From 513876d5db1f7df2c08ea6984802901383ac3404 Mon Sep 17 00:00:00 2001 From: FengZiYjun Date: Mon, 3 Dec 2018 20:50:51 +0800 Subject: [PATCH] =?UTF-8?q?Updates:=20*=20fix=20losses=E7=9A=84=5Ffast=5Fp?= =?UTF-8?q?aram=5Fmap=E7=9A=84bug=20*=20Trainer=E6=B7=BB=E5=8A=A0sampelr?= =?UTF-8?q?=E5=88=9D=E5=A7=8B=E5=8C=96=E5=8F=82=E6=95=B0=EF=BC=8C=E5=B9=B6?= =?UTF-8?q?=E8=B0=83=E6=95=B4=E5=8F=82=E6=95=B0=E9=A1=BA=E5=BA=8F=20*=20re?= =?UTF-8?q?fine=20codes?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- fastNLP/core/losses.py | 3 +-- fastNLP/core/metrics.py | 57 +++++++++++++++++++-------------------- fastNLP/core/trainer.py | 17 ++++-------- fastNLP/core/utils.py | 38 +++++++++++++++----------- test/core/test_trainer.py | 14 +++------- test/test_tutorial.py | 16 +++++------ 6 files changed, 65 insertions(+), 80 deletions(-) diff --git a/fastNLP/core/losses.py b/fastNLP/core/losses.py index 82f47025..f2fb16d0 100644 --- a/fastNLP/core/losses.py +++ b/fastNLP/core/losses.py @@ -72,10 +72,9 @@ class LossBase(object): def _fast_param_map(self, pred_dict, target_dict): if len(self.param_map) == 2 and len(pred_dict) == 1 and len(target_dict) == 1: - return pred_dict.values[0], target_dict.values[0] + return tuple(pred_dict.values())[0], tuple(target_dict.values())[0] return None - def __call__(self, pred_dict, target_dict, check=False): """ :param pred_dict: A dict from forward function of the network. diff --git a/fastNLP/core/metrics.py b/fastNLP/core/metrics.py index 6216b16d..d83c4022 100644 --- a/fastNLP/core/metrics.py +++ b/fastNLP/core/metrics.py @@ -1,4 +1,3 @@ - import inspect import warnings from collections import defaultdict @@ -7,11 +6,12 @@ import numpy as np import torch from fastNLP.core.utils import CheckError +from fastNLP.core.utils import CheckRes from fastNLP.core.utils import _build_args from fastNLP.core.utils import _check_arg_dict_list from fastNLP.core.utils import get_func_signature from fastNLP.core.utils import seq_lens_to_masks -from fastNLP.core.utils import CheckRes + class MetricBase(object): def __init__(self): @@ -59,9 +59,10 @@ class MetricBase(object): func_args = [arg for arg in func_spect.args if arg != 'self'] for func_param, input_param in self.param_map.items(): if func_param not in func_args: - raise NameError(f"Parameter `{func_param}` is not in {get_func_signature(self.evaluate)}. Please check the " - f"initialization parameters, or change the signature of" - f" {get_func_signature(self.evaluate)}.") + raise NameError( + f"Parameter `{func_param}` is not in {get_func_signature(self.evaluate)}. Please check the " + f"initialization parameters, or change the signature of" + f" {get_func_signature(self.evaluate)}.") # evaluate should not have varargs. if func_spect.varargs: @@ -113,7 +114,7 @@ class MetricBase(object): if not self._checked: # 1. check consistence between signature and param_map func_spect = inspect.getfullargspec(self.evaluate) - func_args = set([arg for arg in func_spect.args if arg!='self']) + func_args = set([arg for arg in func_spect.args if arg != 'self']) for func_arg, input_arg in self.param_map.items(): if func_arg not in func_args: raise NameError(f"`{func_arg}` not in {get_func_signature(self.evaluate)}.") @@ -121,7 +122,7 @@ class MetricBase(object): # 2. only part of the param_map are passed, left are not for arg in func_args: if arg not in self.param_map: - self.param_map[arg] = arg #This param does not need mapping. + self.param_map[arg] = arg # This param does not need mapping. self._evaluate_args = func_args self._reverse_param_map = {input_arg: func_arg for func_arg, input_arg in self.param_map.items()} @@ -153,14 +154,14 @@ class MetricBase(object): replaced_missing = list(missing) for idx, func_arg in enumerate(missing): replaced_missing[idx] = f"{self.param_map[func_arg]}" + f"(assign to `{func_arg}` " \ - f"in `{self.