@@ -16,93 +16,19 @@ fastNLP is a modular Natural Language Processing system based on PyTorch, for fa | |||
- numpy>=1.14.2 | |||
- torch==0.4.0 | |||
- torchvision>=0.1.8 | |||
- tensorboardX | |||
## Resources | |||
- [Documentation](https://github.com/fastnlp/fastNLP) | |||
- [Documentation](https://fastnlp.readthedocs.io/en/latest/) | |||
- [Source Code](https://github.com/fastnlp/fastNLP) | |||
## Example | |||
### Basic Usage | |||
A typical fastNLP routine is composed of four phases: loading dataset, pre-processing data, constructing model and training model. | |||
```python | |||
from fastNLP.models.base_model import BaseModel | |||
from fastNLP.modules import encoder | |||
from fastNLP.modules import aggregation | |||
from fastNLP.modules import decoder | |||
from fastNLP.loader.dataset_loader import ClassDatasetLoader | |||
from fastNLP.loader.preprocess import ClassPreprocess | |||
from fastNLP.core.trainer import ClassificationTrainer | |||
from fastNLP.core.inference import ClassificationInfer | |||
class ClassificationModel(BaseModel): | |||
""" | |||
Simple text classification model based on CNN. | |||
""" | |||
def __init__(self, num_classes, vocab_size): | |||
super(ClassificationModel, self).__init__() | |||
self.emb = encoder.Embedding(nums=vocab_size, dims=300) | |||
self.enc = encoder.Conv( | |||
in_channels=300, out_channels=100, kernel_size=3) | |||
self.agg = aggregation.MaxPool() | |||
self.dec = decoder.MLP(100, num_classes=num_classes) | |||
def forward(self, x): | |||
x = self.emb(x) # [N,L] -> [N,L,C] | |||
x = self.enc(x) # [N,L,C_in] -> [N,L,C_out] | |||
x = self.agg(x) # [N,L,C] -> [N,C] | |||
x = self.dec(x) # [N,C] -> [N, N_class] | |||
return x | |||
data_dir = 'data' # directory to save data and model | |||
train_path = 'test/data_for_tests/text_classify.txt' # training set file | |||
# load dataset | |||
ds_loader = ClassDatasetLoader("train", train_path) | |||
data = ds_loader.load() | |||
# pre-process dataset | |||
pre = ClassPreprocess(data_dir) | |||
vocab_size, n_classes = pre.process(data, "data_train.pkl") | |||
# construct model | |||
model_args = { | |||
'num_classes': n_classes, | |||
'vocab_size': vocab_size | |||
} | |||
model = ClassificationModel(num_classes=n_classes, vocab_size=vocab_size) | |||
# train model | |||
train_args = { | |||
"epochs": 20, | |||
"batch_size": 50, | |||
"pickle_path": data_dir, | |||
"validate": False, | |||
"save_best_dev": False, | |||
"model_saved_path": None, | |||
"use_cuda": True, | |||
"learn_rate": 1e-3, | |||
"momentum": 0.9} | |||
trainer = ClassificationTrainer(train_args) | |||
trainer.train(model) | |||
# predict using model | |||
seqs = [x[0] for x in data] | |||
infer = ClassificationInfer(data_dir) | |||
labels_pred = infer.predict(model, seqs) | |||
``` | |||
## Installation | |||
Run the following commands to install fastNLP package. | |||
```shell | |||
pip install fastNLP | |||
``` | |||
### Cloning From GitHub | |||
@@ -122,20 +48,26 @@ conda install pytorch torchvision -c pytorch | |||
pip3 install torch torchvision | |||
``` | |||
### TensorboardX Installation | |||
```shell | |||
pip3 install tensorboardX | |||
``` | |||
## Project Structure | |||
``` | |||
FastNLP | |||
├── docs | |||
│ └── quick_tutorial.md | |||
├── fastNLP | |||
│ ├── action | |||
│ ├── core | |||
│ │ ├── action.py | |||
│ │ ├── inference.py | |||
│ │ ├── __init__.py | |||
│ │ ├── loss.py | |||
│ │ ├── metrics.py | |||
│ │ ├── optimizer.py | |||
│ │ ├── predictor.py | |||
│ │ ├── preprocess.py | |||
│ │ ├── README.md | |||
│ │ ├── tester.py | |||
│ │ └── trainer.py | |||
@@ -147,71 +79,28 @@ FastNLP | |||
│ │ ├── dataset_loader.py | |||
│ │ ├── embed_loader.py | |||
│ │ ├── __init__.py | |||
│ │ ├── model_loader.py | |||
│ │ └── preprocess.py | |||
│ │ └── model_loader.py | |||
│ ├── models | |||
│ │ ├── base_model.py | |||
│ │ ├── char_language_model.py | |||
│ │ ├── cnn_text_classification.py | |||
│ │ ├── __init__.py | |||
│ │ └── sequence_modeling.py | |||
│ ├── modules | |||
│ │ ├── aggregation | |||
│ │ │ ├── attention.py | |||
│ │ │ ├── avg_pool.py | |||
│ │ │ ├── __init__.py | |||
│ │ │ ├── kmax_pool.py | |||
│ │ │ ├── max_pool.py | |||
