| @@ -32,7 +32,7 @@ def initialize_torch_driver(driver: str, device: Optional[Union[str, "torch.devi | |||
| return TorchDDPDriver(model, torch.device(f"cuda:{os.environ['LOCAL_RANK']}"), True, **kwargs) | |||
| if driver not in {"torch", "fairscale"}: | |||
| raise ValueError("Parameter `driver` can only be one of these values: ['torch', 'torch_ddp', 'fairscale'].") | |||
| raise ValueError("Parameter `driver` can only be one of these values: ['torch', 'fairscale'].") | |||
| _could_use_device_num = torch.cuda.device_count() | |||
| if isinstance(device, str): | |||
| @@ -43,6 +43,7 @@ def initialize_torch_driver(driver: str, device: Optional[Union[str, "torch.devi | |||
| raise ValueError("Parameter `device` can only be '-1' when it is smaller than 0.") | |||
| device = [torch.device(f"cuda:{w}") for w in range(_could_use_device_num)] | |||
| elif device >= _could_use_device_num: | |||
| print(device, _could_use_device_num) | |||
| raise ValueError("The gpu device that parameter `device` specifies is not existed.") | |||
| else: | |||
| device = torch.device(f"cuda:{device}") | |||
| @@ -0,0 +1,5 @@ | |||
| __all__ = [ | |||
| "LSTM", | |||
| ] | |||
| from .lstm import LSTM | |||
| @@ -0,0 +1,82 @@ | |||
| r"""undocumented | |||
| 轻量封装的 Pytorch LSTM 模块. | |||
| 可在 forward 时传入序列的长度, 自动对padding做合适的处理. | |||
| """ | |||
| __all__ = [ | |||
| "LSTM" | |||
| ] | |||
| import torch | |||
| import torch.nn as nn | |||
| import torch.nn.utils.rnn as rnn | |||
| class LSTM(nn.Module): | |||
| r""" | |||
| LSTM 模块, 轻量封装的Pytorch LSTM. 在提供seq_len的情况下,将自动使用pack_padded_sequence; 同时默认将forget gate的bias初始化 | |||
| 为1; 且可以应对DataParallel中LSTM的使用问题。 | |||
| """ | |||
| def __init__(self, input_size, hidden_size=100, num_layers=1, dropout=0.0, batch_first=True, | |||
| bidirectional=False, bias=True): | |||
| r""" | |||
| :param input_size: 输入 `x` 的特征维度 | |||
| :param hidden_size: 隐状态 `h` 的特征维度. 如果bidirectional为True,则输出的维度会是hidde_size*2 | |||
| :param num_layers: rnn的层数. Default: 1 | |||
| :param dropout: 层间dropout概率. Default: 0 | |||
| :param bidirectional: 若为 ``True``, 使用双向的RNN. Default: ``False`` | |||
| :param batch_first: 若为 ``True``, 输入和输出 ``Tensor`` 形状为 | |||
| :(batch, seq, feature). Default: ``False`` | |||
| :param bias: 如果为 ``False``, 模型将不会使用bias. Default: ``True`` | |||
| """ | |||
| super(LSTM, self).__init__() | |||
| self.batch_first = batch_first | |||
| self.lstm = nn.LSTM(input_size, hidden_size, num_layers, bias=bias, batch_first=batch_first, | |||
| dropout=dropout, bidirectional=bidirectional) | |||
| self.init_param() | |||
| def init_param(self): | |||
| for name, param in self.named_parameters(): | |||
| if 'bias' in name: | |||
| # based on https://github.com/pytorch/pytorch/issues/750#issuecomment-280671871 | |||
| param.data.fill_(0) | |||
| n = param.size(0) | |||
| start, end = n // 4, n // 2 | |||
| param.data[start:end].fill_(1) | |||
| else: | |||
| nn.init.xavier_uniform_(param) | |||
| def forward(self, x, seq_len=None, h0=None, c0=None): | |||
| r""" | |||
| :param x: [batch, seq_len, input_size] 输入序列 | |||
| :param seq_len: [batch, ] 序列长度, 若为 ``None``, 所有输入看做一样长. Default: ``None`` | |||