__class__.__name__}`)" + f"in `{self.__class__.__name__}`)" check_res = CheckRes(missing=replaced_missing, - unused=check_res.unused, - duplicated=duplicated, - required=check_res.required, - all_needed=check_res.all_needed, - varargs=check_res.varargs) + unused=check_res.unused, + duplicated=duplicated, + required=check_res.required, + all_needed=check_res.all_needed, + varargs=check_res.varargs) if check_res.missing or check_res.duplicated or check_res.varargs: raise CheckError(check_res=check_res, @@ -172,6 +173,7 @@ class MetricBase(object): return + class AccuracyMetric(MetricBase): def __init__(self, pred=None, target=None, masks=None, seq_lens=None): super().__init__() @@ -191,7 +193,7 @@ class AccuracyMetric(MetricBase): :param target_dict: :return: boolean, whether to go on codes in self.__call__(). When False, don't go on. """ - if len(pred_dict)==1 and len(target_dict)==1: + if len(pred_dict) == 1 and len(target_dict) == 1: pred = list(pred_dict.values())[0] target = list(target_dict.values())[0] self.evaluate(pred=pred, target=target) @@ -211,7 +213,7 @@ class AccuracyMetric(MetricBase): None, None, torch.Size([B], torch.Size([B]). ignored if masks are provided. :return: dict({'acc': float}) """ - #TODO 这里报错需要更改,因为pred是啥用户并不知道。需要告知用户真实的value + # TODO 这里报错需要更改,因为pred是啥用户并不知道。需要告知用户真实的value if not isinstance(pred, torch.Tensor): raise TypeError(f"`pred` in {get_func_signature(self.evaluate)} must be torch.Tensor," f"got {type(pred)}.") @@ -224,14 +226,14 @@ class AccuracyMetric(MetricBase): f"got {type(masks)}.") elif seq_lens is not None and not isinstance(seq_lens, torch.Tensor): raise TypeError(f"`seq_lens` in {get_func_signature(self.evaluate)} must be torch.Tensor," - f"got {type(seq_lens)}.") + f"got {type(seq_lens)}.") if masks is None and seq_lens is not None: masks = seq_lens_to_masks(seq_lens=seq_lens, float=True) - if pred.size()==target.size(): + if pred.size() == target.size(): pass - elif len(pred.size())==len(target.size())+1: + elif len(pred.size()) == len(target.size()) + 1: pred = pred.argmax(dim=-1) else: raise RuntimeError(f"In {get_func_signature(self.evaluate)}, when pred have " @@ -245,18 +247,17 @@ class AccuracyMetric(MetricBase): self.acc_count += torch.sum(torch.eq(pred, target).float() * masks.float()).item() self.total += torch.sum(masks.float()).item() else: - self.acc_count += torch.sum(torch.eq(pred, target).float()).item() + self.acc_count += torch.sum(torch.eq(pred, target).float()).item() self.total += np.prod(list(pred.size())) def get_metric(self, reset=True): - evaluate_result = {'acc': round(self.acc_count/self.total, 6)} + evaluate_result = {'acc': round(self.acc_count / self.total, 6)} if reset: self.acc_count = 0 self.total = 0 return evaluate_result - def _prepare_metrics(metrics): """ @@ -278,7 +279,8 @@ def _prepare_metrics(metrics): raise TypeError(f"{metric_name}.get_metric must be callable, got {type(metric.get_metric)}.") _metrics.append(metric) else: - raise TypeError(f"The type of metric in metrics must be `fastNLP.MetricBase`, not `{type(metric)}`.") + raise TypeError( + f"The type of metric in metrics must be `fastNLP.MetricBase`, not `{type(metric)}`.") elif isinstance(metrics, MetricBase): _metrics = [metrics] else: @@ -300,6 +302,7 @@ class Evaluator(object): """ raise NotImplementedError + class ClassifyEvaluator(Evaluator): def __init__(self): super(ClassifyEvaluator, self).