@@ -5,7 +5,8 @@ from fastNLP.core.vocabulary import VocabularyOption, Vocabulary | |||||
from fastNLP import DataSet | from fastNLP import DataSet | ||||
from fastNLP import Instance | from fastNLP import Instance | ||||
from fastNLP.io.embed_loader import EmbeddingOption, EmbedLoader | from fastNLP.io.embed_loader import EmbeddingOption, EmbedLoader | ||||
import csv | |||||
from typing import Union, Dict | |||||
class SSTLoader(DataSetLoader): | class SSTLoader(DataSetLoader): | ||||
URL = 'https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip' | URL = 'https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip' | ||||
@@ -97,3 +98,90 @@ class SSTLoader(DataSetLoader): | |||||
return info | return info | ||||
class sst2Loader(DataSetLoader): | |||||
''' | |||||
数据来源"SST":'https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FSST-2.zip?alt=media&token=aabc5f6b-e466-44a2-b9b4-cf6337f84ac8', | |||||
''' | |||||
def __init__(self): | |||||
super(sst2Loader, self).__init__() | |||||
def _load(self, path: str) -> DataSet: | |||||
ds = DataSet() | |||||
all_count=0 | |||||
csv_reader = csv.reader(open(path, encoding='utf-8'),delimiter='\t') | |||||
skip_row = 0 | |||||
for idx,row in enumerate(csv_reader): | |||||
if idx<=skip_row: | |||||
continue | |||||
target = row[1] | |||||
words = row[0].split() | |||||
ds.append(Instance(words=words,target=target)) | |||||
all_count+=1 | |||||
print("all count:", all_count) | |||||
return ds | |||||
def process(self, | |||||
paths: Union[str, Dict[str, str]], | |||||
src_vocab_opt: VocabularyOption = None, | |||||
tgt_vocab_opt: VocabularyOption = None, | |||||
src_embed_opt: EmbeddingOption = None, | |||||
char_level_op=False): | |||||
paths = check_dataloader_paths(paths) | |||||
datasets = {} | |||||
info = DataInfo() | |||||
for name, path in paths.items(): | |||||
dataset = self.load(path) | |||||
datasets[name] = dataset | |||||
def wordtochar(words): | |||||
chars=[] | |||||
for word in words: | |||||
word=word.lower() | |||||
for char in word: | |||||
chars.append(char) | |||||
return chars | |||||
input_name, target_name = 'words', 'target' | |||||
info.vocabs={} | |||||
# 就分隔为char形式 | |||||
if char_level_op: | |||||
for dataset in datasets.values(): | |||||
dataset.apply_field(wordtochar, field_name="words", new_field_name='chars') | |||||
src_vocab = Vocabulary() if src_vocab_opt is None else Vocabulary(**src_vocab_opt) | |||||
src_vocab.from_dataset(datasets['train'], field_name='words') | |||||
src_vocab.index_dataset(*datasets.values(), field_name='words') | |||||
tgt_vocab = Vocabulary(unknown=None, padding=None) \ | |||||
if tgt_vocab_opt is None else Vocabulary(**tgt_vocab_opt) | |||||
tgt_vocab.from_dataset(datasets['train'], field_name='target') | |||||
tgt_vocab.index_dataset(*datasets.values(), field_name='target') | |||||
info.vocabs = { | |||||
"words": src_vocab, | |||||
"target": tgt_vocab | |||||
} | |||||
info.datasets = datasets | |||||
if src_embed_opt is not None: | |||||
embed = EmbedLoader.load_with_vocab(**src_embed_opt, vocab=src_vocab) | |||||
info.embeddings['words'] = embed | |||||
return info | |||||
if __name__=="__main__": | |||||
datapath = {"train": "/remote-home/ygwang/workspace/GLUE/SST-2/train.tsv", | |||||
"dev": "/remote-home/ygwang/workspace/GLUE/SST-2/dev.tsv"} | |||||
datainfo=sst2Loader().process(datapath,char_level_op=True) | |||||
#print(datainfo.datasets["train"]) | |||||
len_count = 0 | |||||
for instance in datainfo.datasets["train"]: | |||||
len_count += len(instance["chars"]) | |||||
ave_len = len_count / len(datainfo.datasets["train"]) | |||||
print(ave_len) |
@@ -8,9 +8,7 @@ os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches' | |||||
import torch.nn as nn | import torch.nn as nn | ||||
from data.SSTLoader import SSTLoader | |||||
from data.IMDBLoader import IMDBLoader | from data.IMDBLoader import IMDBLoader | ||||
from data.yelpLoader import yelpLoader | |||||
from fastNLP.modules.encoder.embedding import StaticEmbedding | from fastNLP.modules.encoder.embedding import StaticEmbedding | ||||
