from functools import partial | |||
import torch | |||
import torch.distributed | |||
import numpy as np | |||
import socket | |||
from torch.multiprocessing import Pool, set_start_method | |||
# from multiprocessing import Pool, set_start_method | |||
from fastNLP.core.vocabulary import Vocabulary | |||
from fastNLP.core.metrics import SpanFPreRecMetric | |||
from fastNLP.core.dataset import DataSet | |||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH | |||
from .utils import find_free_network_port, setup_ddp | |||
if _NEED_IMPORT_TORCH: | |||
import torch | |||
import torch.distributed | |||
from torch.multiprocessing import Pool, set_start_method | |||
else: | |||
from fastNLP.core.utils.dummy_class import DummyClass as set_start_method | |||
set_start_method("spawn", force=True) | |||
@@ -44,7 +49,7 @@ pool = None | |||
def _test(local_rank: int, | |||
world_size: int, | |||
device: torch.device, | |||
device: "torch.device", | |||
dataset: DataSet, | |||
metric_class, | |||
metric_kwargs, | |||
@@ -2,9 +2,11 @@ import os, sys | |||
import socket | |||
from typing import Union | |||
import torch | |||
from torch import distributed | |||
import numpy as np | |||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH | |||
if _NEED_IMPORT_TORCH: | |||
import torch | |||
from torch import distributed | |||
def setup_ddp(rank: int, world_size: int, master_port: int) -> None: | |||
@@ -3,6 +3,7 @@ import pytest | |||
import subprocess | |||
from io import StringIO | |||
import sys | |||
sys.path.append(os.path.join(os.path.dirname(__file__), '../../..')) | |||
from fastNLP.core.utils.cache_results import cache_results | |||
from fastNLP.core import rank_zero_rm | |||
@@ -1,4 +1,5 @@ | |||
import os | |||
import pytest | |||
from fastNLP.envs.set_backend import dump_fastnlp_backend | |||
from tests.helpers.utils import Capturing | |||
@@ -9,7 +10,7 @@ def test_dump_fastnlp_envs(): | |||
filepath = None | |||
try: | |||
with Capturing() as output: | |||
dump_fastnlp_backend() | |||
dump_fastnlp_backend(backend="torch") | |||
filepath = os.path.join(os.path.expanduser('~'), '.fastNLP', 'envs', os.environ['CONDA_DEFAULT_ENV']+'.json') | |||
assert filepath in output[0] | |||
assert os.path.exists(filepath) | |||
@@ -1,7 +1,9 @@ | |||
import torch | |||
from copy import deepcopy | |||
from fastNLP.core.callbacks.callback import Callback | |||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH | |||
if _NEED_IMPORT_TORCH: | |||
import torch | |||
class RecordAccumulationStepsCallback_Torch(Callback): | |||
@@ -1,7 +1,11 @@ | |||
import torch | |||
from functools import reduce | |||
from torch.utils.data import Dataset, DataLoader, DistributedSampler | |||
from torch.utils.data.sampler import SequentialSampler, BatchSampler | |||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH | |||
if _NEED_IMPORT_TORCH: | |||
from torch.utils.data import Dataset, DataLoader, DistributedSampler | |||
from torch.utils.data.sampler import SequentialSampler, BatchSampler | |||
else: | |||
from fastNLP.core.utils.dummy_class import DummyClass as Dataset | |||
class TorchNormalDataset(Dataset): | |||
@@ -1,9 +1,14 @@ | |||
import torch | |||
import torch.nn as nn | |||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH | |||
if _NEED_IMPORT_TORCH: | |||
import torch | |||
from torch.nn import Module | |||
import torch.nn as nn | |||
else: | |||
from fastNLP.core.utils.dummy_class import DummyClass as Module | |||
# 1. 最为基础的分类模型 | |||
class TorchNormalModel_Classification_1(nn.Module): | |||
class TorchNormalModel_Classification_1(Module): | |||
""" | |||
单独实现 train_step 和 evaluate_step; | |||
""" | |||
@@ -38,7 +43,7 @@ class TorchNormalModel_Classification_1(nn.Module): | |||
return {"preds": x, "target": y} | |||
class TorchNormalModel_Classification_2(nn.Module): | |||
class TorchNormalModel_Classification_2(Module): | |||
""" | |||
只实现一个 forward 函数,来测试用户自己在外面初始化 DDP 的场景; | |||
""" | |||
@@ -62,7 +67,7 @@ class TorchNormalModel_Classification_2(nn.Module): | |||
return {"loss": loss, "preds": x, "target": y} | |||
class TorchNormalModel_Classification_3(nn.Module): | |||
class TorchNormalModel_Classification_3(Module): | |||
""" | |||
只实现一个 forward 函数,来测试用户自己在外面初始化 DDP 的场景; | |||
关闭 auto_param_call,forward 只有一个 batch 参数; | |||
@@ -0,0 +1,6 @@ | |||
[pytest] | |||
markers = | |||
torch | |||
paddle | |||
jittor | |||
torchpaddle |