│ │ │ └── self_attention.py | |||
│ │ ├── decoder | |||
│ │ │ ├── CRF.py | |||
│ │ │ └── __init__.py | |||
│ │ ├── encoder | |||
│ │ │ ├── char_embedding.py | |||
│ │ │ ├── conv_maxpool.py | |||
│ │ │ ├── conv.py | |||
│ │ │ ├── embedding.py | |||
│ │ │ ├── __init__.py | |||
│ │ │ ├── linear.py | |||
│ │ │ ├── lstm.py | |||
│ │ │ ├── masked_rnn.py | |||
│ │ │ └── variational_rnn.py | |||
│ │ ├── __init__.py | |||
│ │ ├── interaction | |||
│ │ │ └── __init__.py | |||
│ │ ├── other_modules.py | |||
│ │ └── utils.py | |||
│ └── saver | |||
│ ├── base_saver.py | |||
│ ├── __init__.py | |||
│ ├── logger.py | |||
│ └── model_saver.py | |||
├── LICENSE | |||
├── README.md | |||
├── reproduction | |||
│ ├── Char-aware_NLM | |||
│ │ | |||
│ ├── CNN-sentence_classification | |||
│ │ | |||
│ ├── HAN-document_classification | |||
│ │ | |||
│ └── LSTM+self_attention_sentiment_analysis | |||
| | |||
├── requirements.txt | |||
├── setup.py | |||
└── test | |||
├── core | |||
├── data_for_tests | |||
│ ├── charlm.txt | |||
│ ├── config | |||
│ ├── cws_test | |||
│ ├── cws_train | |||
│ ├── people_infer.txt | |||
│ └── people.txt | |||
├── test_charlm.py | |||
├── test_cws.py | |||
├── test_fastNLP.py | |||
├── test_loader.py | |||
├── test_seq_labeling.py | |||
├── test_tester.py | |||
└── test_trainer.py | |||
├── __init__.py | |||
├── loader | |||
├── modules | |||
└── readme_example.py | |||
``` |
@@ -1,3 +1,4 @@ | |||
sphinx | |||
-e git://github.com/snide/sphinx_rtd_theme.git#egg=sphinx_rtd_theme | |||
sphinxcontrib.katex | |||
numpy>=1.14.2 | |||
http://download.pytorch.org/whl/cpu/torch-0.4.1-cp35-cp35m-linux_x86_64.whl | |||
torchvision>=0.1.8 | |||
sphinx-rtd-theme==0.4.1 |
@@ -42,6 +42,8 @@ release = '1.0' | |||
extensions = [ | |||
'sphinx.ext.autodoc', | |||
'sphinx.ext.viewcode', | |||
'sphinx.ext.autosummary', | |||
] | |||
# Add any paths that contain templates here, relative to this directory. | |||
@@ -1,62 +1,54 @@ | |||
fastNLP.core package | |||
==================== | |||
fastNLP.core | |||
============= | |||
Submodules | |||
---------- | |||
fastNLP.core.action module | |||
-------------------------- | |||
fastNLP.core.action | |||
-------------------- | |||
.. automodule:: fastNLP.core.action | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: | |||
fastNLP.core.metrics module | |||
--------------------------- | |||
fastNLP.core.loss | |||
------------------ | |||
.. automodule:: fastNLP.core.loss | |||
:members: | |||
fastNLP.core.metrics | |||
--------------------- | |||
.. automodule:: fastNLP.core.metrics | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: | |||
fastNLP.core.optimizer module | |||
----------------------------- | |||
fastNLP.core.optimizer | |||
----------------------- | |||
.. automodule:: fastNLP.core.optimizer | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: | |||
fastNLP.core.predictor module | |||
----------------------------- | |||
fastNLP.core.predictor | |||
----------------------- | |||
.. automodule:: fastNLP.core.predictor | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: | |||
fastNLP.core.tester module | |||
-------------------------- | |||
fastNLP.core.preprocess | |||
------------------------ | |||
.. automodule:: fastNLP.core.preprocess | |||
:members: | |||
fastNLP.core.tester | |||
-------------------- | |||
.. automodule:: fastNLP.core.tester | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: | |||
fastNLP.core.trainer module | |||
--------------------------- | |||
fastNLP.core.trainer | |||
--------------------- | |||
.. automodule:: fastNLP.core.trainer | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: | |||
Module contents | |||
--------------- | |||
.. automodule:: fastNLP.core | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: |
@@ -1,62 +1,36 @@ | |||
fastNLP.loader package | |||
====================== | |||
fastNLP.loader | |||
=============== | |||
Submodules | |||
---------- | |||
fastNLP.loader.base\_loader module | |||
---------------------------------- | |||
fastNLP.loader.base\_loader | |||
---------------------------- | |||
.. automodule:: fastNLP.loader.base_loader | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: | |||
