| @@ -1,5 +1,6 @@ | |||
| import pytest | |||
| import os | |||
| from pathlib import Path | |||
| os.environ["FASTNLP_BACKEND"] = "paddle" | |||
| from fastNLP.core.drivers.paddle_driver.fleet import PaddleFleetDriver | |||
| @@ -33,20 +34,6 @@ def generate_driver(num_labels, feature_dimension, device=[0,1], fp16=False, out | |||
| return driver | |||
| @magic_argv_env_context | |||
| def test_multi_drivers(): | |||
| """ | |||
| 测试使用了多个 PaddleFleetDriver 的情况。 | |||
| """ | |||
| driver1 = generate_driver(10, 10) | |||
| driver2 = generate_driver(20, 10) | |||
| with pytest.raises(RuntimeError): | |||
| # 设备设置不同,应该报错 | |||
| driver3 = generate_driver(20, 3, device=[0,2]) | |||
| dist.barrier() | |||
| ############################################################################ | |||
| # | |||
| # 测试 PaddleFleetDriver 的一些函数 | |||
| @@ -62,6 +49,19 @@ class TestFleetDriverFunction: | |||
| def setup_class(cls): | |||
| cls.driver = generate_driver(10, 10) | |||
| @magic_argv_env_context | |||
| def test_multi_drivers(self): | |||
| """ | |||
| 测试使用了多个 PaddleFleetDriver 的情况。 | |||
| """ | |||
| driver2 = generate_driver(20, 10) | |||
| with pytest.raises(RuntimeError): | |||
| # 设备设置不同,应该报错 | |||
| driver3 = generate_driver(20, 3, device=[0,2]) | |||
| dist.barrier() | |||
| @magic_argv_env_context | |||
| def test_move_data_to_device(self): | |||
| """ | |||
| @@ -494,9 +494,14 @@ class TestSaveLoad: | |||
| """ | |||
| 测试多卡情况下 save 和 load 相关函数的表现 | |||
| """ | |||
| @classmethod | |||
| def setup_class(cls): | |||
| # 不在这里 setup 的话会报错 | |||
| cls.driver = generate_driver(10, 10) | |||
| def setup_method(self): | |||
| self.dataset = PaddleRandomMaxDataset(20, 10) | |||
| self.driver1, self.driver2 = generate_driver(10, 10), generate_driver(10, 10) | |||
| @magic_argv_env_context | |||
| @pytest.mark.parametrize("only_state_dict", ([True, False])) | |||
| @@ -506,7 +511,9 @@ class TestSaveLoad: | |||
| """ | |||
| try: | |||
| path = "model" | |||
| dataloader = DataLoader(self.dataset, batch_size=2) | |||
| self.driver1, self.driver2 = generate_driver(10, 10), generate_driver(10, 10) | |||
| if only_state_dict: | |||
| self.driver1.save_model(path, only_state_dict) | |||
| @@ -545,20 +552,30 @@ class TestSaveLoad: | |||
| @magic_argv_env_context | |||
| @pytest.mark.parametrize("only_state_dict", ([True, False])) | |||
| @pytest.mark.parametrize("fp16", ([True, False])) | |||
| def test_save_and_load_with_randombatchsampler(self, only_state_dict, fp16): | |||
| return | |||
| @pytest.mark.parametrize("device", ([[0,1]])) | |||
| def test_save_and_load_with_bucketedbatchsampler(self, device, only_state_dict, fp16): | |||
| """ | |||
| 测试save和load函数,主要测试 dataloader 被替换了 sampler 之后的情况 | |||
| """ | |||
| try: | |||
| path = "model.ckp" | |||
| num_replicas = len(device) | |||
| driver1, driver2 = generate_random_driver(10, 10), generate_random_driver(10, 10) | |||
| dataset = PaddleRandomMaxDataset(40, 10) | |||
| self.driver1, self.driver2 = generate_driver(10, 10, device=device, fp16=fp16), \ | |||
| generate_driver(10, 10, device=device, fp16=False) | |||
| dataloader = DataLoader( | |||
| dataset=dataset, | |||
| batch_sampler=RandomBatchSampler(BatchSampler(dataset, batch_size=4), 4, False) | |||
| dataset=self.dataset, | |||
| batch_sampler=BucketedBatchSampler( | |||
