diff --git a/fastNLP/core/batch.py b/fastNLP/core/batch.py index ff710b30..ad07341a 100644 --- a/fastNLP/core/batch.py +++ b/fastNLP/core/batch.py @@ -145,8 +145,6 @@ class BatchIter: class DataSetIter(BatchIter): """ - 别名::class:`fastNLP.DataSetIter` :class:`fastNLP.core.batch.DataSetIter` - DataSetIter 用于从 `DataSet` 中按一定的顺序, 依次按 ``batch_size`` 的大小将数据取出, 组成 `x` 和 `y`:: diff --git a/fastNLP/core/callback.py b/fastNLP/core/callback.py index 5167b09f..3cdc0f8d 100644 --- a/fastNLP/core/callback.py +++ b/fastNLP/core/callback.py @@ -96,8 +96,6 @@ except: class Callback(object): """ - 别名::class:`fastNLP.Callback` :class:`fastNLP.core.callback.Callback` - Callback是fastNLP中被设计用于增强 :class:`~fastNLP.Trainer` 的类。 如果Callback被传递给了 Trainer , 则 Trainer 会在对应的阶段调用Callback的函数, 具体调用时机可以通过 :doc:`trainer 模块` 查看。 @@ -436,8 +434,6 @@ class DistCallbackManager(CallbackManager): class GradientClipCallback(Callback): """ - 别名::class:`fastNLP.GradientClipCallback` :class:`fastNLP.core.callback.GradientClipCallback` - 每次backward前,将parameter的gradient clip到某个范围。 :param None,torch.Tensor,List[torch.Tensor] parameters: 一般通过model.parameters()获得。 @@ -481,8 +477,6 @@ class GradientClipCallback(Callback): class EarlyStopCallback(Callback): """ - 别名::class:`fastNLP.EarlyStopCallback` :class:`fastNLP.core.callback.EarlyStopCallback` - 多少个epoch没有变好就停止训练,相关类 :class:`EarlyStopError` :param int patience: epoch的数量 @@ -512,12 +506,10 @@ class EarlyStopCallback(Callback): class FitlogCallback(Callback): """ - 别名: :class:`fastNLP.FitlogCallback` :class:`fastNLP.core.callback.FitlogCallback` - 该callback可将loss和progress写入到fitlog中; 如果Trainer有dev的数据,将自动把dev的结果写入到log中; 同时还支持传入 - 一个(或多个)test数据集进行测试(只有在trainer具有dev时才能使用),每次在dev上evaluate之后会在这些数据集上验证一下。 - 并将验证结果写入到fitlog中。这些数据集的结果是根据dev上最好的结果报道的,即如果dev在第3个epoch取得了最佳,则 - fitlog中记录的关于这些数据集的结果就是来自第三个epoch的结果。 + 一个(或多个)test数据集进行测试(只有在trainer具有dev时才能使用),每次在dev上evaluate之后会在这些数据集上验证一下。 + 并将验证结果写入到fitlog中。这些数据集的结果是根据dev上最好的结果报道的,即如果dev在第3个epoch取得了最佳,则 + fitlog中记录的关于这些数据集的结果就是来自第三个epoch的结果。 :param ~fastNLP.DataSet,Dict[~fastNLP.DataSet] data: 传入DataSet对象,会使用多个Trainer中的metric对数据进行验证。如果需要 传入多个DataSet请通过dict的方式传入,dict的key将作为对应dataset的name传递给fitlog。data的结果的名称以'data'开头。 @@ -611,8 +603,6 @@ class FitlogCallback(Callback): class EvaluateCallback(Callback): """ - 别名: :class:`fastNLP.EvaluateCallback` :class:`fastNLP.core.callback.EvaluateCallback` - 该callback用于扩展Trainer训练过程中只能对dev数据进行验证的问题。 :param ~fastNLP.DataSet,Dict[~fastNLP.DataSet] data: 传入DataSet对象,会使用多个Trainer中的metric对数据进行验证。