| @@ -138,20 +138,30 @@ class Trainer(object): | |||
| 开始训练过程。主要有以下几个步骤:: | |||
| 对于每次循环 | |||
| 1. 使用Batch从DataSet中按批取出数据,并自动对DataSet中dtype为float, int的fields进行padding。并转换为Tensor。 | |||
| for epoch in range(num_epochs): | |||
| # 使用Batch从DataSet中按批取出数据,并自动对DataSet中dtype为(float, int)的fields进行padding。并转换为Tensor。 | |||
| 非float,int类型的参数将不会被转换为Tensor,且不进行padding。 | |||
| for batch_x, batch_y in Batch(DataSet) | |||
| # batch_x中为设置为input的field | |||
| # batch_y中为设置为target的field | |||
| 2. 将batch_x的数据送入到model.forward函数中,并获取结果 | |||
| 3. 将batch_y与model.forward的结果一并送入loss中计算loss | |||
| # batch_x是一个dict, 被设为input的field会出现在这个dict中, | |||
| key为DataSet中的field_name, value为该field的value | |||
| # batch_y也是一个dict,被设为target的field会出现在这个dict中, | |||
| key为DataSet中的field_name, value为该field的value | |||
| 2. 将batch_x的数据送入到model.forward函数中,并获取结果。这里我们就是通过匹配batch_x中的key与forward函数的形 | |||
| 参完成参数传递。例如, | |||
| forward(self, x, seq_lens) # fastNLP会在batch_x中找到key为"x"的value传递给x,key为"seq_lens"的 | |||
| value传递给seq_lens。若在batch_x中没有找到所有必须要传递的参数,就会报错。如果forward存在默认参数 | |||
| 而且默认参数这个key没有在batch_x中,则使用默认参数。 | |||
| 3. 将batch_y与model.forward的结果一并送入loss中计算loss。loss计算时一般都涉及到pred与target。但是在不同情况 | |||
| 中,可能pred称为output或prediction, target称为y或label。fastNLP通过初始化loss时传入的映射找到pred或 | |||
| target。比如在初始化Trainer时初始化loss为CrossEntropyLoss(pred='output', target='y'), 那么fastNLP计 | |||
| 算loss时,就会使用"output"在batch_y与forward的结果中找到pred;使用"y"在batch_y与forward的结果中找target | |||
| , 并完成loss的计算。 | |||
| 4. 获取到loss之后,进行反向求导并更新梯度 | |||
| 如果测试集不为空 | |||
| 根据metrics进行evaluation,并根据是否提供了save_path判断是否存储模型 | |||
| 根据需要适时进行验证机测试 | |||
| 根据metrics进行evaluation,并根据是否提供了save_path判断是否存储模型 | |||
| :param bool load_best_model: 该参数只有在初始化提供了dev_data的情况下有效,如果True, trainer将在返回之前重新加载dev表现最好的 | |||
| 模型参数。 | |||
| :param bool load_best_model: 该参数只有在初始化提供了dev_data的情况下有效,如果True, trainer将在返回之前重新加载dev表现 | |||
| 最好的模型参数。 | |||
| :return results: 返回一个字典类型的数据, 内含以下内容:: | |||
| seconds: float, 表示训练时长 | |||
| @@ -196,8 +206,11 @@ class Trainer(object): | |||
| results['best_step'] = self.best_dev_step | |||
| if load_best_model: | |||
| model_name = "best_" + "_".join([self.model.__class__.__name__, self.metric_key, self.start_time]) | |||
| # self._load_model(self.model, model_name) | |||
| print("Reloaded the best model.") | |||
| load_succeed = self._load_model(self.model, model_name) | |||
| if load_succeed: | |||
| print("Reloaded the best model.") | |||
| else: | |||
| print("Fail to reload best model.") | |||
| finally: | |||
| self._summary_writer.close() | |||
| del self._summary_writer | |||
| @@ -208,7 +221,7 @@ class Trainer(object): | |||
| def _tqdm_train(self): | |||
| self.step = 0 | |||
| data_iterator = Batch(self.train_data, batch_size=self.batch_size, sampler=self.sampler, | |||
| as_numpy=False) | |||
| as_numpy=False) | |||
| total_steps = data_iterator.num_batches*self.n_epochs | |||
| with tqdm(total=total_steps, postfix='loss:{0:<6.5f}', leave=False, dynamic_ncols=True) as pbar: | |||
| avg_loss = 0 | |||
| @@ -297,7 +310,8 @@ class Trainer(object): | |||
| if self.save_path is not None: | |||
| self._save_model(self.model, | |||