| self.dataset, | |||
| length=[10 for i in range(len(self.dataset))], | |||
| batch_size=4, | |||
| ) | |||
| ) | |||
| dataloader.batch_sampler.set_distributed( | |||
| num_replicas=self.driver1.world_size, | |||
| rank=self.driver1.global_rank, | |||
| pad=True | |||
| ) | |||
| num_consumed_batches = 2 | |||
| @@ -570,19 +587,32 @@ class TestSaveLoad: | |||
| already_seen_x_set.update(batch["x"]) | |||
| already_seen_y_set.update(batch["y"]) | |||
| # 同步 | |||
| dist.barrier() | |||
| # 保存状态 | |||
| sampler_states = dataloader.batch_sampler.state_dict() | |||
| save_states = {"num_consumed_batches": num_consumed_batches} | |||
| if only_state_dict: | |||
| driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True) | |||
| self.driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True) | |||
| else: | |||
| driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True, input_spec=[paddle.ones((16, 10))]) | |||
| self.driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True, input_spec=[paddle.ones((16, 10))]) | |||
| # 加载 | |||
| # 更改 batch_size | |||
| dataloader = DataLoader( | |||
| dataset=dataset, | |||
| batch_sampler=RandomBatchSampler(BatchSampler(dataset, batch_size=2, shuffle=True), 2, False) | |||
| dataset=self.dataset, | |||
| batch_sampler=BucketedBatchSampler( | |||
| self.dataset, | |||
| length=[10 for i in range(len(self.dataset))], | |||
| batch_size=4, | |||
| ) | |||
| ) | |||
| dataloader.batch_sampler.set_distributed( | |||
| num_replicas=self.driver2.world_size, | |||
| rank=self.driver2.global_rank, | |||
| pad=True | |||
| ) | |||
| load_states = driver2.load(Path(path), dataloader, only_state_dict, should_load_model=True) | |||
| load_states = self.driver2.load(Path(path), dataloader, only_state_dict, should_load_model=True) | |||
| replaced_loader = load_states.pop("dataloader") | |||
| # 1. 检查 optimizer 的状态 | |||
| # TODO optimizer 的 state_dict 总是为空 | |||
| @@ -590,13 +620,13 @@ class TestSaveLoad: | |||
| # 2. 检查 batch_sampler 是否被正确地加载和替换 | |||
| assert not (replaced_loader is dataloader) | |||
| assert replaced_loader.batch_sampler is dataloader.batch_sampler | |||
| assert isinstance(replaced_loader.batch_sampler, RandomBatchSampler) | |||
| assert replaced_loader.batch_sampler.index_list == sampler_states["index_list"] | |||
| assert replaced_loader.batch_sampler.num_consumed_samples == num_consumed_batches * 4 | |||
| assert isinstance(replaced_loader.batch_sampler, BucketedBatchSampler) | |||
| assert replaced_loader.batch_sampler.seed == sampler_states["seed"] | |||
| assert replaced_loader.batch_sampler.num_consumed_samples == num_consumed_batches * 4 * num_replicas | |||
| # 3. 检查 fp16 是否被加载 | |||
| if fp16: | |||
| assert isinstance(driver2.grad_scaler, paddle.amp.GradScaler) | |||
| assert isinstance(self.driver2.grad_scaler, paddle.amp.GradScaler) | |||
| # 4. 检查 model 的参数是否正确 | |||
| # 5. 检查 batch_idx | |||
| @@ -608,22 +638,33 @@ class TestSaveLoad: | |||
| left_x_batches.update(batch["x"]) | |||
| left_y_batches.update(batch["y"]) | |||
| res1 = driver1.model.evaluate_step(**batch) | |||
| res2 = driver2.model.evaluate_step(**batch) | |||
| res1 = self.driver1.model( | |||
| batch, | |||
| fastnlp_fn=self.driver1.model._layers.model.evaluate_step, | |||
| # Driver.model -> DataParallel._layers -> _FleetWrappingModel.model | |||