| :param h0: [batch, hidden_size] 初始隐状态, 若为 ``None`` , 设为全0向量. Default: ``None`` | |||
| :param c0: [batch, hidden_size] 初始Cell状态, 若为 ``None`` , 设为全0向量. Default: ``None`` | |||
| :return (output, (ht, ct)): output: [batch, seq_len, hidden_size*num_direction] 输出序列 | |||
| 和 ht,ct: [num_layers*num_direction, batch, hidden_size] 最后时刻隐状态. | |||
| """ | |||
| batch_size, max_len, _ = x.size() | |||
| if h0 is not None and c0 is not None: | |||
| hx = (h0, c0) | |||
| else: | |||
| hx = None | |||
| if seq_len is not None and not isinstance(x, rnn.PackedSequence): | |||
| sort_lens, sort_idx = torch.sort(seq_len, dim=0, descending=True) | |||
| if self.batch_first: | |||
| x = x[sort_idx] | |||
| else: | |||
| x = x[:, sort_idx] | |||
| x = rnn.pack_padded_sequence(x, sort_lens.cpu(), batch_first=self.batch_first) | |||
| output, hx = self.lstm(x, hx) # -> [N,L,C] | |||
| output, _ = rnn.pad_packed_sequence(output, batch_first=self.batch_first, total_length=max_len) | |||
| _, unsort_idx = torch.sort(sort_idx, dim=0, descending=False) | |||
| if self.batch_first: | |||
| output = output[unsort_idx] | |||
| else: | |||
| output = output[:, unsort_idx] | |||
| hx = hx[0][:, unsort_idx], hx[1][:, unsort_idx] | |||
| else: | |||
| output, hx = self.lstm(x, hx) | |||
| return output, hx | |||
| @@ -74,7 +74,7 @@ def model_and_optimizers(request): | |||
| @pytest.mark.torch | |||
| @pytest.mark.parametrize("driver,device", [("torch", "cpu"), ("torch_ddp", [0, 1]), ("torch", 1)]) # ("torch", "cpu"), ("torch_ddp", [0, 1]), ("torch", 1) | |||
| @pytest.mark.parametrize("driver,device", [("torch", [0, 1])]) # ("torch", "cpu"), ("torch", [0, 1]), ("torch", 1) | |||
| @pytest.mark.parametrize("version", [0, 1]) | |||
| @pytest.mark.parametrize("only_state_dict", [True, False]) | |||
| @magic_argv_env_context(timeout=100) | |||
| @@ -121,7 +121,7 @@ def test_model_checkpoint_callback_1( | |||
| # 检查生成保存模型文件的数量是不是正确的; | |||
| if version == 0: | |||
| if driver == "torch": | |||
| if not isinstance(device, list): | |||
| assert "model-epoch_10" in all_saved_model_paths | |||
| assert "model-epoch_4-batch_123" in all_saved_model_paths | |||
| @@ -144,7 +144,7 @@ def test_model_checkpoint_callback_1( | |||
| pattern = re.compile("model-epoch_[0-9]+-batch_[0-9]+-[a-zA-Z#]+_[0-9]*.?[0-9]*") | |||
| if driver == "torch": | |||
| if not isinstance(device, list): | |||
| assert "model-epoch_9" in all_saved_model_paths | |||
| assert "model-last" in all_saved_model_paths | |||
| aLL_topk_folders = [] | |||
| @@ -206,7 +206,7 @@ def test_model_checkpoint_callback_1( | |||
| @pytest.mark.torch | |||
| @pytest.mark.parametrize("driver,device", [("torch", "cpu"), ("torch_ddp", [0, 1]), ("torch", 1)]) # ("torch", "cpu"), ("torch_ddp", [0, 1]), ("torch", 1) | |||
| @pytest.mark.parametrize("driver,device", [("torch", "cpu"), ("torch", [0, 1]), ("torch", 1)]) # ("torch", "cpu"), ("torch", [0, 1]), ("torch", 1) | |||
| @pytest.mark.parametrize("only_state_dict", [True]) | |||
| @magic_argv_env_context(timeout=100) | |||
| def test_model_checkpoint_callback_2( | |||