__init__() @@ -335,6 +338,7 @@ class SeqLabelEvaluator(Evaluator): accuracy = total_correct / total_count return {"accuracy": float(accuracy)} + class SeqLabelEvaluator2(Evaluator): # 上面的evaluator应该是错误的 def __init__(self, seq_lens_field_name='word_seq_origin_len'): @@ -367,7 +371,7 @@ class SeqLabelEvaluator2(Evaluator): if x_i in self.end_tagidx_set: truth_count += 1 for j in range(start, idx_i + 1): - if y_[j]!=x_[j]: + if y_[j] != x_[j]: flag = False break if flag: @@ -380,8 +384,7 @@ class SeqLabelEvaluator2(Evaluator): R = corr_count / (float(truth_count) + 1e-6) F = 2 * P * R / (P + R + 1e-6) - return {"P": P, 'R':R, 'F': F} - + return {"P": P, 'R': R, 'F': F} class SNLIEvaluator(Evaluator): @@ -563,10 +566,6 @@ def f1_score(y_true, y_pred, labels=None, pos_label=1, average='binary'): return 2 * precision * recall / (precision + recall) if (precision + recall) > 0 else 0 -def classification_report(y_true, y_pred, labels=None, target_names=None, digits=2): - raise NotImplementedError - - def accuracy_topk(y_true, y_prob, k=1): """Compute accuracy of y_true matching top-k probable labels in y_prob. diff --git a/fastNLP/core/trainer.py b/fastNLP/core/trainer.py index 5223bbab..dd5862d3 100644 --- a/fastNLP/core/trainer.py +++ b/fastNLP/core/trainer.py @@ -28,11 +28,9 @@ class Trainer(object): """ - def __init__(self, train_data, model, losser=None, metrics=None, n_epochs=3, batch_size=32, print_every=50, - validate_every=-1, - dev_data=None, use_cuda=False, save_path=None, - optimizer=Adam(lr=0.01, weight_decay=0), check_code_level=0, - metric_key=None): + def __init__(self, train_data, model, losser=None, metrics=None, optimizer=Adam(lr=0.01, weight_decay=0), + sampler=RandomSampler(), n_epochs=3, batch_size=32, print_every=50, validate_every=-1, dev_data=None, + use_cuda=False, metric_key=None, save_path=None, check_code_level=0): """ :param DataSet train_data: the training data @@ -54,7 +52,6 @@ class Trainer(object): :: metric_key="-PPL" # language model gets better as perplexity gets smaller - :param kwargs: """ super(Trainer, self).__init__() @@ -105,6 +102,7 @@ class Trainer(object): self.print_every = int(print_every) self.validate_every = int(validate_every) self.best_metric_indicator = None + self.sampler = sampler self._model_device = model.parameters().__next__().device @@ -120,14 +118,9 @@ class Trainer(object): batch_size=self.batch_size, use_cuda=self.use_cuda) - for k, v in kwargs.items(): - setattr(self, k, v) - self.step = 0 self.start_time = None # start timestamp - # print(self.__dict__) - def train(self): """Start Training. @@ -158,7 +151,7 @@ class Trainer(object): epoch = 1 while epoch <= self.n_epochs: - data_iterator = Batch(self.train_data, batch_size=self.batch_size, sampler=RandomSampler(), + data_iterator = Batch(self.train_data, batch_size=self.batch_size, sampler=self.sampler, as_numpy=False) self._train_epoch(data_iterator, self.model, epoch, start) diff --git a/fastNLP/core/utils.py b/fastNLP/core/utils.py index bfbeb6e5..6c101890 100644 --- a/fastNLP/core/utils.py +++ b/fastNLP/core/utils.py @@ -10,6 +10,8 @@ import torch CheckRes = namedtuple('CheckRes', ['missing', 'unused', 'duplicated', 'required', 'all_needed', 'varargs'], verbose=False) + + def save_pickle(obj, pickle_path, file_name): """Save an object into a pickle file. @@ -53,6 +55,7 @@ def pickle_exist(pickle_path, pickle_name): else: return False + def _build_args(func, **kwargs): spect = inspect.getfullargspec(func) if spect.varkw is not None: @@ -108,7 +111,7 @@ def _check_arg_dict_list(func, args): assert callable(func) and isinstance(arg_dict_list, (list, tuple)) assert len(arg_dict_list) > 0 and isinstance(arg_dict_list[0], dict) spect = inspect.getfullargspec(func) - all_args = set([arg for arg in spect.args if arg!