fastNLP.loader.config\_loader module | |||
------------------------------------ | |||
fastNLP.loader.config\_loader | |||
------------------------------ | |||
.. automodule:: fastNLP.loader.config_loader | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: | |||
fastNLP.loader.dataset\_loader module | |||
------------------------------------- | |||
fastNLP.loader.dataset\_loader | |||
------------------------------- | |||
.. automodule:: fastNLP.loader.dataset_loader | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: | |||
fastNLP.loader.embed\_loader module | |||
----------------------------------- | |||
fastNLP.loader.embed\_loader | |||
----------------------------- | |||
.. automodule:: fastNLP.loader.embed_loader | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: | |||
fastNLP.loader.model\_loader module | |||
----------------------------------- | |||
fastNLP.loader.model\_loader | |||
----------------------------- | |||
.. automodule:: fastNLP.loader.model_loader | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: | |||
fastNLP.loader.preprocess module | |||
-------------------------------- | |||
.. automodule:: fastNLP.loader.preprocess | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: | |||
Module contents | |||
--------------- | |||
.. automodule:: fastNLP.loader | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: |
@@ -1,46 +1,30 @@ | |||
fastNLP.models package | |||
====================== | |||
fastNLP.models | |||
=============== | |||
Submodules | |||
---------- | |||
fastNLP.models.base\_model module | |||
--------------------------------- | |||
fastNLP.models.base\_model | |||
--------------------------- | |||
.. automodule:: fastNLP.models.base_model | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: | |||
fastNLP.models.char\_language\_model module | |||
------------------------------------------- | |||
fastNLP.models.char\_language\_model | |||
------------------------------------- | |||
.. automodule:: fastNLP.models.char_language_model | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: | |||
fastNLP.models.cnn\_text\_classification module | |||
----------------------------------------------- | |||
fastNLP.models.cnn\_text\_classification | |||
----------------------------------------- | |||
.. automodule:: fastNLP.models.cnn_text_classification | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: | |||
fastNLP.models.sequence\_modeling module | |||
---------------------------------------- | |||
fastNLP.models.sequence\_modeling | |||
---------------------------------- | |||
.. automodule:: fastNLP.models.sequence_modeling | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: | |||
Module contents | |||
--------------- | |||
.. automodule:: fastNLP.models | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: |
@@ -1,54 +1,36 @@ | |||
fastNLP.modules.aggregation package | |||
=================================== | |||
fastNLP.modules.aggregation | |||
============================ | |||
Submodules | |||
---------- | |||
fastNLP.modules.aggregation.attention module | |||
-------------------------------------------- | |||
fastNLP.modules.aggregation.attention | |||
-------------------------------------- | |||
.. automodule:: fastNLP.modules.aggregation.attention | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: | |||
fastNLP.modules.aggregation.avg\_pool module | |||
-------------------------------------------- | |||
fastNLP.modules.aggregation.avg\_pool | |||
-------------------------------------- | |||
.. automodule:: fastNLP.modules.aggregation.avg_pool | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: | |||
fastNLP.modules.aggregation.kmax\_pool module | |||
--------------------------------------------- | |||
fastNLP.modules.aggregation.kmax\_pool | |||
--------------------------------------- | |||
.. automodule:: fastNLP.modules.aggregation.kmax_pool | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: | |||
fastNLP.modules.aggregation.max\_pool module | |||
-------------------------------------------- | |||
fastNLP.modules.aggregation.max\_pool | |||
-------------------------------------- | |||