| @@ -259,7 +259,7 @@ def test_model_checkpoint_callback_2( | |||
| # 检查生成保存模型文件的数量是不是正确的; | |||
| all_saved_model_paths = {w.name: w for w in path.joinpath(os.environ[FASTNLP_LAUNCH_TIME]).iterdir()} | |||
| if driver == "torch": | |||
| if not isinstance(device, list): | |||
| assert "model-epoch_4-batch_100-exception_NotImplementedError" in all_saved_model_paths | |||
| exception_model_path = all_saved_model_paths["model-epoch_4-batch_100-exception_NotImplementedError"] | |||
| # ddp 下的文件名不同,因为同样的数据,ddp 用了更少的步数跑完; | |||
| @@ -299,7 +299,7 @@ def test_model_checkpoint_callback_2( | |||
| @pytest.mark.torch | |||
| @pytest.mark.parametrize("driver,device", [("torch", "cpu"), ("torch_ddp", [0, 1]), ("torch", 0)]) # ("torch", "cpu"), ("torch_ddp", [0, 1]), ("torch", 1) | |||
| @pytest.mark.parametrize("driver,device", [("torch", "cpu"), ("torch", [0, 1]), ("torch", 0)]) # ("torch", "cpu"), ("torch", [0, 1]), ("torch", 1) | |||
| @pytest.mark.parametrize("version", [0, 1]) | |||
| @pytest.mark.parametrize("only_state_dict", [True, False]) | |||
| @magic_argv_env_context(timeout=100) | |||
| @@ -347,7 +347,7 @@ def test_trainer_checkpoint_callback_1( | |||
| # 检查生成保存模型文件的数量是不是正确的; | |||
| if version == 0: | |||
| if driver == "torch": | |||
| if not isinstance(device, list): | |||
| assert "trainer-epoch_7" in all_saved_model_paths | |||
| assert "trainer-epoch_4-batch_123" in all_saved_model_paths | |||
| @@ -371,7 +371,7 @@ def test_trainer_checkpoint_callback_1( | |||
| pattern = re.compile("trainer-epoch_[0-9]+-batch_[0-9]+-[a-zA-Z#]+_[0-9]*.?[0-9]*") | |||
| # all_saved_model_paths = {w.name: w for w in path.joinpath(os.environ[FASTNLP_LAUNCH_TIME]).iterdir()} | |||
| if driver == "torch": | |||
| if not isinstance(device, list): | |||
| assert "trainer-last" in all_saved_model_paths | |||
| aLL_topk_folders = [] | |||
| for each_folder_name in all_saved_model_paths: | |||
| @@ -417,7 +417,7 @@ def test_trainer_checkpoint_callback_1( | |||
| n_epochs=13, | |||
| output_from_new_proc="all" | |||
| ) | |||
| trainer.load(folder, only_state_dict=only_state_dict) | |||
| trainer.load_checkpoint(folder, only_state_dict=only_state_dict) | |||
| trainer.run() | |||
| trainer.driver.barrier() | |||
| @@ -489,7 +489,7 @@ def test_load_state(model_and_optimizers): | |||
| callbacks=callbacks, | |||
| output_from_new_proc="all" | |||
| ) | |||
| trainer.load(folder=epoch_2_path) | |||
| trainer.load_checkpoint(folder=epoch_2_path) | |||
| with Capturing() as output: | |||
| trainer.run(num_eval_sanity_batch=0, num_train_batch_per_epoch=2) | |||
| @@ -503,7 +503,7 @@ def test_load_state(model_and_optimizers): | |||
| @pytest.mark.torch | |||
| # 通过自己编写 model_save_fn 和 model_load_fn 来测试 huggingface 的 transformers 的模型的保存和加载; | |||
| @pytest.mark.parametrize("driver,device", [("torch_ddp", [6, 7]), ("torch", 7)]) # ("torch", "cpu"), ("torch_ddp", [0, 1]), ("torch", 1) | |||
| @pytest.mark.parametrize("driver,device", [("torch", [6, 7]), ("torch", 7)]) # ("torch", "cpu"), ("torch", [0, 1]), ("torch", 1) | |||
| @pytest.mark.parametrize("version", [0, 1]) | |||
| @magic_argv_env_context | |||