如果需要传入多个 @@ -673,8 +663,6 @@ class EvaluateCallback(Callback): class LRScheduler(Callback): """ - 别名::class:`fastNLP.LRScheduler` :class:`fastNLP.core.callback.LRScheduler` - 对PyTorch LR Scheduler的包装以使得其可以被Trainer所使用 :param torch.optim.lr_scheduler._LRScheduler lr_scheduler: PyTorch的lr_scheduler @@ -695,7 +683,6 @@ class LRScheduler(Callback): class ControlC(Callback): """ - 别名::class:`fastNLP.ControlC` :class:`fastNLP.core.callback.ControlC` :param bool quit_all: 若为True,则检测到control+C 直接退出程序;否则只退出Trainer """ @@ -732,8 +719,6 @@ class SmoothValue(object): class LRFinder(Callback): """ - 别名::class:`fastNLP.LRFinder` :class:`fastNLP.core.callback.LRFinder` - 用第一个 epoch 找最佳的学习率,从第二个epoch开始应用它 :param float start_lr: 学习率下界 @@ -804,8 +789,6 @@ class LRFinder(Callback): class TensorboardCallback(Callback): """ - 别名::class:`fastNLP.TensorboardCallback` :class:`fastNLP.core.callback.TensorboardCallback` - 接受以下一个或多个字符串作为参数: - "model" - "loss" diff --git a/fastNLP/core/dataset.py b/fastNLP/core/dataset.py index 551cf1f8..441f9907 100644 --- a/fastNLP/core/dataset.py +++ b/fastNLP/core/dataset.py @@ -304,8 +304,6 @@ from ._logger import logger class DataSet(object): """ - 别名::class:`fastNLP.DataSet` :class:`fastNLP.core.dataset.DataSet` - fastNLP的数据容器,详细的使用方法见文档 :doc:`fastNLP.core.dataset` :param data: 如果为dict类型,则每个key的value应该为等长的list; 如果为list, diff --git a/fastNLP/core/field.py b/fastNLP/core/field.py index 859dfb1f..468c248d 100644 --- a/fastNLP/core/field.py +++ b/fastNLP/core/field.py @@ -464,8 +464,6 @@ def _get_ele_type_and_dim(cell: Any, dim=0): class Padder: """ - 别名::class:`fastNLP.Padder` :class:`fastNLP.core.field.Padder` - 所有padder都需要继承这个类,并覆盖__call__方法。 用于对batch进行padding操作。传入的element是inplace的,即直接修改element可能导致数据变化,建议inplace修改之前deepcopy一份。 @@ -534,8 +532,6 @@ class Padder: class AutoPadder(Padder): """ - 别名::class:`fastNLP.AutoPadder` :class:`fastNLP.core.field.AutoPadder` - 根据contents的数据自动判定是否需要做padding。 1 如果元素类型(元素类型是指field中最里层元素的数据类型, 可以通过FieldArray.dtype查看,比如['This', 'is', ...]的元素类 @@ -628,8 +624,6 @@ class AutoPadder(Padder): class EngChar2DPadder(Padder): """ - 别名::class:`fastNLP.EngChar2DPadder` :class:`fastNLP.core.field.EngChar2DPadder` - 用于为英语执行character级别的2D padding操作。对应的field内容应该类似[['T', 'h', 'i', 's'], ['a'], ['d', 'e', 'm', 'o']], 但这个Padder只能处理index为int的情况。 diff --git a/fastNLP/core/instance.py b/fastNLP/core/instance.py index 9a5d9edf..2285e4a4 100644 --- a/fastNLP/core/instance.py +++ b/fastNLP/core/instance.py @@ -10,8 +10,6 @@ __all__ = [ class Instance(object): """ - 别名::class:`fastNLP.Instance` :class:`fastNLP.core.instance.Instance` - Instance是fastNLP中对应一个sample的类。每个sample在fastNLP中是一个Instance对象。 