from model.awd_lstm import AWDLSTMSentiment | from model.awd_lstm import AWDLSTMSentiment | ||||
@@ -41,18 +39,9 @@ opt=Config | |||||
# load data | # load data | ||||
dataloaders = { | |||||
"IMDB":IMDBLoader(), | |||||
"YELP":yelpLoader(), | |||||
"SST-5":SSTLoader(subtree=True,fine_grained=True), | |||||
"SST-3":SSTLoader(subtree=True,fine_grained=False) | |||||
} | |||||
if opt.task_name not in ["IMDB", "YELP", "SST-5", "SST-3"]: | |||||
raise ValueError("task name must in ['IMDB', 'YELP, 'SST-5', 'SST-3']") | |||||
dataloader = dataloaders[opt.task_name] | |||||
dataloader=IMDBLoader() | |||||
datainfo=dataloader.process(opt.datapath) | datainfo=dataloader.process(opt.datapath) | ||||
# print(datainfo.datasets["train"]) | # print(datainfo.datasets["train"]) | ||||
# print(datainfo) | # print(datainfo) | ||||
@@ -71,32 +60,10 @@ optimizer= Adam([param for param in model.parameters() if param.requires_grad==T | |||||
def train(datainfo, model, optimizer, loss, metrics, opt): | def train(datainfo, model, optimizer, loss, metrics, opt): | ||||
trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss, | trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss, | ||||
metrics=metrics, dev_data=datainfo.datasets['dev'], device=0, check_code_level=-1, | |||||
metrics=metrics, dev_data=datainfo.datasets['test'], device=0, check_code_level=-1, | |||||
n_epochs=opt.train_epoch, save_path=opt.save_model_path) | n_epochs=opt.train_epoch, save_path=opt.save_model_path) | ||||
trainer.train() | trainer.train() | ||||
def test(datainfo, metrics, opt): | |||||
# load model | |||||
model = ModelLoader.load_pytorch_model(opt.load_model_path) | |||||
print("model loaded!") | |||||
# Tester | |||||
tester = Tester(datainfo.datasets['test'], model, metrics, batch_size=4, device=0) | |||||
acc = tester.test() | |||||
print("acc=",acc) | |||||
parser = argparse.ArgumentParser() | |||||
parser.add_argument('--mode', required=True, dest="mode",help='set the model\'s model') | |||||
args = parser.parse_args() | |||||
if args.mode == 'train': | |||||
if __name__ == "__main__": | |||||
train(datainfo, model, optimizer, loss, metrics, opt) | train(datainfo, model, optimizer, loss, metrics, opt) | ||||
elif args.mode == 'test': | |||||
test(datainfo, metrics, opt) | |||||
else: | |||||
print('no mode specified for model!') | |||||
parser.print_help() |
@@ -6,9 +6,7 @@ os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches' | |||||
import torch.nn as nn | import torch.nn as nn | ||||
from data.SSTLoader import SSTLoader | |||||
from data.IMDBLoader import IMDBLoader | from data.IMDBLoader import IMDBLoader | ||||
from data.yelpLoader import yelpLoader | |||||
from fastNLP.modules.encoder.embedding import StaticEmbedding | from fastNLP.modules.encoder.embedding import StaticEmbedding | ||||
from model.lstm import BiLSTMSentiment | from model.lstm import BiLSTMSentiment | ||||
@@ -38,18 +36,9 @@ opt=Config | |||||
# load data | # load data | ||||
dataloaders = { | |||||
"IMDB":IMDBLoader(), | |||||
"YELP":yelpLoader(), | |||||
"SST-5":SSTLoader(subtree=True,fine_grained=True), | |||||
"SST-3":SSTLoader(subtree=True,fine_grained=False) | |||||
} | |||||
if opt.task_name not in ["IMDB", "YELP", "SST-5", "SST-3"]: | |||||
raise ValueError("task name must in ['IMDB', 'YELP, 'SST-5', 'SST-3']") | |||||
dataloader = dataloaders[opt.task_name] | |||||
dataloader=IMDBLoader() | |||||
datainfo=dataloader.process(opt.datapath) | datainfo=dataloader.process(opt.datapath) | ||||
# print(datainfo.datasets["train"]) | # print(datainfo.datasets["train"]) | ||||
# print(datainfo) | # print(datainfo) | ||||
@@ -68,32 +57,10 @@ optimizer= Adam([param for param in model.parameters() if param.requires_grad==T | |||||
def train(datainfo, model, optimizer, loss, metrics, opt): | def train(datainfo, model, optimizer, loss, metrics, opt): | ||||
trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss, | trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss, | ||||