.. automodule:: fastNLP.modules.aggregation.max_pool | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: | |||
fastNLP.modules.aggregation.self\_attention module | |||
-------------------------------------------------- | |||
fastNLP.modules.aggregation.self\_attention | |||
-------------------------------------------- | |||
.. automodule:: fastNLP.modules.aggregation.self_attention | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: | |||
Module contents | |||
--------------- | |||
.. automodule:: fastNLP.modules.aggregation | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: |
@@ -1,22 +1,18 @@ | |||
fastNLP.modules.decoder package | |||
=============================== | |||
fastNLP.modules.decoder | |||
======================== | |||
Submodules | |||
---------- | |||
fastNLP.modules.decoder.CRF module | |||
---------------------------------- | |||
fastNLP.modules.decoder.CRF | |||
---------------------------- | |||
.. automodule:: fastNLP.modules.decoder.CRF | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: | |||
fastNLP.modules.decoder.MLP | |||
---------------------------- | |||
.. automodule:: fastNLP.modules.decoder.MLP | |||
:members: | |||
Module contents | |||
--------------- | |||
.. automodule:: fastNLP.modules.decoder | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: |
@@ -1,78 +1,54 @@ | |||
fastNLP.modules.encoder package | |||
=============================== | |||
fastNLP.modules.encoder | |||
======================== | |||
Submodules | |||
---------- | |||
fastNLP.modules.encoder.char\_embedding module | |||
---------------------------------------------- | |||
fastNLP.modules.encoder.char\_embedding | |||
---------------------------------------- | |||
.. automodule:: fastNLP.modules.encoder.char_embedding | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: | |||
fastNLP.modules.encoder.conv module | |||
----------------------------------- | |||
fastNLP.modules.encoder.conv | |||
----------------------------- | |||
.. automodule:: fastNLP.modules.encoder.conv | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: | |||
fastNLP.modules.encoder.conv\_maxpool module | |||
-------------------------------------------- | |||
fastNLP.modules.encoder.conv\_maxpool | |||
-------------------------------------- | |||
.. automodule:: fastNLP.modules.encoder.conv_maxpool | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: | |||
fastNLP.modules.encoder.embedding module | |||
---------------------------------------- | |||
fastNLP.modules.encoder.embedding | |||
---------------------------------- | |||
.. automodule:: fastNLP.modules.encoder.embedding | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: | |||
fastNLP.modules.encoder.linear module | |||
------------------------------------- | |||
fastNLP.modules.encoder.linear | |||
------------------------------- | |||
.. automodule:: fastNLP.modules.encoder.linear | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: | |||
fastNLP.modules.encoder.lstm module | |||
----------------------------------- | |||
fastNLP.modules.encoder.lstm | |||
----------------------------- | |||
.. automodule:: fastNLP.modules.encoder.lstm | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: | |||
fastNLP.modules.encoder.masked\_rnn module | |||
------------------------------------------ | |||
fastNLP.modules.encoder.masked\_rnn | |||
------------------------------------ | |||
.. automodule:: fastNLP.modules.encoder.masked_rnn | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: | |||
fastNLP.modules.encoder.variational\_rnn module | |||
----------------------------------------------- | |||
fastNLP.modules.encoder.variational\_rnn | |||
----------------------------------------- | |||
.. automodule:: fastNLP.modules.encoder.variational_rnn | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: | |||
Module contents | |||
--------------- | |||
.. automodule:: fastNLP.modules.encoder | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: |
@@ -1,10 +1,5 @@ | |||
fastNLP.modules.interaction package | |||
=================================== | |||
Module contents | |||
--------------- | |||
fastNLP.modules.interaction | |||
============================ | |||