| @pytest.mark.skip("Skip transformers test for now.") | |||
| @@ -675,7 +675,7 @@ def test_trainer_checkpoint_callback_2( | |||
| # 检查生成保存模型文件的数量是不是正确的; | |||
| if version == 0: | |||
| if driver == "torch": | |||
| if not isinstance(device, list): | |||
| assert "trainer-epoch_1-batch_200" in all_saved_model_paths | |||
| epoch_save_path = all_saved_model_paths["trainer-epoch_1-batch_200"] | |||
| @@ -695,7 +695,7 @@ def test_trainer_checkpoint_callback_2( | |||
| pattern = re.compile("trainer-epoch_[0-9]+-batch_[0-9]+-[a-zA-Z#]+_[0-9]*.?[0-9]*") | |||
| # all_saved_model_paths = {w.name: w for w in path.joinpath(os.environ[FASTNLP_LAUNCH_TIME]).iterdir()} | |||
| if driver == "torch": | |||
| if not isinstance(device, list): | |||
| assert "trainer-last" in all_saved_model_paths | |||
| aLL_topk_folders = [] | |||
| for each_folder_name in all_saved_model_paths: | |||
| @@ -740,7 +740,7 @@ def test_trainer_checkpoint_callback_2( | |||
| output_mapping=bert_output_mapping, | |||
| metrics={"acc": acc}, | |||
| ) | |||
| trainer.load(folder, model_load_fn=model_load_fn) | |||
| trainer.load_checkpoint(folder, model_load_fn=model_load_fn) | |||
| trainer.run() | |||
| trainer.driver.barrier() | |||
| @@ -72,7 +72,7 @@ def model_and_optimizers(request): | |||
| @pytest.mark.torch | |||
| @pytest.mark.parametrize("driver,device", [("torch_ddp", [4, 5]), ("torch", 1), ("torch", "cpu")]) # ("torch", "cpu"), ("torch_ddp", [0, 1]), ("torch", 1) | |||
| @pytest.mark.parametrize("driver,device", [("torch", [4, 5]), ("torch", 1), ("torch", "cpu")]) # ("torch", "cpu"), ("torch", [0, 1]), ("torch", 1) | |||
| @pytest.mark.parametrize("save_folder", ['save_models', None]) | |||
| @pytest.mark.parametrize("only_state_dict", [True, False]) | |||
| @magic_argv_env_context | |||
| @@ -98,7 +98,7 @@ def model_and_optimizers(request): | |||
| @pytest.mark.torch | |||
| @pytest.mark.parametrize("driver,device", [("torch", "cpu"), ("torch_ddp", [0, 1]), ("torch", 1)]) # ("torch", "cpu"), ("torch_ddp", [0, 1]), ("torch", 1) | |||
| @pytest.mark.parametrize("driver,device", [("torch", "cpu"), ("torch", [0, 1]), ("torch", 1)]) # ("torch", "cpu"), ("torch", [0, 1]), ("torch", 1) | |||
| @pytest.mark.parametrize("version", [0, 1]) | |||
| @pytest.mark.parametrize("only_state_dict", [True, False]) | |||
| @magic_argv_env_context | |||
| @@ -183,7 +183,7 @@ def test_model_more_evaluate_callback_1( | |||
| @pytest.mark.torch | |||
| @pytest.mark.parametrize("driver,device", [("torch", "cpu"), ("torch_ddp", [0, 1]), ("torch", 0)]) # ("torch", "cpu"), ("torch_ddp", [0, 1]), ("torch", 1) | |||
| @pytest.mark.parametrize("driver,device", [("torch", "cpu"), ("torch", [0, 1]), ("torch", 0)]) # ("torch", "cpu"), ("torch", [0, 1]), ("torch", 1) | |||
| @pytest.mark.parametrize("version", [0, 1]) | |||
| @pytest.mark.parametrize("only_state_dict", [True, False]) | |||
| @magic_argv_env_context | |||
| @@ -256,7 +256,7 @@ def test_trainer_checkpoint_callback_1( | |||
| evaluate_fn='train_step' | |||
| ) | |||
| folder = path.joinpath(os.environ[FASTNLP_LAUNCH_TIME]).joinpath(folder) | |||