Instance一般与 :class:`~fastNLP.DataSet` 一起使用, Instance的初始化如下面的Example所示:: diff --git a/fastNLP/core/losses.py b/fastNLP/core/losses.py index 7402a568..b2f5ce0a 100644 --- a/fastNLP/core/losses.py +++ b/fastNLP/core/losses.py @@ -167,8 +167,6 @@ class LossBase(object): class LossFunc(LossBase): """ - 别名::class:`fastNLP.LossFunc` :class:`fastNLP.core.losses.LossFunc` - 提供给用户使用自定义损失函数的类 :param func: 用户自行定义的损失函数,应当为一个函数或者callable(func)为True的ojbect @@ -200,8 +198,6 @@ class LossFunc(LossBase): class CrossEntropyLoss(LossBase): """ - 别名::class:`fastNLP.CrossEntropyLoss` :class:`fastNLP.core.losses.CrossEntropyLoss` - 交叉熵损失函数 :param pred: 参数映射表中 `pred` 的映射关系,None表示映射关系为 `pred` -> `pred` @@ -248,8 +244,6 @@ class CrossEntropyLoss(LossBase): class L1Loss(LossBase): """ - 别名::class:`fastNLP.L1Loss` :class:`fastNLP.core.losses.L1Loss` - L1损失函数 :param pred: 参数映射表中 `pred` 的映射关系,None表示映射关系为 `pred` -> `pred` @@ -270,8 +264,6 @@ class L1Loss(LossBase): class BCELoss(LossBase): """ - 别名::class:`fastNLP.BCELoss` :class:`fastNLP.core.losses.BCELoss` - 二分类交叉熵损失函数 :param pred: 参数映射表中 `pred` 的映射关系,None表示映射关系为 `pred` -> `pred` @@ -291,8 +283,6 @@ class BCELoss(LossBase): class NLLLoss(LossBase): """ - 别名::class:`fastNLP.NLLLoss` :class:`fastNLP.core.losses.NLLLoss` - 负对数似然损失函数 :param pred: 参数映射表中 `pred` 的映射关系,None表示映射关系为 `pred` -> `pred` @@ -315,8 +305,6 @@ class NLLLoss(LossBase): class LossInForward(LossBase): """ - 别名::class:`fastNLP.LossInForward` :class:`fastNLP.core.losses.LossInForward` - 从forward()函数返回结果中获取loss :param str loss_key: 在forward函数中loss的键名,默认为loss diff --git a/fastNLP/core/metrics.py b/fastNLP/core/metrics.py index c0f14c90..2dc6d9d8 100644 --- a/fastNLP/core/metrics.py +++ b/fastNLP/core/metrics.py @@ -294,9 +294,6 @@ class MetricBase(object): class AccuracyMetric(MetricBase): """ - - 别名::class:`fastNLP.AccuracyMetric` :class:`fastNLP.core.metrics.AccuracyMetric` - 准确率Metric(其它的Metric参见 :doc:`fastNLP.core.metrics` ) :param pred: 参数映射表中 `pred` 的映射关系,None表示映射关系为 `pred` -> `pred` @@ -565,8 +562,6 @@ def _check_tag_vocab_and_encoding_type(tag_vocab:Union[Vocabulary, dict], encodi class SpanFPreRecMetric(MetricBase): r""" - 别名::class:`fastNLP.SpanFPreRecMetric` :class:`fastNLP.core.metrics.SpanFPreRecMetric` - 在序列标注问题中,以span的方式计算F, pre, rec. 比如中文Part of speech中,会以character的方式进行标注,句子 `中国在亚洲` 对应的POS可能为(以BMES为例) ['B-NN', 'E-NN', 'S-DET', 'B-NN', 'E-NN']。该metric就是为类似情况下的F1计算。 @@ -832,8 +827,6 @@ def _pred_topk(y_prob, k=1): class ExtractiveQAMetric(MetricBase): r""" - 别名::class:`fastNLP.ExtractiveQAMetric` :class:`fastNLP.core.metrics.ExtractiveQAMetric` - 抽取式QA(如SQuAD)的metric. :param pred1: 参数映射表中 `pred1` 的映射关系,None表示映射关系为 `pred1` -> `pred1` diff --git a/fastNLP/core/optimizer.py b/fastNLP/core/optimizer.py index e95047b4..c30c7e34 100644 --- a/fastNLP/core/optimizer.py +++ b/fastNLP/core/optimizer.py @@ -17,7 +17,6 @@ from torch.optim.optimizer import Optimizer as TorchOptimizer class Optimizer(object): """ - 别名::class:`fastNLP.Optimizer` :class:`fastNLP.core.optimizer.Optimizer` :param model_params: a generator. E.g. ``model.parameters()`` for PyTorch models. :param kwargs: additional parameters. @@ -60,7 +59,6 @@ class NullOptimizer(Optimizer): class SGD(Optimizer): """ - 别名::class:`fastNLP.SGD` :class:`fastNLP.core.optimizer.SGD` :param float lr: learning rate. Default: 0.01 :param float momentum: momentum. Default: 0 @@ -82,7 +80,6 @@ class SGD(Optimizer): class Adam(Optimizer): """ - 别名::class:`fastNLP.Adam` :class:`fastNLP.core.optimizer.Adam` :param float lr: learning rate :param float weight_decay: @@ -105,8 +102,6 @@ class Adam(Optimizer): class AdamW(TorchOptimizer): r""" - 别名::class:`fastNLP.AdamW` :class:`fastNLP.core.optimizer.AdamW` - 对AdamW的实现,该实现应该会在pytorch更高版本中出现,https://github.com/pytorch/pytorch/pull/21250。这里提前加入 .. todo:: diff --git a/fastNLP/core/sampler.py b/fastNLP/core/sampler.py index 9ca04fa0..d0df9129 100644 --- a/fastNLP/core/sampler.py +++ b/fastNLP/core/sampler.py @@ -15,9 +15,6 @@ import numpy as np class Sampler(object): """ - 别名::class:`fastNLP.Sampler` :class:`fastNLP.core.sampler.Sampler` - - `Sampler` 类的基类. 规定以何种顺序取出data中的元素 子类必须实现 ``__call__`` 方法. 输入 `DataSet` 对象, 返回其中元素的下标序列 @@ -33,8 +30,6 @@ class Sampler(object): class SequentialSampler(Sampler): """ - 别名::class:`fastNLP.SequentialSampler` :class:`fastNLP.core.sampler.SequentialSampler` - 顺序取出元素的 `Sampler` """ @@ -45,8 +40,6 @@ class SequentialSampler(Sampler): class RandomSampler(Sampler): """ - 别名::class:`fastNLP.RandomSampler` :class:`fastNLP.core.sampler.RandomSampler` - 随机化取元素的 `Sampler` """ @@ -57,8 +50,6 @@ class RandomSampler(Sampler): class BucketSampler(Sampler): """ - 别名::class:`fastNLP.BucketSampler` :class:`fastNLP.core.sampler.BucketSampler` - 带Bucket的 `Random Sampler`. 可以随机地取出长度相似的元素 :param int num_buckets: bucket的数量 diff --git a/fastNLP/core/tester.py b/fastNLP/core/tester.py index e549df81..344e24a8 100644 --- a/fastNLP/core/tester.py +++ b/fastNLP/core/tester.py @@ -65,8 +65,6 @@ __all__ = [ class Tester(object): """ - 别名::class:`fastNLP.Tester` :class:`fastNLP.core.tester.Tester` - Tester是在提供数据,模型以及metric的情况下进行性能测试的类。需要传入模型,数据以及metric进行验证。 :param ~fastNLP.DataSet data: 需要测试的数据集 diff --git a/fastNLP/core/trainer.py b/fastNLP/core/trainer.py index a47f108b..9f262fb5 100644 --- a/fastNLP/core/trainer.py +++ b/fastNLP/core/trainer.py @@ -357,8 +357,6 @@ from ._logger import logger class Trainer(object): """ - 别名::class:`fastNLP.Trainer` :class:`fastNLP.core.trainer.Trainer` - Trainer在fastNLP中用于组织单任务的训练过程,可以避免用户在不同训练任务中重复撰写 (1) epoch循环; (2) 将数据分成不同的Batch; diff --git a/fastNLP/core/utils.py b/fastNLP/core/utils.py index fcb2a07b..814e0bd5 100644 --- a/fastNLP/core/utils.py +++ b/fastNLP/core/utils.py @@ -66,8 +66,6 @@ def _prepare_cache_filepath(filepath): def cache_results(_cache_fp, _refresh=False, _verbose=1): """ - 别名::class:`fastNLP.cache_results` :class:`fastNLP.core.uitls.cache_results` - cache_results是fastNLP中用于cache数据的装饰器。