='self']) + all_args = set([arg for arg in spect.args if arg != 'self']) defaults = [] if spect.defaults is not None: defaults = [arg for arg in spect.defaults] @@ -130,6 +133,7 @@ def _check_arg_dict_list(func, args): all_needed=list(all_args), varargs=varargs) + def get_func_signature(func): """ @@ -153,7 +157,7 @@ def get_func_signature(func): class_name = func.__self__.__class__.__name__ signature = inspect.signature(func) signature_str = str(signature) - if len(signature_str)>2: + if len(signature_str) > 2: _self = '(self, ' else: _self = '(self' @@ -176,12 +180,13 @@ def _is_function_or_method(func): return False return True + def _check_function_or_method(func): if not _is_function_or_method(func): raise TypeError(f"{type(func)} is not a method or function.") -def _move_dict_value_to_device(*args, device:torch.device): +def _move_dict_value_to_device(*args, device: torch.device): """ move data to model's device, element in *args should be dict. This is a inplace change. @@ -206,7 +211,8 @@ class CheckError(Exception): CheckError. Used in losses.LossBase, metrics.MetricBase. """ - def __init__(self, check_res:CheckRes, func_signature:str): + + def __init__(self, check_res: CheckRes, func_signature: str): errs = [f'The following problems occurred when calling `{func_signature}`'] if check_res.varargs: @@ -228,8 +234,9 @@ IGNORE_CHECK_LEVEL = 0 WARNING_CHECK_LEVEL = 1 STRICT_CHECK_LEVEL = 2 -def _check_loss_evaluate(prev_func_signature:str, func_signature:str, check_res:CheckRes, - pred_dict:dict, target_dict:dict, dataset, check_level=0): + +def _check_loss_evaluate(prev_func_signature: str, func_signature: str, check_res: CheckRes, + pred_dict: dict, target_dict: dict, dataset, check_level=0): errs = [] unuseds = [] _unused_field = [] @@ -268,8 +275,8 @@ def _check_loss_evaluate(prev_func_signature:str, func_signature:str, check_res: f"target is {list(target_dict.keys())}).") if _miss_out_dataset: _tmp = (f"You might need to provide {_miss_out_dataset} in DataSet and set it as target(Right now " - f"target is {list(target_dict.keys())}) or output it " - f"in {prev_func_signature}(Right now it outputs {list(pred_dict.keys())}).") + f"target is {list(target_dict.keys())}) or output it " + f"in {prev_func_signature}(Right now it outputs {list(pred_dict.keys())}).") if _unused_field: _tmp += f"You can use DataSet.rename_field() to rename the field in `unused field:`. " suggestions.append(_tmp) @@ -277,15 +284,15 @@ def _check_loss_evaluate(prev_func_signature:str, func_signature:str, check_res: if check_res.duplicated: errs.append(f"\tduplicated param: {check_res.duplicated}.") suggestions.append(f"Delete {check_res.duplicated} in the output of " - f"{prev_func_signature} or do not set {check_res.duplicated} as targets. ") + f"{prev_func_signature} or do not set {check_res.duplicated} as targets. ") if check_level == STRICT_CHECK_LEVEL: errs.extend(unuseds) - if len(errs)>0: + if len(errs) > 0: errs.insert(0, f'The following problems occurred when calling {func_signature}') sugg_str = "" - if len(suggestions)>1: + if len(suggestions) > 1: for idx, sugg in