.. automodule:: fastNLP.modules.interaction | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: |
@@ -1,8 +1,5 @@ | |||
fastNLP.modules package | |||
======================= | |||
Subpackages | |||
----------- | |||
fastNLP.modules | |||
================ | |||
.. toctree:: | |||
@@ -11,30 +8,18 @@ Subpackages | |||
fastNLP.modules.encoder | |||
fastNLP.modules.interaction | |||
Submodules | |||
---------- | |||
fastNLP.modules.other\_modules module | |||
------------------------------------- | |||
fastNLP.modules.other\_modules | |||
------------------------------- | |||
.. automodule:: fastNLP.modules.other_modules | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: | |||
fastNLP.modules.utils module | |||
---------------------------- | |||
fastNLP.modules.utils | |||
---------------------- | |||
.. automodule:: fastNLP.modules.utils | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: | |||
Module contents | |||
--------------- | |||
.. automodule:: fastNLP.modules | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: |
@@ -1,8 +1,5 @@ | |||
fastNLP package | |||
=============== | |||
Subpackages | |||
----------- | |||
fastNLP | |||
======== | |||
.. toctree:: | |||
@@ -12,22 +9,12 @@ Subpackages | |||
fastNLP.modules | |||
fastNLP.saver | |||
Submodules | |||
---------- | |||
fastNLP.fastnlp module | |||
---------------------- | |||
fastNLP.fastnlp | |||
---------------- | |||
.. automodule:: fastNLP.fastnlp | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: | |||
Module contents | |||
--------------- | |||
.. automodule:: fastNLP | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: |
@@ -1,30 +1,18 @@ | |||
fastNLP.saver package | |||
===================== | |||
fastNLP.saver | |||
============== | |||
Submodules | |||
---------- | |||
fastNLP.saver.logger module | |||
--------------------------- | |||
fastNLP.saver.logger | |||
--------------------- | |||
.. automodule:: fastNLP.saver.logger | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: | |||
fastNLP.saver.model\_saver module | |||
--------------------------------- | |||
fastNLP.saver.model\_saver | |||
--------------------------- | |||
.. automodule:: fastNLP.saver.model_saver | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: | |||
Module contents | |||
--------------- | |||
.. automodule:: fastNLP.saver | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: |
@@ -1,16 +1,54 @@ | |||
.. fastNLP documentation master file, created by | |||
sphinx-quickstart on Mon Aug 20 17:06:44 2018. | |||
You can adapt this file completely to your liking, but it should at least | |||
contain the root `toctree` directive. | |||
fastNLP documentation | |||
===================== | |||
fastNLP,目前仍在孵化中。 | |||
Welcome to fastNLP's documentation! | |||
=================================== | |||
Introduction | |||
------------ | |||
fastNLP是一个基于PyTorch的模块化自然语言处理系统,用于快速开发NLP工具。 | |||
它将基于深度学习的NLP模型划分为不同的模块。 | |||
这些模块分为4类:encoder(编码),interaction(交互), aggregration(聚合) and decoder(解码), | |||
而每个类别包含不同的实现模块。 | |||
大多数当前的NLP模型可以构建在这些模块上,这极大地简化了开发NLP模型的过程。 | |||
fastNLP的架构如下左图所示: | |||
.. image:: figures/procedures_and_sequence_labeling.png | |||
在constructing model部分,以序列标注(上右图)和文本分类(下图)为例进行说明: | |||
.. image:: figures/text_classification.png | |||
* encoder module:将输入编码为一些抽象表示,输入的是单词序列,输出向量序列。 | |||
* interaction module:使表示中的信息相互交互,输入的是向量序列,输出的也是向量序列。 | |||
* aggregation module:聚合和减少信息,输入向量序列,输出一个向量。 | |||
* decoder module:将表示解码为输出,输出一个label(文本分类)或者输出label序列(序列标注) | |||
其中interaction module和aggregation module在模型中不一定存在,例如上面的序列标注模型。 | |||
User's Guide | |||
------------ | |||
.. toctree:: | |||
:maxdepth: 2 | |||
user/installation | |||
user/quickstart | |||
API Reference | |||
------------- | |||
If you are looking for information on a specific function, class or | |||
method, this part of the documentation is for you. | |||
.. toctree:: | |||
:maxdepth: 4 | |||
:caption: Contents: | |||
:maxdepth: 2 | |||
fastNLP | |||
fastNLP API <fastNLP> | |||
@@ -1,7 +0,0 @@ | |||
fastNLP | |||
======= | |||
.. toctree:: | |||
:maxdepth: 4 | |||
fastNLP |
@@ -0,0 +1,31 @@ | |||
============ | |||
Installation | |||
============ | |||
.. contents:: | |||
:local: | |||
Cloning From GitHub | |||