通过下面的例子看一下如何使用:: import time diff --git a/fastNLP/core/vocabulary.py b/fastNLP/core/vocabulary.py index b0f9650a..d4ff6077 100644 --- a/fastNLP/core/vocabulary.py +++ b/fastNLP/core/vocabulary.py @@ -66,8 +66,6 @@ def _check_build_status(func): class Vocabulary(object): """ - 别名::class:`fastNLP.Vocabulary` :class:`fastNLP.core.vocabulary.Vocabulary` - 用于构建, 存储和使用 `str` 到 `int` 的一一映射:: vocab = Vocabulary() diff --git a/fastNLP/io/embed_loader.py b/fastNLP/io/embed_loader.py index a157901f..73a7a1de 100644 --- a/fastNLP/io/embed_loader.py +++ b/fastNLP/io/embed_loader.py @@ -33,8 +33,6 @@ class EmbeddingOption(Option): class EmbedLoader: """ - 别名::class:`fastNLP.io.EmbedLoader` :class:`fastNLP.io.embed_loader.EmbedLoader` - 用于读取预训练的embedding, 读取结果可直接载入为模型参数。 """ diff --git a/fastNLP/io/loader/classification.py b/fastNLP/io/loader/classification.py index 4ebd58e1..9efcf5d2 100644 --- a/fastNLP/io/loader/classification.py +++ b/fastNLP/io/loader/classification.py @@ -24,8 +24,6 @@ from ...core.instance import Instance class YelpLoader(Loader): """ - 别名::class:`fastNLP.io.YelpLoader` :class:`fastNLP.io.loader.YelpLoader` - 原始数据中内容应该为, 每一行为一个sample,第一个逗号之前为target,第一个逗号之后为文本内容。 Example:: @@ -164,8 +162,6 @@ class YelpPolarityLoader(YelpLoader): class IMDBLoader(Loader): """ - 别名::class:`fastNLP.io.IMDBLoader` :class:`fastNLP.io.loader.IMDBLoader` - IMDBLoader读取后的数据将具有以下两列内容: raw_words: str, 需要分类的文本; target: str, 文本的标签 DataSet具备以下的结构: @@ -244,8 +240,6 @@ class IMDBLoader(Loader): class SSTLoader(Loader): """ - 别名::class:`fastNLP.io.SSTLoader` :class:`fastNLP.io.loader.SSTLoader` - 读取之后的DataSet具有以下的结构 .. csv-table:: 下面是使用SSTLoader读取的DataSet所具备的field diff --git a/fastNLP/io/loader/conll.py b/fastNLP/io/loader/conll.py index 1bd1b448..f30b031f 100644 --- a/fastNLP/io/loader/conll.py +++ b/fastNLP/io/loader/conll.py @@ -27,8 +27,6 @@ from ...core.instance import Instance class ConllLoader(Loader): """ - 别名::class:`fastNLP.io.ConllLoader` :class:`fastNLP.io.loader.ConllLoader` - ConllLoader支持读取的数据格式: 以空行隔开两个sample,除了分割行,每一行用空格或者制表符隔开不同的元素。如下例所示: Example:: diff --git a/fastNLP/io/loader/csv.py b/fastNLP/io/loader/csv.py index 0d6e35fa..aaf38c00 100644 --- a/fastNLP/io/loader/csv.py +++ b/fastNLP/io/loader/csv.py @@ -12,8 +12,6 @@ from ...core.instance import Instance class CSVLoader(Loader): """ - 别名::class:`fastNLP.io.CSVLoader` :class:`fastNLP.io.loader.CSVLoader` - 读取CSV格式的数据集, 返回 ``DataSet`` 。 :param List[str] headers: CSV文件的文件头.