enumerate(suggestions): sugg_str += f'({idx+1}). {sugg}' else: @@ -332,10 +339,10 @@ def _check_forward_error(forward_func, batch_x, dataset, check_level): if check_level == STRICT_CHECK_LEVEL: errs.extend(_unused) - if len(errs)>0: + if len(errs) > 0: errs.insert(0, f'The following problems occurred when calling {func_signature}') sugg_str = "" - if len(suggestions)>1: + if len(suggestions) > 1: for idx, sugg in enumerate(suggestions): sugg_str += f'({idx+1}). {sugg}' else: @@ -357,11 +364,11 @@ def seq_lens_to_masks(seq_lens, float=True): :return: list, np.ndarray or torch.Tensor, shape will be (B, max_length) """ if isinstance(seq_lens, np.ndarray): - assert len(np.shape(seq_lens))==1, f"seq_lens can only have one dimension, got {len(np.shape(seq_lens))}." + assert len(np.shape(seq_lens)) == 1, f"seq_lens can only have one dimension, got {len(np.shape(seq_lens))}." assert seq_lens.dtype in (int, np.int32, np.int64), f"seq_lens can only be integer, not {seq_lens.dtype}." raise NotImplemented elif isinstance(seq_lens, torch.LongTensor): - assert len(seq_lens.size())==1, f"seq_lens can only have one dimension, got {len(seq_lens.size())==1}." + assert len(seq_lens.size()) == 1, f"seq_lens can only have one dimension, got {len(seq_lens.size())==1}." batch_size = seq_lens.size(0) max_len = seq_lens.max() indexes = torch.arange(max_len).view(1, -1).repeat(batch_size, 1).to(seq_lens.device) @@ -375,4 +382,3 @@ def seq_lens_to_masks(seq_lens, float=True): raise NotImplemented else: raise NotImplemented - diff --git a/test/core/test_trainer.py b/test/core/test_trainer.py index bc8df2d2..0a59b3cd 100644 --- a/test/core/test_trainer.py +++ b/test/core/test_trainer.py @@ -31,15 +31,7 @@ class TrainerTestGround(unittest.TestCase): model = NaiveClassifier(2, 1) - trainer = Trainer(train_set, model, - losser=BCELoss(pred="predict", target="y"), - metrics=AccuracyMetric(pred="predict", target="y"), - n_epochs=10, - batch_size=32, - print_every=10, - validate_every=-1, - dev_data=dev_set, - optimizer=SGD(0.1), - check_code_level=2 - ) + trainer = Trainer(train_set, model, losser=BCELoss(pred="predict", target="y"), + metrics=AccuracyMetric(pred="predict", target="y"), optimizer=SGD(), n_epochs=10, + batch_size=32, print_every=10, validate_every=-1, dev_data=dev_set, check_code_level=2) trainer.train() diff --git a/test/test_tutorial.py b/test/test_tutorial.py index e7ee5cf6..f3648b4f 100644 --- a/test/test_tutorial.py +++ b/test/test_tutorial.py @@ -71,20 +71,16 @@ class TestTutorial(unittest.TestCase): # 实例化Trainer,传入模型和数据,进行训练 copy_model = deepcopy(model) - overfit_trainer = Trainer(model=copy_model, train_data=test_data, dev_data=test_data, + overfit_trainer = Trainer(train_data=test_data, model=copy_model, losser=CrossEntropyLoss(pred="output", target="label_seq"), - metrics=AccuracyMetric(pred="predict", target="label_seq"), - save_path="./save", - batch_size=4, - n_epochs=10) + metrics=AccuracyMetric(pred="predict", target="label_seq"), n_epochs=10, batch_size=4, + dev_data=test_data, save_path="./save") overfit_trainer.train() - trainer = Trainer(model=model, train_data=train_data, dev_data=test_data, + trainer = Trainer(train_data=train_data, model=model, losser=CrossEntropyLoss(pred="output", target="label_seq"), - metrics=AccuracyMetric(pred="predict", target="label_seq"), - save_path="./save", - batch_size=4, - n_epochs=10) + metrics=AccuracyMetric(pred="predict", target="label_seq"), n_epochs=10, batch_size=4, + dev_data=test_data, save_path="./save") trainer.train() print('Train finished!')