~~~~~~~~~~~~~~~~~~~ | |||
If you just want to use fastNLP, use: | |||
.. code:: shell | |||
git clone https://github.com/fastnlp/fastNLP | |||
cd fastNLP | |||
PyTorch Installation | |||
~~~~~~~~~~~~~~~~~~~~ | |||
Visit the [PyTorch official website] for installation instructions based | |||
on your system. In general, you could use: | |||
.. code:: shell | |||
# using conda | |||
conda install pytorch torchvision -c pytorch | |||
# or using pip | |||
pip3 install torch torchvision |
@@ -0,0 +1,84 @@ | |||
========== | |||
Quickstart | |||
========== | |||
Example | |||
------- | |||
Basic Usage | |||
~~~~~~~~~~~ | |||
A typical fastNLP routine is composed of four phases: loading dataset, | |||
pre-processing data, constructing model and training model. | |||
.. code:: python | |||
from fastNLP.models.base_model import BaseModel | |||
from fastNLP.modules import encoder | |||
from fastNLP.modules import aggregation | |||
from fastNLP.modules import decoder | |||
from fastNLP.loader.dataset_loader import ClassDatasetLoader | |||
from fastNLP.loader.preprocess import ClassPreprocess | |||
from fastNLP.core.trainer import ClassificationTrainer | |||
from fastNLP.core.inference import ClassificationInfer | |||
class ClassificationModel(BaseModel): | |||
""" | |||
Simple text classification model based on CNN. | |||
""" | |||
def __init__(self, num_classes, vocab_size): | |||
super(ClassificationModel, self).__init__() | |||
self.emb = encoder.Embedding(nums=vocab_size, dims=300) | |||
self.enc = encoder.Conv( | |||
in_channels=300, out_channels=100, kernel_size=3) | |||
self.agg = aggregation.MaxPool() | |||
self.dec = decoder.MLP(100, num_classes=num_classes) | |||
def forward(self, x): | |||
x = self.emb(x) # [N,L] -> [N,L,C] | |||
x = self.enc(x) # [N,L,C_in] -> [N,L,C_out] | |||
x = self.agg(x) # [N,L,C] -> [N,C] | |||
x = self.dec(x) # [N,C] -> [N, N_class] | |||
return x | |||
data_dir = 'data' # directory to save data and model | |||
train_path = 'test/data_for_tests/text_classify.txt' # training set file | |||
# load dataset | |||
ds_loader = ClassDatasetLoader("train", train_path) | |||
data = ds_loader.load() | |||
# pre-process dataset | |||
pre = ClassPreprocess(data_dir) | |||
vocab_size, n_classes = pre.process(data, "data_train.pkl") | |||
# construct model | |||
model_args = { | |||
'num_classes': n_classes, | |||
'vocab_size': vocab_size | |||
} | |||
model = ClassificationModel(num_classes=n_classes, vocab_size=vocab_size) | |||
# train model | |||
train_args = { | |||
"epochs": 20, | |||
"batch_size": 50, | |||
"pickle_path": data_dir, | |||
"validate": False, | |||
"save_best_dev": False, | |||
"model_saved_path": None, | |||
"use_cuda": True, | |||
"learn_rate": 1e-3, | |||
"momentum": 0.9} | |||
trainer = ClassificationTrainer(train_args) | |||
trainer.train(model) | |||
# predict using model | |||
seqs = [x[0] for x in data] | |||
infer = ClassificationInfer(data_dir) | |||
labels_pred = infer.predict(model, seqs) |
@@ -1,7 +1,3 @@ | |||
""" | |||
This file defines Action(s) and sample methods. | |||
""" | |||
from collections import Counter | |||
import numpy as np | |||
@@ -9,13 +5,12 @@ import torch | |||
class Action(object): | |||
""" | |||
Operations shared by Trainer, Tester, or Inference. | |||
"""Operations shared by Trainer, Tester, or Inference. | |||
This is designed for reducing replicate codes. | |||
- make_batch: produce a min-batch of data. @staticmethod | |||
- pad: padding method used in sequence modeling. @staticmethod | |||
- mode: change network mode for either train or test. (for PyTorch) @staticmethod | |||
The base Action shall define operations shared by as much task-specific Actions as possible. | |||
""" | |||
def __init__(self): | |||
@@ -24,18 +19,20 @@ class Action(object): | |||
@staticmethod | |||
def make_batch(iterator, use_cuda, output_length=True, max_len=None): | |||
"""Batch and Pad data. | |||
:param iterator: an iterator, (object that implements __next__ method) which returns the next sample. | |||
:param use_cuda: bool, whether to use GPU | |||
:param output_length: bool, whether to output the original length of the sequence before padding. (default: True) | |||