| fastnlp_signature_fn=None, | |||
| wo_auto_param_call=False, | |||
| ) | |||
| res2 = self.driver2.model( | |||
| batch, | |||
| fastnlp_fn=self.driver2.model._layers.model.evaluate_step, | |||
| fastnlp_signature_fn=None, | |||
| wo_auto_param_call=False, | |||
| ) | |||
| assert paddle.equal_all(res1["pred"], res2["pred"]) | |||
| assert len(left_x_batches) + len(already_seen_x_set) == len(dataset) | |||
| assert len(left_x_batches | already_seen_x_set) == len(dataset) | |||
| assert len(left_y_batches) + len(already_seen_y_set) == len(dataset) | |||
| assert len(left_y_batches | already_seen_y_set) == len(dataset) | |||
| assert len(left_x_batches) + len(already_seen_x_set) == len(self.dataset) / num_replicas | |||
| assert len(left_x_batches | already_seen_x_set) == len(self.dataset) / num_replicas | |||
| assert len(left_y_batches) + len(already_seen_y_set) == len(self.dataset) / num_replicas | |||
| assert len(left_y_batches | already_seen_y_set) == len(self.dataset) / num_replicas | |||
| finally: | |||
| synchronize_safe_rm(path) | |||
| @magic_argv_env_context | |||
| @pytest.mark.parametrize("only_state_dict", ([True, False])) | |||
| @pytest.mark.parametrize("fp16", ([True, False])) | |||
| def test_save_and_load_with_randomsampler(self, only_state_dict, fp16): | |||
| return | |||
| @pytest.mark.parametrize("device", ([[0,1]])) | |||
| def test_save_and_load_with_randomsampler(self, device, only_state_dict, fp16): | |||
| """ | |||
| 测试save和load函数,主要测试 dataloader 被替换了 batch_sampler 的情况 | |||
| """ | |||
| @@ -631,12 +672,19 @@ class TestSaveLoad: | |||
| try: | |||
| path = "model.ckp" | |||
| driver1, driver2 = generate_random_driver(10, 10), generate_random_driver(10, 10) | |||
| dataset = PaddleRandomMaxDataset(40, 10) | |||
| batch_sampler = BatchSampler(dataset=dataset, batch_size=4) | |||
| batch_sampler.sampler = RandomSampler(dataset, True) | |||
| num_replicas = len(device) | |||
| self.driver1 = generate_driver(10, 10, device=device, fp16=fp16) | |||
| self.driver2 = generate_driver(10, 10, device=device, fp16=False) | |||
| batch_sampler = BatchSampler(dataset=self.dataset, batch_size=4) | |||
| batch_sampler.sampler = RandomSampler(self.dataset, True) | |||
| batch_sampler.sampler.set_distributed( | |||
| num_replicas=self.driver1.world_size, | |||
| rank=self.driver1.global_rank, | |||
| pad=True | |||
| ) | |||
| dataloader = DataLoader( | |||
| dataset, | |||
| self.dataset, | |||
| batch_sampler=batch_sampler | |||
| ) | |||
| num_consumed_batches = 2 | |||
| @@ -649,22 +697,30 @@ class TestSaveLoad: | |||
| already_seen_x_set.update(batch["x"]) | |||
| already_seen_y_set.update(batch["y"]) | |||
| # 同步 | |||
| dist.barrier() | |||
| # 保存状态 | |||
| sampler_states = dataloader.batch_sampler.sampler.state_dict() | |||
| save_states = {"num_consumed_batches": num_consumed_batches} | |||
| if only_state_dict: | |||
| driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True) | |||
| self.driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True) | |||
| else: | |||
| driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True, input_spec=[paddle.ones((16, 10))]) | |||
| self.driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True, input_spec=[paddle.ones((16, 10))]) | |||
| # 加载 | |||