| trainer.load(folder, only_state_dict=only_state_dict) | |||
| trainer.load_checkpoint(folder, only_state_dict=only_state_dict) | |||
| trainer.run() | |||
| trainer.driver.barrier() | |||
| @@ -85,7 +85,7 @@ def _test_trainer_torch_with_evaluator_fp16_accumulation_steps( | |||
| ): | |||
| trainer = Trainer( | |||
| model=model, | |||
| driver="torch_ddp", | |||
| driver="torch", | |||
| device=None, | |||
| optimizers=optimizers, | |||
| train_dataloader=train_dataloader, | |||
| @@ -73,7 +73,7 @@ def _test_trainer_torch_with_evaluator_fp16_accumulation_steps( | |||
| ): | |||
| trainer = Trainer( | |||
| model=model, | |||
| driver="torch_ddp", | |||
| driver="torch", | |||
| device=None, | |||
| optimizers=optimizers, | |||
| train_dataloader=train_dataloader, | |||
| @@ -318,7 +318,7 @@ def test_torch_distributed_launch_2(version): | |||
| @pytest.mark.torch | |||
| @pytest.mark.parametrize("driver,device", [("torch", 0), ("torch_ddp", [0, 1])]) | |||
| @pytest.mark.parametrize("driver,device", [("torch", 0), ("torch", [0, 1])]) | |||
| @magic_argv_env_context | |||
| def test_torch_wo_auto_param_call( | |||
| driver, | |||
| @@ -626,9 +626,9 @@ class TestSaveLoad: | |||
| sampler_states = dataloader.batch_sampler.state_dict() | |||
| save_states = {"num_consumed_batches": num_consumed_batches} | |||
| if only_state_dict: | |||
| self.driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True) | |||
| self.driver1.save_checkpoint(Path(path), save_states, dataloader, only_state_dict, should_save_model=True) | |||
| else: | |||
| self.driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True, input_spec=[paddle.ones((16, 10))]) | |||
| self.driver1.save_checkpoint(Path(path), save_states, dataloader, only_state_dict, should_save_model=True, input_spec=[paddle.ones((16, 10))]) | |||
| # 加载 | |||
| # 更改 batch_size | |||
| dataloader = DataLoader( | |||
| @@ -644,7 +644,7 @@ class TestSaveLoad: | |||
| rank=self.driver2.global_rank, | |||
| pad=True | |||
| ) | |||
| load_states = self.driver2.load(Path(path), dataloader, only_state_dict, should_load_model=True) | |||
| load_states = self.driver2.load_checkpoint(Path(path), dataloader, only_state_dict, should_load_model=True) | |||
| replaced_loader = load_states.pop("dataloader") | |||
| # 1. 检查 optimizer 的状态 | |||
| # TODO optimizer 的 state_dict 总是为空 | |||
| @@ -736,9 +736,9 @@ class TestSaveLoad: | |||
| sampler_states = dataloader.batch_sampler.sampler.state_dict() | |||
| save_states = {"num_consumed_batches": num_consumed_batches} | |||
| if only_state_dict: | |||
| self.driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True) | |||
| self.driver1.save_checkpoint(Path(path), save_states, dataloader, only_state_dict, should_save_model=True) | |||
| else: | |||
| self.driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True, input_spec=[paddle.ones((16, 10))]) | |||
| self.driver1.save_checkpoint(Path(path), save_states, dataloader, only_state_dict, should_save_model=True, input_spec=[paddle.ones((16, 10))]) | |||
| # 加载 | |||
| # 更改 batch_size | |||
| batch_sampler = BatchSampler(dataset=self.dataset, batch_size=2) | |||