:param max_len: int, maximum sequence length. Longer sequences will be clipped. (default: None) | |||
:return | |||
if output_length is True: | |||
:return : | |||
if output_length is True, | |||
(batch_x, seq_len): tuple of two elements | |||
batch_x: list. Each entry is a list of features of a sample. [batch_size, max_len] | |||
seq_len: list. The length of the pre-padded sequence, if output_length is True. | |||
batch_y: list. Each entry is a list of labels of a sample. [batch_size, num_labels] | |||
if output_length is False: | |||
if output_length is False, | |||
batch_x: list. Each entry is a list of features of a sample. [batch_size, max_len] | |||
batch_y: list. Each entry is a list of labels of a sample. [batch_size, num_labels] | |||
""" | |||
@@ -77,21 +74,21 @@ class Action(object): | |||
return batch | |||
@staticmethod | |||
def mode(model, test=False): | |||
""" | |||
Train mode or Test mode. This is for PyTorch currently. | |||
:param model: | |||
:param test: | |||
def mode(model, is_test=False): | |||
"""Train mode or Test mode. This is for PyTorch currently. | |||
:param model: a PyTorch model | |||
:param is_test: bool, whether in test mode or not. | |||
""" | |||
if test: | |||
if is_test: | |||
model.eval() | |||
else: | |||
model.train() | |||
def convert_to_torch_tensor(data_list, use_cuda): | |||
""" | |||
convert lists into (cuda) Tensors. | |||
"""Convert lists into (cuda) Tensors. | |||
:param data_list: 2-level lists | |||
:param use_cuda: bool, whether to use GPU or not | |||
:return data_list: PyTorch Tensor of shape [batch_size, max_seq_len] | |||
@@ -103,8 +100,8 @@ def convert_to_torch_tensor(data_list, use_cuda): | |||
def k_means_1d(x, k, max_iter=100): | |||
""" | |||
Perform k-means on 1-D data. | |||
"""Perform k-means on 1-D data. | |||
:param x: list of int, representing points in 1-D. | |||
:param k: the number of clusters required. | |||
:param max_iter: maximum iteration | |||
@@ -132,21 +129,28 @@ def k_means_1d(x, k, max_iter=100): | |||
def k_means_bucketing(all_inst, buckets): | |||
""" | |||
"""Assign all instances into possible buckets using k-means, such that instances in the same bucket have similar lengths. | |||
:param all_inst: 3-level list | |||
E.g. :: | |||
[ | |||
[[word_11, word_12, word_13], [label_11. label_12]], # sample 1 | |||
[[word_21, word_22, word_23], [label_21. label_22]], # sample 2 | |||
... | |||
] | |||
:param buckets: list of int. The length of the list is the number of buckets. Each integer is the maximum length | |||
threshold for each bucket (This is usually None.). | |||
:return data: 2-level list | |||
:: | |||
[ | |||
[index_11, index_12, ...], # bucket 1 | |||
[index_21, index_22, ...], # bucket 2 | |||
... | |||
] | |||
""" | |||
bucket_data = [[] for _ in buckets] | |||
num_buckets = len(buckets) | |||
@@ -160,11 +164,16 @@ def k_means_bucketing(all_inst, buckets): | |||
class BaseSampler(object): | |||
""" | |||
Base class for all samplers. | |||
"""The base class of all samplers. | |||
""" | |||
def __init__(self, data_set): | |||
""" | |||
:param data_set: multi-level list, of shape [num_example, *] | |||
""" | |||
self.data_set_length = len(data_set) | |||
self.data = data_set | |||
@@ -176,11 +185,16 @@ class BaseSampler(object): | |||
class SequentialSampler(BaseSampler): | |||
""" | |||
Sample data in the original order. | |||
"""Sample data in the original order. | |||
""" | |||
def __init__(self, data_set): | |||
""" | |||
:param data_set: multi-level list | |||
""" | |||
super(SequentialSampler, self).__init__(data_set) | |||
def __iter__(self): | |||
@@ -188,11 +202,16 @@ class SequentialSampler(BaseSampler): | |||
class RandomSampler(BaseSampler): | |||
""" | |||
Sample data in random permutation order. | |||
"""Sample data in random permutation order. | |||
""" | |||
def __init__(self, data_set): | |||
""" | |||
:param data_set: multi-level list | |||
""" | |||
super(RandomSampler, self).__init__(data_set) | |||
self.order = np.random.permutation(self.data_set_length) | |||
@@ -201,11 +220,18 @@ class RandomSampler(BaseSampler): | |||
class Batchifier(object): | |||
""" | |||
Wrap random or sequential sampler to generate a mini-batch. | |||