metrics=metrics, dev_data=datainfo.datasets['dev'], device=0, check_code_level=-1, | |||||
metrics=metrics, dev_data=datainfo.datasets['test'], device=0, check_code_level=-1, | |||||
n_epochs=opt.train_epoch, save_path=opt.save_model_path) | n_epochs=opt.train_epoch, save_path=opt.save_model_path) | ||||
trainer.train() | trainer.train() | ||||
def test(datainfo, metrics, opt): | |||||
# load model | |||||
model = ModelLoader.load_pytorch_model(opt.load_model_path) | |||||
print("model loaded!") | |||||
# Tester | |||||
tester = Tester(datainfo.datasets['test'], model, metrics, batch_size=4, device=0) | |||||
acc = tester.test() | |||||
print("acc=",acc) | |||||
parser = argparse.ArgumentParser() | |||||
parser.add_argument('--mode', required=True, dest="mode",help='set the model\'s model') | |||||
args = parser.parse_args() | |||||
if args.mode == 'train': | |||||
train(datainfo, model, optimizer, loss, metrics, opt) | |||||
elif args.mode == 'test': | |||||
test(datainfo, metrics, opt) | |||||
else: | |||||
print('no mode specified for model!') | |||||
parser.print_help() | |||||
if __name__ == "__main__": | |||||
train(datainfo, model, optimizer, loss, metrics, opt) |
@@ -6,9 +6,7 @@ os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches' | |||||
import torch.nn as nn | import torch.nn as nn | ||||
from data.SSTLoader import SSTLoader | |||||
from data.IMDBLoader import IMDBLoader | from data.IMDBLoader import IMDBLoader | ||||
from data.yelpLoader import yelpLoader | |||||
from fastNLP.modules.encoder.embedding import StaticEmbedding | from fastNLP.modules.encoder.embedding import StaticEmbedding | ||||
from model.lstm_self_attention import BiLSTM_SELF_ATTENTION | from model.lstm_self_attention import BiLSTM_SELF_ATTENTION | ||||
@@ -40,18 +38,9 @@ opt=Config | |||||
# load data | # load data | ||||
dataloaders = { | |||||
"IMDB":IMDBLoader(), | |||||
"YELP":yelpLoader(), | |||||
"SST-5":SSTLoader(subtree=True,fine_grained=True), | |||||
"SST-3":SSTLoader(subtree=True,fine_grained=False) | |||||
} | |||||
if opt.task_name not in ["IMDB", "YELP", "SST-5", "SST-3"]: | |||||
raise ValueError("task name must in ['IMDB', 'YELP, 'SST-5', 'SST-3']") | |||||
dataloader = dataloaders[opt.task_name] | |||||
dataloader=IMDBLoader() | |||||
datainfo=dataloader.process(opt.datapath) | datainfo=dataloader.process(opt.datapath) | ||||
# print(datainfo.datasets["train"]) | # print(datainfo.datasets["train"]) | ||||
# print(datainfo) | # print(datainfo) | ||||
@@ -70,32 +59,10 @@ optimizer= Adam([param for param in model.parameters() if param.requires_grad==T | |||||
def train(datainfo, model, optimizer, loss, metrics, opt): | def train(datainfo, model, optimizer, loss, metrics, opt): | ||||
trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss, | trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss, | ||||
metrics=metrics, dev_data=datainfo.datasets['dev'], device=0, check_code_level=-1, | |||||
metrics=metrics, dev_data=datainfo.datasets['test'], device=0, check_code_level=-1, | |||||
n_epochs=opt.train_epoch, save_path=opt.save_model_path) | n_epochs=opt.train_epoch, save_path=opt.save_model_path) | ||||
trainer.train() | trainer.train() | ||||
def test(datainfo, metrics, opt): | |||||
# load model | |||||
model = ModelLoader.load_pytorch_model(opt.load_model_path) | |||||
print("model loaded!") | |||||
# Tester | |||||
tester = Tester(datainfo.datasets['test'], model, metrics, batch_size=4, device=0) | |||||
acc = tester.test() | |||||
print("acc=",acc) | |||||
parser = argparse.ArgumentParser() | |||||
parser.add_argument('--mode', required=True, dest="mode",help='set the model\'s model') | |||||
args = parser.parse_args() | |||||
if args.mode == 'train': | |||||
if __name__ == "__main__": | |||||
train(datainfo, model, optimizer, loss, metrics, opt) | train(datainfo, model, optimizer, loss, metrics, opt) | ||||
elif args.mode == 'test': | |||||
test(datainfo, metrics, opt) | |||||
else: | |||||
print('no mode specified for model!') | |||||
parser.print_help() |