| # 更改 batch_size | |||
| batch_sampler = BatchSampler(dataset=dataset, batch_size=2) | |||
| batch_sampler.sampler = RandomSampler(dataset, True) | |||
| batch_sampler = BatchSampler(dataset=self.dataset, batch_size=2) | |||
| batch_sampler.sampler = RandomSampler(self.dataset, True) | |||
| batch_sampler.sampler.set_distributed( | |||
| num_replicas=self.driver2.world_size, | |||
| rank=self.driver2.global_rank, | |||
| pad=True | |||
| ) | |||
| dataloader = DataLoader( | |||
| dataset, | |||
| self.dataset, | |||
| batch_sampler=batch_sampler | |||
| ) | |||
| load_states = driver2.load(Path(path), dataloader, only_state_dict, should_load_model=True) | |||
| load_states = self.driver2.load(Path(path), dataloader, only_state_dict, should_load_model=True) | |||
| replaced_loader = load_states.pop("dataloader") | |||
| # 1. 检查 optimizer 的状态 | |||
| @@ -675,12 +731,12 @@ class TestSaveLoad: | |||
| assert isinstance(replaced_loader.batch_sampler.sampler, RandomSampler) | |||
| assert replaced_loader.batch_sampler.sampler.seed == sampler_states["seed"] | |||
| assert replaced_loader.batch_sampler.sampler.epoch == sampler_states["epoch"] | |||
| assert replaced_loader.batch_sampler.sampler.num_consumed_samples == 4 * num_consumed_batches | |||
| assert replaced_loader.batch_sampler.sampler.num_consumed_samples == 4 * num_consumed_batches * num_replicas | |||
| assert len(replaced_loader.batch_sampler.sampler.dataset) == sampler_states["length"] | |||
| assert replaced_loader.batch_sampler.sampler.shuffle == sampler_states["shuffle"] | |||
| # 3. 检查 fp16 是否被加载 | |||
| if fp16: | |||
| assert isinstance(driver2.grad_scaler, paddle.amp.GradScaler) | |||
| assert isinstance(self.driver2.grad_scaler, paddle.amp.GradScaler) | |||
| # 4. 检查 model 的参数是否正确 | |||
| # 5. 检查 batch_idx | |||
| @@ -692,13 +748,25 @@ class TestSaveLoad: | |||
| left_x_batches.update(batch["x"]) | |||
| left_y_batches.update(batch["y"]) | |||
| res1 = driver1.model.evaluate_step(**batch) | |||
| res2 = driver2.model.evaluate_step(**batch) | |||
| res1 = self.driver1.model( | |||
| batch, | |||
| fastnlp_fn=self.driver1.model._layers.model.evaluate_step, | |||
| # Driver.model -> DataParallel._layers -> _FleetWrappingModel.model | |||
| fastnlp_signature_fn=None, | |||
| wo_auto_param_call=False, | |||
| ) | |||
| res2 = self.driver2.model( | |||
| batch, | |||
| fastnlp_fn=self.driver2.model._layers.model.evaluate_step, | |||
| fastnlp_signature_fn=None, | |||
| wo_auto_param_call=False, | |||
| ) | |||
| assert paddle.equal_all(res1["pred"], res2["pred"]) | |||
| assert len(left_x_batches) + len(already_seen_x_set) == len(dataset) | |||
| assert len(left_x_batches | already_seen_x_set) == len(dataset) | |||
| assert len(left_y_batches) + len(already_seen_y_set) == len(dataset) | |||
| assert len(left_y_batches | already_seen_y_set) == len(dataset) | |||
| assert len(left_x_batches) + len(already_seen_x_set) == len(self.dataset) / num_replicas | |||
| assert len(left_x_batches | already_seen_x_set) == len(self.dataset) / num_replicas | |||
| assert len(left_y_batches) + len(already_seen_y_set) == len(self.dataset) / num_replicas | |||
| assert len(left_y_batches | already_seen_y_set) == len(self.dataset) / num_replicas | |||
| finally: | |||
| synchronize_safe_rm(path) | |||
| synchronize_safe_rm(path) | |||