| @@ -752,7 +752,7 @@ class TestSaveLoad: | |||
| self.dataset, | |||
| batch_sampler=batch_sampler | |||
| ) | |||
| load_states = self.driver2.load(Path(path), dataloader, only_state_dict, should_load_model=True) | |||
| load_states = self.driver2.load_checkpoint(Path(path), dataloader, only_state_dict, should_load_model=True) | |||
| replaced_loader = load_states.pop("dataloader") | |||
| # 1. 检查 optimizer 的状态 | |||
| @@ -615,16 +615,16 @@ def test_save_and_load_with_randombatchsampler(only_state_dict, fp16): | |||
| sampler_states = dataloader.batch_sampler.state_dict() | |||
| save_states = {"num_consumed_batches": num_consumed_batches} | |||
| if only_state_dict: | |||
| driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True) | |||
| driver1.save_checkpoint(Path(path), save_states, dataloader, only_state_dict, should_save_model=True) | |||
| else: | |||
| driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True, input_spec=[paddle.ones((16, 10))]) | |||
| driver1.save_checkpoint(Path(path), save_states, dataloader, only_state_dict, should_save_model=True, input_spec=[paddle.ones((16, 10))]) | |||
| # 加载 | |||
| # 更改 batch_size | |||
| dataloader = DataLoader( | |||
| dataset=dataset, | |||
| batch_sampler=ReproduceBatchSampler(BatchSampler(dataset, batch_size=2, shuffle=True), 2, False) | |||
| ) | |||
| load_states = driver2.load(Path(path), dataloader, only_state_dict, should_load_model=True) | |||
| load_states = driver2.load_checkpoint(Path(path), dataloader, only_state_dict, should_load_model=True) | |||
| replaced_loader = load_states.pop("dataloader") | |||
| # 1. 检查 optimizer 的状态 | |||
| # TODO optimizer 的 state_dict 总是为空 | |||
| @@ -697,9 +697,9 @@ def test_save_and_load_with_randomsampler(only_state_dict, fp16): | |||
| sampler_states = dataloader.batch_sampler.sampler.state_dict() | |||
| save_states = {"num_consumed_batches": num_consumed_batches} | |||
| if only_state_dict: | |||
| driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True) | |||
| driver1.save_checkpoint(Path(path), save_states, dataloader, only_state_dict, should_save_model=True) | |||
| else: | |||
| driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True, input_spec=[paddle.ones((16, 10))]) | |||
| driver1.save_checkpoint(Path(path), save_states, dataloader, only_state_dict, should_save_model=True, input_spec=[paddle.ones((16, 10))]) | |||
| # 加载 | |||
| # 更改 batch_size | |||
| @@ -709,7 +709,7 @@ def test_save_and_load_with_randomsampler(only_state_dict, fp16): | |||
| dataset, | |||
| batch_sampler=batch_sampler | |||
| ) | |||
| load_states = driver2.load(Path(path), dataloader, only_state_dict, should_load_model=True) | |||
| load_states = driver2.load_checkpoint(Path(path), dataloader, only_state_dict, should_load_model=True) | |||
| replaced_loader = load_states.pop("dataloader") | |||
| # 1. 检查 optimizer 的状态 | |||
| @@ -648,7 +648,7 @@ class TestSaveLoad: | |||
| # 保存状态 | |||
| sampler_states = dataloader.batch_sampler.state_dict() | |||
| save_states = {"num_consumed_batches": num_consumed_batches} | |||
| driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True) | |||