定义每一列的属性名称,即返回的DataSet中`field`的名称 diff --git a/fastNLP/io/loader/json.py b/fastNLP/io/loader/json.py index 012dee5a..671769fe 100644 --- a/fastNLP/io/loader/json.py +++ b/fastNLP/io/loader/json.py @@ -12,8 +12,6 @@ from ...core.instance import Instance class JsonLoader(Loader): """ - 别名::class:`fastNLP.io.JsonLoader` :class:`fastNLP.io.loader.JsonLoader` - 读取json格式数据.数据必须按行存储,每行是一个包含各类属性的json对象 :param dict fields: 需要读入的json属性名称, 和读入后在DataSet中存储的field_name diff --git a/fastNLP/io/model_io.py b/fastNLP/io/model_io.py index a1899f51..9da921df 100644 --- a/fastNLP/io/model_io.py +++ b/fastNLP/io/model_io.py @@ -11,8 +11,6 @@ import torch class ModelLoader: """ - 别名::class:`fastNLP.io.ModelLoader` :class:`fastNLP.io.model_io.ModelLoader` - 用于读取模型 """ @@ -41,8 +39,6 @@ class ModelLoader: class ModelSaver(object): """ - 别名::class:`fastNLP.io.ModelSaver` :class:`fastNLP.io.model_io.ModelSaver` - 用于保存模型 Example:: diff --git a/fastNLP/io/pipe/classification.py b/fastNLP/io/pipe/classification.py index d1c7aa0e..3834a570 100644 --- a/fastNLP/io/pipe/classification.py +++ b/fastNLP/io/pipe/classification.py @@ -228,8 +228,6 @@ class YelpPolarityPipe(_CLSPipe): class SSTPipe(_CLSPipe): """ - 别名::class:`fastNLP.io.SSTPipe` :class:`fastNLP.io.pipe.SSTPipe` - 经过该Pipe之后,DataSet中具备的field如下所示 .. csv-table:: 下面是使用SSTPipe处理后的DataSet所具备的field diff --git a/fastNLP/io/pipe/pipe.py b/fastNLP/io/pipe/pipe.py index 12d9c1cb..db65ece6 100644 --- a/fastNLP/io/pipe/pipe.py +++ b/fastNLP/io/pipe/pipe.py @@ -9,7 +9,9 @@ from .. import DataBundle class Pipe: """ - 别名::class:`fastNLP.io.Pipe` :class:`fastNLP.io.pipe.Pipe` + .. todo:: + doc + """ def process(self, data_bundle: DataBundle) -> DataBundle: """ diff --git a/fastNLP/models/bert.py b/fastNLP/models/bert.py index 4a04bd6d..85c3af8c 100644 --- a/fastNLP/models/bert.py +++ b/fastNLP/models/bert.py @@ -44,9 +44,6 @@ from ..embeddings import BertEmbedding class BertForSequenceClassification(BaseModel): """ - 别名: :class:`fastNLP.models.BertForSequenceClassification` - :class:`fastNLP.models.bert.BertForSequenceClassification` - BERT model for classification. :param fastNLP.embeddings.BertEmbedding embed: 下游模型的编码器(encoder). @@ -90,9 +87,6 @@ class BertForSequenceClassification(BaseModel): class BertForSentenceMatching(BaseModel): """ - 别名: :class:`fastNLP.models.BertForSentenceMatching` - :class:`fastNLP.models.bert.BertForSentenceMatching` - BERT model for sentence matching. :param fastNLP.embeddings.BertEmbedding embed: 下游模型的编码器(encoder). @@ -135,9 +129,6 @@ class BertForSentenceMatching(BaseModel): class BertForMultipleChoice(BaseModel): """ - 别名: :class:`fastNLP.models.BertForMultipleChoice` - :class:`fastNLP.models.bert.BertForMultipleChoice` - BERT model for multiple choice. :param fastNLP.embeddings.BertEmbedding embed: 下游模型的编码器(encoder). @@ -185,9 +176,6 @@ class