| "best_" + "_".join([self.model.__class__.__name__, self.metric_key, self.start_time])) | |||
| else: | |||
| self._best_model_states = {name:param.cpu().clone() for name, param in self.model.named_parameters()} | |||
| self.best_dev_perf = res | |||
| self.best_dev_epoch = epoch | |||
| self.best_dev_step = step | |||
| @@ -356,7 +370,7 @@ class Trainer(object): | |||
| torch.save(model, model_name) | |||
| def _load_model(self, model, model_name, only_param=False): | |||
| # TODO: 这个是不是有问题? | |||
| # 返回bool值指示是否成功reload模型 | |||
| if self.save_path is not None: | |||
| model_path = os.path.join(self.save_path, model_name) | |||
| if only_param: | |||
| @@ -364,6 +378,11 @@ class Trainer(object): | |||
| else: | |||
| states = torch.load(model_path).state_dict() | |||
| model.load_state_dict(states) | |||
| elif hasattr(self, "_best_model_states"): | |||
| model.load_state_dict(self._best_model_states) | |||
| else: | |||
| return False | |||
| return True | |||
| def _better_eval_result(self, metrics): | |||
| """Check if the current epoch yields better validation results. | |||
| @@ -469,7 +488,7 @@ def _check_code(dataset, model, losser, metrics, batch_size=DEFAULT_CHECK_BATCH_ | |||
| break | |||
| if dev_data is not None: | |||
| tester = Tester(data=dataset[:batch_size * DEFAULT_CHECK_NUM_BATCH], model=model, metrics=metrics, | |||
| tester = Tester(data=dev_data[:batch_size * DEFAULT_CHECK_NUM_BATCH], model=model, metrics=metrics, | |||
| batch_size=batch_size, verbose=-1) | |||
| evaluate_results = tester.test() | |||
| _check_eval_results(metrics=evaluate_results, metric_key=metric_key, metric_list=metrics) | |||
| @@ -448,4 +448,33 @@ class BMES2OutputProcessor(Processor): | |||
| words.append(''.join(chars[start_idx:idx+1])) | |||
| start_idx = idx + 1 | |||
| return ' '.join(words) | |||
| dataset.apply(func=inner_proc, new_field_name=self.new_added_field_name) | |||
| dataset.apply(func=inner_proc, new_field_name=self.new_added_field_name) | |||
| class InputTargetProcessor(Processor): | |||
| def __init__(self, input_fields, target_fields): | |||
| """ | |||
| 对DataSet操作,将input_fields中的field设置为input,target_fields的中field设置为target | |||
| :param input_fields: List[str], 设置为input_field的field_name。如果为None,则不将任何field设置为target。 | |||
| :param target_fields: List[str], 设置为target_field的field_name。 如果为None,则不将任何field设置为target。 | |||
| """ | |||
| super(InputTargetProcessor, self).__init__(None, None) | |||
| if input_fields is not None and not isinstance(input_fields, list): | |||
| raise TypeError("input_fields should be List[str], not {}.".format(type(input_fields))) | |||
| else: | |||
| self.input_fields = input_fields | |||
| if target_fields is not None and not isinstance(target_fields, list): | |||
| raise TypeError("target_fiels should be List[str], not{}.".format(type(target_fields))) | |||
| else: | |||
| self.target_fields = target_fields | |||
| def process(self, dataset): | |||
| assert isinstance(dataset, DataSet), "Only Dataset class is allowed, not {}.".format(type(dataset)) | |||
| if self.input_fields is not None: | |||
| for field in self.input_fields: | |||