| driver1.save_checkpoint(Path(path), save_states, dataloader, only_state_dict, should_save_model=True) | |||
| # 加载 | |||
| # 更改 batch_size | |||
| dataloader = dataloader_with_bucketedbatchsampler( | |||
| @@ -663,7 +663,7 @@ class TestSaveLoad: | |||
| rank=driver2.global_rank, | |||
| pad=True | |||
| ) | |||
| load_states = driver2.load(Path(path), dataloader, only_state_dict, should_load_model=True) | |||
| load_states = driver2.load_checkpoint(Path(path), dataloader, only_state_dict, should_load_model=True) | |||
| replaced_loader = load_states.pop("dataloader") | |||
| # 1. 检查 optimizer 的状态 | |||
| # TODO optimizer 的 state_dict 总是为空 | |||
| @@ -754,9 +754,9 @@ class TestSaveLoad: | |||
| sampler_states = dataloader.batch_sampler.sampler.state_dict() | |||
| save_states = {"num_consumed_batches": num_consumed_batches} | |||
| if only_state_dict: | |||
| driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True) | |||
| driver1.save_checkpoint(Path(path), save_states, dataloader, only_state_dict, should_save_model=True) | |||
| else: | |||
| driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True, input_spec=[torch.ones((16, 10))]) | |||
| driver1.save_checkpoint(Path(path), save_states, dataloader, only_state_dict, should_save_model=True, input_spec=[torch.ones((16, 10))]) | |||
| # 加载 | |||
| # 更改 batch_size | |||
| dataloader = dataloader_with_randomsampler(self.dataset, 2, True, False, unrepeated=False) | |||
| @@ -765,7 +765,7 @@ class TestSaveLoad: | |||
| rank=driver2.global_rank, | |||
| pad=True | |||
| ) | |||
| load_states = driver2.load(Path(path), dataloader, only_state_dict, should_load_model=True) | |||
| load_states = driver2.load_checkpoint(Path(path), dataloader, only_state_dict, should_load_model=True) | |||
| replaced_loader = load_states.pop("dataloader") | |||
| # 1. 检查 optimizer 的状态 | |||
| @@ -37,28 +37,6 @@ def test_get_single_device(driver, device): | |||
| driver = initialize_torch_driver(driver, device, model) | |||
| assert isinstance(driver, TorchSingleDriver) | |||
| @pytest.mark.torch | |||
| @pytest.mark.parametrize( | |||
| "device", | |||
| [0, 1] | |||
| ) | |||
| @pytest.mark.parametrize( | |||
| "driver", | |||
| ["torch_ddp"] | |||
| ) | |||
| @magic_argv_env_context | |||
| def test_get_ddp_2(driver, device): | |||
| """ | |||
| 测试 ddp 多卡的初始化情况,但传入了单个 gpu | |||
| """ | |||
| model = TorchNormalModel_Classification_1(64, 10) | |||
| driver = initialize_torch_driver(driver, device, model) | |||
| assert isinstance(driver, TorchDDPDriver) | |||
| @pytest.mark.torch | |||
| @pytest.mark.parametrize( | |||
| "device", | |||
| @@ -66,7 +44,7 @@ def test_get_ddp_2(driver, device): | |||
| ) | |||
| @pytest.mark.parametrize( | |||
| "driver", | |||
| ["torch", "torch_ddp"] | |||
| ["torch"] | |||
| ) | |||
| @magic_argv_env_context | |||
| def test_get_ddp(driver, device): | |||
| @@ -79,21 +57,6 @@ def test_get_ddp(driver, device): | |||
| assert isinstance(driver, TorchDDPDriver) | |||
| @pytest.mark.torch | |||
| @pytest.mark.parametrize( | |||
| ("driver", "device"), | |||
| [("torch_ddp", "cpu")] | |||