BertForMultipleChoice(BaseModel): class BertForTokenClassification(BaseModel): """ - 别名: :class:`fastNLP.models.BertForTokenClassification` - :class:`fastNLP.models.bert.BertForTokenClassification` - BERT model for token classification. :param fastNLP.embeddings.BertEmbedding embed: 下游模型的编码器(encoder). @@ -231,9 +219,6 @@ class BertForTokenClassification(BaseModel): class BertForQuestionAnswering(BaseModel): """ - 别名: :class:`fastNLP.models.BertForQuestionAnswering` - :class:`fastNLP.models.bert.BertForQuestionAnswering` - BERT model for classification. :param fastNLP.embeddings.BertEmbedding embed: 下游模型的编码器(encoder). diff --git a/fastNLP/models/biaffine_parser.py b/fastNLP/models/biaffine_parser.py index 455d27a7..5d094472 100644 --- a/fastNLP/models/biaffine_parser.py +++ b/fastNLP/models/biaffine_parser.py @@ -130,8 +130,6 @@ def _find_cycle(vertices, edges): class GraphParser(BaseModel): """ - 别名::class:`fastNLP.models.GraphParser` :class:`fastNLP.models.baffine_parser.GraphParser` - 基于图的parser base class, 支持贪婪解码和最大生成树解码 """ @@ -240,8 +238,6 @@ class LabelBilinear(nn.Module): class BiaffineParser(GraphParser): """ - 别名::class:`fastNLP.models.BiaffineParser` :class:`fastNLP.models.baffine_parser.BiaffineParser` - Biaffine Dependency Parser 实现. 论文参考 `Deep Biaffine Attention for Neural Dependency Parsing (Dozat and Manning, 2016) `_ . @@ -475,8 +471,6 @@ class BiaffineParser(GraphParser): class ParserLoss(LossFunc): """ - 别名::class:`fastNLP.models.ParserLoss` :class:`fastNLP.models.baffine_parser.ParserLoss` - 计算parser的loss :param pred1: [batch_size, seq_len, seq_len] 边预测logits @@ -500,8 +494,6 @@ class ParserLoss(LossFunc): class ParserMetric(MetricBase): """ - 别名::class:`fastNLP.models.ParserMetric` :class:`fastNLP.models.baffine_parser.ParserMetric` - 评估parser的性能 :param pred1: 边预测logits diff --git a/fastNLP/models/cnn_text_classification.py b/fastNLP/models/cnn_text_classification.py index 4bf9c4d1..65c20a55 100644 --- a/fastNLP/models/cnn_text_classification.py +++ b/fastNLP/models/cnn_text_classification.py @@ -18,8 +18,6 @@ from ..modules import encoder class CNNText(torch.nn.Module): """ - 别名::class:`fastNLP.models.CNNText` :class:`fastNLP.models.cnn_text_classification.CNNText` - 使用CNN进行文本分类的模型 'Yoon Kim. 2014. Convolution Neural Networks for Sentence Classification.' diff --git a/fastNLP/models/sequence_labeling.py b/fastNLP/models/sequence_labeling.py index 6e839bea..d5bc250b 100644 --- a/fastNLP/models/sequence_labeling.py +++ b/fastNLP/models/sequence_labeling.py @@ -77,8 +77,6 @@ class BiLSTMCRF(BaseModel): class SeqLabeling(BaseModel): """ - 别名::class:`fastNLP.models.SeqLabeling` :class:`fastNLP.models.sequence_labeling.SeqLabeling` - 一个基础的Sequence labeling的模型。 用于做sequence labeling的基础类。