| dataset.set_input(field) | |||
| if self.target_fields is not None: | |||
| for field in self.target_fields: | |||
| dataset.set_target(field) | |||
| @@ -6,7 +6,7 @@ from reproduction.chinese_word_segment.process.cws_processor import CWSCharSegPr | |||
| from reproduction.chinese_word_segment.process.cws_processor import CWSBMESTagProcessor | |||
| from reproduction.chinese_word_segment.process.cws_processor import Pre2Post2BigramProcessor | |||
| from reproduction.chinese_word_segment.process.cws_processor import VocabIndexerProcessor | |||
| from reproduction.chinese_word_segment.process.cws_processor import InputTargetProcessor | |||
| from reproduction.chinese_word_segment.cws_io.cws_reader import ConllCWSReader | |||
| from reproduction.chinese_word_segment.models.cws_model import CWSBiLSTMCRF | |||
| @@ -39,6 +39,8 @@ bigram_vocab_proc = VocabIndexerProcessor('bigrams_lst', new_added_filed_name='b | |||
| seq_len_proc = SeqLenProcessor('chars') | |||
| input_target_proc = InputTargetProcessor(input_fields=['chars', 'bigrams', 'seq_lens', "target"], | |||
| target_fields=['target', 'seq_lens']) | |||
| # 2. 使用processor | |||
| fs2hs_proc(tr_dataset) | |||
| @@ -61,14 +63,11 @@ char_vocab_proc(dev_dataset) | |||
| bigram_vocab_proc(dev_dataset) | |||
| seq_len_proc(dev_dataset) | |||
| dev_dataset.set_input('chars', 'bigrams', 'target') | |||
| tr_dataset.set_input('chars', 'bigrams', 'target') | |||
| dev_dataset.set_target('seq_lens') | |||
| tr_dataset.set_target('seq_lens') | |||
| input_target_proc(tr_dataset) | |||
| input_target_proc(dev_dataset) | |||
| print("Finish preparing data.") | |||
| # 3. 得到数据集可以用于训练了 | |||
| # TODO pretrain的embedding是怎么解决的? | |||
| @@ -86,80 +85,18 @@ cws_model = CWSBiLSTMCRF(char_vocab_proc.get_vocab_size(), embed_dim=100, | |||
| cws_model.cuda() | |||
| num_epochs = 5 | |||
| optimizer = optim.Adagrad(cws_model.parameters(), lr=0.02) | |||
| optimizer = optim.Adagrad(cws_model.parameters(), lr=0.005) | |||
| from fastNLP.core.trainer import Trainer | |||
| from fastNLP.core.sampler import BucketSampler | |||
| from fastNLP.core.metrics import BMESF1PreRecMetric | |||
| metric = BMESF1PreRecMetric(target='tags') | |||
| trainer = Trainer(train_data=tr_dataset, model=cws_model, loss=None, metrics=metric, n_epochs=3, | |||
| trainer = Trainer(train_data=tr_dataset, model=cws_model, loss=None, metrics=metric, n_epochs=num_epochs, | |||
| batch_size=32, print_every=50, validate_every=-1, dev_data=dev_dataset, save_path=None, | |||
| optimizer=optimizer, check_code_level=0, metric_key='f', sampler=BucketSampler(), use_tqdm=True) | |||
| trainer.train() | |||
| exit(0) | |||
| # | |||
| # print_every = 50 | |||
| # batch_size = 32 | |||
| # tr_batcher = Batch(tr_dataset, batch_size, BucketSampler(batch_size=batch_size), use_cuda=False) | |||
| # dev_batcher = Batch(dev_dataset, batch_size, SequentialSampler(), use_cuda=False) | |||
| # num_batch_per_epoch = len(tr_dataset) // batch_size | |||
| # best_f1 = 0 | |||
| # best_epoch = 0 | |||
| # for num_epoch in range(num_epochs): | |||