| ) | |||
| def test_get_ddp_cpu(driver, device): | |||
| """ | |||
| 测试试图在 cpu 上初始化分布式训练的情况 | |||
| """ | |||
| model = TorchNormalModel_Classification_1(64, 10) | |||
| with pytest.raises(ValueError): | |||
| driver = initialize_torch_driver(driver, device, model) | |||
| @pytest.mark.torch | |||
| @pytest.mark.parametrize( | |||
| "device", | |||
| @@ -101,7 +64,7 @@ def test_get_ddp_cpu(driver, device): | |||
| ) | |||
| @pytest.mark.parametrize( | |||
| "driver", | |||
| ["torch", "torch_ddp"] | |||
| ["torch"] | |||
| ) | |||
| def test_device_out_of_range(driver, device): | |||
| """ | |||
| @@ -595,12 +595,12 @@ def test_save_and_load_with_randombatchsampler(only_state_dict, fp16): | |||
| sampler_states = dataloader.batch_sampler.state_dict() | |||
| save_states = {"num_consumed_batches": num_consumed_batches} | |||
| driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True) | |||
| driver1.save_checkpoint(Path(path), save_states, dataloader, only_state_dict, should_save_model=True) | |||
| # 加载 | |||
| # 更改 batch_size | |||
| dataloader = dataloader_with_randombatchsampler(dataset, 2, True, False) | |||
| load_states = driver2.load(Path(path), dataloader, only_state_dict, should_load_model=True) | |||
| load_states = driver2.load_checkpoint(Path(path), dataloader, only_state_dict, should_load_model=True) | |||
| replaced_loader = load_states.pop("dataloader") | |||
| # 1. 检查 optimizer 的状态 | |||
| # TODO optimizer 的 state_dict 总是为空 | |||
| @@ -664,12 +664,12 @@ def test_save_and_load_with_randomsampler(only_state_dict, fp16): | |||
| sampler_states = dataloader.batch_sampler.sampler.state_dict() | |||
| save_states = {"num_consumed_batches": num_consumed_batches} | |||
| driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True) | |||
| driver1.save_checkpoint(Path(path), save_states, dataloader, only_state_dict, should_save_model=True) | |||
| # 加载 | |||
| # 更改 batch_size | |||
| dataloader = dataloader_with_randomsampler(dataset, 2, True, False) | |||
| load_states = driver2.load(Path(path), dataloader, only_state_dict, should_load_model=True) | |||
| load_states = driver2.load_checkpoint(Path(path), dataloader, only_state_dict, should_load_model=True) | |||
| replaced_loader = load_states.pop("dataloader") | |||
| # 1. 检查 optimizer 的状态 | |||
| @@ -7,8 +7,9 @@ from fastNLP import Vocabulary, DataSet, Instance | |||
| from fastNLP.embeddings.torch.char_embedding import LSTMCharEmbedding, CNNCharEmbedding | |||
| @pytest.mark.torch | |||
| class TestCharEmbed: | |||
| @pytest.mark.test | |||
| # @pytest.mark.test | |||
| def test_case_1(self): | |||
| ds = DataSet([Instance(words=['hello', 'world']), Instance(words=['Jack'])]) | |||
| vocab = Vocabulary().from_dataset(ds, field_name='words') | |||
| @@ -18,7 +19,7 @@ class TestCharEmbed: | |||
| y = embed(x) | |||
| assert tuple(y.size()) == (2, 3, 3) | |||
| @pytest.mark.test | |||
| # @pytest.mark.test | |||
| def test_case_2(self): | |||
| ds = DataSet([Instance(words=['hello', 'world']), Instance(words=['Jack'])]) | |||
| vocab = Vocabulary().from_dataset(ds, field_name='words') | |||