结构包含一层Embedding,一层LSTM(单向,一层),一层FC,以及一层CRF。 @@ -156,8 +154,6 @@ class SeqLabeling(BaseModel): class AdvSeqLabel(nn.Module): """ - 别名::class:`fastNLP.models.AdvSeqLabel` :class:`fastNLP.models.sequence_labeling.AdvSeqLabel` - 更复杂的Sequence Labelling模型。结构为Embedding, LayerNorm, 双向LSTM(两层),FC,LayerNorm,DropOut,FC,CRF。 :param tuple(int,int),torch.FloatTensor,nn.Embedding,numpy.ndarray embed: Embedding的大小(传入tuple(int, int), diff --git a/fastNLP/models/snli.py b/fastNLP/models/snli.py index 97a14e9f..07303ddc 100644 --- a/fastNLP/models/snli.py +++ b/fastNLP/models/snli.py @@ -19,8 +19,6 @@ from ..embeddings.embedding import TokenEmbedding, Embedding class ESIM(BaseModel): """ - 别名::class:`fastNLP.models.ESIM` :class:`fastNLP.models.snli.ESIM` - ESIM model的一个PyTorch实现 论文参见: https://arxiv.org/pdf/1609.06038.pdf diff --git a/fastNLP/models/star_transformer.py b/fastNLP/models/star_transformer.py index 7fe0d343..e4d5af84 100644 --- a/fastNLP/models/star_transformer.py +++ b/fastNLP/models/star_transformer.py @@ -19,8 +19,6 @@ from ..core.const import Const class StarTransEnc(nn.Module): """ - 别名::class:`fastNLP.models.StarTransEnc` :class:`fastNLP.models.star_transformer.StarTransEnc` - 带word embedding的Star-Transformer Encoder :param embed: 单词词典, 可以是 tuple, 包括(num_embedings, embedding_dim), 即 @@ -104,8 +102,6 @@ class _NLICls(nn.Module): class STSeqLabel(nn.Module): """ - 别名::class:`fastNLP.models.STSeqLabel` :class:`fastNLP.models.star_transformer.STSeqLabel` - 用于序列标注的Star-Transformer模型 :param embed: 单词词典, 可以是 tuple, 包括(num_embedings, embedding_dim), 即 @@ -169,8 +165,6 @@ class STSeqLabel(nn.Module): class STSeqCls(nn.Module): """ - 别名::class:`fastNLP.models.STSeqCls` :class:`fastNLP.models.star_transformer.STSeqCls` - 用于分类任务的Star-Transformer :param embed: 单词词典, 可以是 tuple, 包括(num_embedings, embedding_dim), 即 @@ -234,8 +228,6 @@ class STSeqCls(nn.Module): class STNLICls(nn.Module): """ - 别名::class:`fastNLP.models.STNLICls` :class:`fastNLP.models.star_transformer.STNLICls` - 用于自然语言推断(NLI)的Star-Transformer :param embed: 单词词典, 可以是 tuple, 包括(num_embedings, embedding_dim), 即 diff --git a/fastNLP/modules/decoder/crf.py b/fastNLP/modules/decoder/crf.py index e2a751f8..aeb73d76 100644 --- a/fastNLP/modules/decoder/crf.py +++ b/fastNLP/modules/decoder/crf.py @@ -166,10 +166,7 @@ def _is_transition_allowed(encoding_type, from_tag, from_label, to_tag, to_label class ConditionalRandomField(nn.Module): """ - 别名::class:`fastNLP.modules.ConditionalRandomField` :class:`fastNLP.modules.decoder.ConditionalRandomField` - - 条件随机场。 - 提供forward()以及viterbi_decode()两个方法,分别用于训练与inference。 + 条件随机场。提供forward()以及viterbi_decode()两个方法,分别用于训练与inference。 :param int num_tags: 标签的数量 :param bool include_start_end_trans: 是否考虑各个tag作为开始以及结尾的分数。