| # print('X' * 10 + ' Epoch: {}/{} '.format(num_epoch + 1, num_epochs) + 'X' * 10) | |||
| # sys.stdout.flush() | |||
| # avg_loss = 0 | |||
| # with tqdm(total=num_batch_per_epoch, leave=True) as pbar: | |||
| # pbar.set_description_str('Epoch:%d' % (num_epoch + 1)) | |||
| # cws_model.train() | |||
| # for batch_idx, (batch_x, batch_y) in enumerate(tr_batcher, 1): | |||
| # optimizer.zero_grad() | |||
| # | |||
| # tags = batch_y['tags'].long() | |||
| # pred_dict = cws_model(**batch_x, tags=tags) # B x L x tag_size | |||
| # | |||
| # seq_lens = pred_dict['seq_lens'] | |||
| # masks = seq_lens_to_mask(seq_lens).float() | |||
| # tags = tags.to(seq_lens.device) | |||
| # | |||
| # loss = pred_dict['loss'] | |||
| # | |||
| # # loss = torch.sum(loss_fn(pred_dict['pred_probs'].view(-1, tag_size), | |||
| # # tags.view(-1)) * masks.view(-1)) / torch.sum(masks) | |||
| # # loss = torch.mean(F.cross_entropy(probs.view(-1, 2), tags.view(-1)) * masks.float()) | |||
| # | |||
| # avg_loss += loss.item() | |||
| # | |||
| # loss.backward() | |||
| # for group in optimizer.param_groups: | |||
| # for param in group['params']: | |||
| # param.grad.clamp_(-5, 5) | |||
| # | |||
| # optimizer.step() | |||
| # | |||
| # if batch_idx % print_every == 0: | |||
| # pbar.set_postfix_str('batch=%d, avg_loss=%.5f' % (batch_idx, avg_loss / print_every)) | |||
| # avg_loss = 0 | |||
| # pbar.update(print_every) | |||
| # tr_batcher = Batch(tr_dataset, batch_size, BucketSampler(batch_size=batch_size), use_cuda=False) | |||
| # # 验证集 | |||
| # pre, rec, f1 = calculate_pre_rec_f1(cws_model, dev_batcher, type='bmes') | |||
| # print("f1:{:.2f}, pre:{:.2f}, rec:{:.2f}".format(f1*100, | |||
| # pre*100, | |||
| # rec*100)) | |||
| # if best_f1<f1: | |||
| # best_f1 = f1 | |||
| # # 缓存最佳的parameter,可能之后会用于保存 | |||
| # best_state_dict = { | |||
| # key:value.clone() for key, value in | |||
| # cws_model.state_dict().items() | |||
| # } | |||
| # best_epoch = num_epoch | |||
| # | |||
| # cws_model.load_state_dict(best_state_dict) | |||
| # 4. 组装需要存下的内容 | |||
| pp = Pipeline() | |||
| @@ -171,6 +108,7 @@ pp.add_processor(bigram_proc) | |||
| pp.add_processor(char_vocab_proc) | |||
| pp.add_processor(bigram_vocab_proc) | |||
| pp.add_processor(seq_len_proc) | |||
| pp.add_processor(input_target_proc) | |||
| # te_filename = '/hdd/fudanNLP/CWS/CWS_semiCRF/all_data/{}/middle_files/{}_test.txt'.format(ds_name, ds_name) | |||
| te_filename = '/home/hyan/ctb3/test.conllx' | |||
| @@ -181,6 +119,7 @@ from fastNLP.core.tester import Tester | |||
| tester = Tester(data=te_dataset, model=cws_model, metrics=metric, batch_size=64, use_cuda=False, | |||
| verbose=1) | |||
| tester.test() | |||
| # | |||
| # batch_size = 64 | |||
| # te_batcher = Batch(te_dataset, batch_size, SequentialSampler(), use_cuda=False) | |||
| @@ -193,7 +132,7 @@ tester = Tester(data=te_dataset, model=cws_model, metrics=metric, batch_size=64, | |||
| test_context_dict = {'pipeline': pp, | |||
| 'model': cws_model} | |||
| torch.save(test_context_dict, 'models/test_context_crf.pkl') | |||
| # torch.save(test_context_dict, 'models/test_context_crf.pkl') | |||
| # 5. dev的pp | |||