|
@@ -1,8 +1,10 @@ |
|
|
import torch |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn as nn |
|
|
from torch.autograd import Variable |
|
|
from torch.autograd import Variable |
|
|
|
|
|
import torch.nn.functional as F |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from fastNLP.modules.utils import initial_parameter |
|
|
class SelfAttention(nn.Module): |
|
|
class SelfAttention(nn.Module): |
|
|
""" |
|
|
""" |
|
|
Self Attention Module. |
|
|
Self Attention Module. |
|
@@ -13,13 +15,18 @@ class SelfAttention(nn.Module): |
|
|
num_vec: int, the number of encoded vectors |
|
|
num_vec: int, the number of encoded vectors |
|
|
""" |
|
|
""" |
|
|
|
|
|
|
|
|
def __init__(self, input_size, dim=10, num_vec=10): |
|
|
|
|
|
|
|
|
def __init__(self, input_size, dim=10, num_vec=10 ,drop = 0.5 ,initial_method =None): |
|
|
super(SelfAttention, self).__init__() |
|
|
super(SelfAttention, self).__init__() |
|
|
self.W_s1 = nn.Parameter(torch.randn(dim, input_size), requires_grad=True) |
|
|
|
|
|
self.W_s2 = nn.Parameter(torch.randn(num_vec, dim), requires_grad=True) |
|
|
|
|
|
|
|
|
# self.W_s1 = nn.Parameter(torch.randn(dim, input_size), requires_grad=True) |
|
|
|
|
|
# self.W_s2 = nn.Parameter(torch.randn(num_vec, dim), requires_grad=True) |
|
|
|
|
|
self.attention_hops = num_vec |
|
|
|
|
|
|
|
|
|
|
|
self.ws1 = nn.Linear(input_size, dim, bias=False) |
|
|
|
|
|
self.ws2 = nn.Linear(dim, num_vec, bias=False) |
|
|
|
|
|
self.drop = nn.Dropout(drop) |
|
|
self.softmax = nn.Softmax(dim=2) |
|
|
self.softmax = nn.Softmax(dim=2) |
|
|
self.tanh = nn.Tanh() |
|
|
self.tanh = nn.Tanh() |
|
|
|
|
|
|
|
|
|
|
|
initial_parameter(self, initial_method) |
|
|
def penalization(self, A): |
|
|
def penalization(self, A): |
|
|
""" |
|
|
""" |
|
|
compute the penalization term for attention module |
|
|
compute the penalization term for attention module |
|
@@ -32,11 +39,33 @@ class SelfAttention(nn.Module): |
|
|
M = M.view(M.size(0), -1) |
|
|
M = M.view(M.size(0), -1) |
|
|
return torch.sum(M ** 2, dim=1) |
|
|
return torch.sum(M ** 2, dim=1) |
|
|
|
|
|
|
|
|
def forward(self, x): |
|
|
|
|
|
inter = self.tanh(torch.matmul(self.W_s1, torch.transpose(x, 1, 2))) |
|
|
|
|
|
A = self.softmax(torch.matmul(self.W_s2, inter)) |
|
|
|
|
|
out = torch.matmul(A, x) |
|
|
|
|
|
out = out.view(out.size(0), -1) |
|
|
|
|
|
penalty = self.penalization(A) |
|
|
|
|
|
return out, penalty |
|
|
|
|
|
|
|
|
def forward(self, outp ,inp): |
|
|
|
|
|
# the following code can not be use because some word are padding ,these is not such module! |
|
|
|
|
|
|
|
|
|
|
|
# inter = self.tanh(torch.matmul(self.W_s1, torch.transpose(x, 1, 2))) # [] |
|
|
|
|
|
# A = self.softmax(torch.matmul(self.W_s2, inter)) |
|
|
|
|
|
# out = torch.matmul(A, x) |
|
|
|
|
|
# out = out.view(out.size(0), -1) |
|
|
|
|
|
# penalty = self.penalization(A) |
|
|
|
|
|
# return out, penalty |
|
|
|
|
|
outp = outp.contiguous() |
|
|
|
|
|
size = outp.size() # [bsz, len, nhid] |
|
|
|
|
|
|
|
|
|
|
|
compressed_embeddings = outp.view(-1, size[2]) # [bsz*len, nhid*2] |
|
|
|
|
|
transformed_inp = torch.transpose(inp, 0, 1).contiguous() # [bsz, len] |
|
|
|
|
|
transformed_inp = transformed_inp.view(size[0], 1, size[1]) # [bsz, 1, len] |
|
|
|
|
|
concatenated_inp = [transformed_inp for i in range(self.attention_hops)] |
|
|
|
|
|
concatenated_inp = torch.cat(concatenated_inp, 1) # [bsz, hop, len] |
|
|
|
|
|
|
|
|
|
|
|
hbar = self.tanh(self.ws1(self.drop(compressed_embeddings))) # [bsz*len, attention-unit] |
|
|
|
|
|
attention = self.ws2(hbar).view(size[0], size[1], -1) # [bsz, len, hop] |
|
|
|
|
|
attention = torch.transpose(attention, 1, 2).contiguous() # [bsz, hop, len] |
|
|
|
|
|
penalized_alphas = attention + ( |
|
|
|
|
|
-10000 * (concatenated_inp == 0).float()) |
|
|
|
|
|
# [bsz, hop, len] + [bsz, hop, len] |
|
|
|
|
|
attention = self.softmax(penalized_alphas.view(-1, size[1])) # [bsz*hop, len] |
|
|
|
|
|
attention = attention.view(size[0], self.attention_hops, size[1]) # [bsz, hop, len] |
|
|
|
|
|
return torch.bmm(attention, outp), attention # output --> [baz ,hop ,nhid] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|