"""Wrap random or sequential sampler to generate a mini-batch. | |||
""" | |||
def __init__(self, sampler, batch_size, drop_last=True): | |||
""" | |||
:param sampler: a Sampler object | |||
:param batch_size: int, the size of the mini-batch | |||
:param drop_last: bool, whether to drop the last examples that are not enough to make a mini-batch. | |||
""" | |||
super(Batchifier, self).__init__() | |||
self.sampler = sampler | |||
self.batch_size = batch_size | |||
@@ -223,8 +249,7 @@ class Batchifier(object): | |||
class BucketBatchifier(Batchifier): | |||
""" | |||
Partition all samples into multiple buckets, each of which contains sentences of approximately the same length. | |||
"""Partition all samples into multiple buckets, each of which contains sentences of approximately the same length. | |||
In sampling, first random choose a bucket. Then sample data from it. | |||
The number of buckets is decided dynamically by the variance of sentence lengths. | |||
""" | |||
@@ -237,6 +262,7 @@ class BucketBatchifier(Batchifier): | |||
:param num_buckets: int, number of buckets for grouping these sequences. | |||
:param drop_last: bool, useless currently. | |||
:param sampler: Sampler, useless currently. | |||
""" | |||
super(BucketBatchifier, self).__init__(sampler, batch_size, drop_last) | |||
buckets = ([None] * num_buckets) | |||
@@ -8,8 +8,13 @@ class Loss(object): | |||
""" | |||
def __init__(self, args): | |||
""" | |||
:param args: None or str, the name of a loss function. | |||
""" | |||
if args is None: | |||
# this is useful when | |||
# this is useful when Trainer.__init__ performs type check | |||
self._loss = None | |||
elif isinstance(args, str): | |||
self._loss = self._borrow_from_pytorch(args) | |||
@@ -17,10 +22,19 @@ class Loss(object): | |||
raise NotImplementedError | |||
def get(self): | |||
""" | |||
:return self._loss: the loss function | |||
""" | |||
return self._loss | |||
@staticmethod | |||
def _borrow_from_pytorch(loss_name): | |||
"""Given a name of a loss function, return it from PyTorch. | |||
:param loss_name: str, the name of a loss function | |||
:return loss: a PyTorch loss | |||
""" | |||
if loss_name == "cross_entropy": | |||
return torch.nn.CrossEntropyLoss() | |||
else: | |||
@@ -1,11 +1,12 @@ | |||
import warnings | |||
import numpy as np | |||
import torch | |||
def _conver_numpy(x): | |||
""" | |||
convert input data to numpy array | |||
"""convert input data to numpy array | |||
""" | |||
if isinstance(x, np.ndarray): | |||
return x | |||
@@ -17,21 +18,20 @@ def _conver_numpy(x): | |||
def _check_same_len(*arrays, axis=0): | |||
""" | |||
check if input array list has same length for one dimension | |||
"""check if input array list has same length for one dimension | |||
""" | |||
lens = set([x.shape[axis] for x in arrays if x is not None]) | |||
return len(lens) == 1 | |||
def _label_types(y): | |||
""" | |||
determine the type | |||
"binary" | |||
"multiclass" | |||
"multiclass-multioutput" | |||
"multilabel" | |||
"unknown" | |||
"""Determine the type | |||
- "binary" | |||
- "multiclass" | |||
- "multiclass-multioutput" | |||
- "multilabel" | |||
- "unknown" | |||
""" | |||
# never squeeze the first dimension | |||
y = y.squeeze() if y.shape[0] > 1 else y.resize(1, -1) | |||
@@ -46,8 +46,8 @@ def _label_types(y): | |||
def _check_data(y_true, y_pred): | |||
""" | |||
check if y_true and y_pred is same type of data e.g both binary or multiclass | |||
"""Check if y_true and y_pred is same type of data e.g both binary or multiclass | |||
""" | |||
y_true, y_pred = _conver_numpy(y_true), _conver_numpy(y_pred) | |||
if not _check_same_len(y_true, y_pred): | |||
@@ -174,16 +174,13 @@ def classification_report(y_true, y_pred, labels=None, target_names=None, digits | |||
def accuracy_topk(y_true, y_prob, k=1): | |||
""" | |||
Compute accuracy of y_true matching top-k probable | |||
"""Compute accuracy of y_true matching top-k probable | |||
labels in y_prob. | |||
Paras: | |||
y_ture - ndarray, true label, [n_samples] | |||
y_prob - ndarray, label probabilities, [n_samples, n_classes] | |||
k - int, k in top-k | |||
Returns: | |||
accuracy of top-k | |||
:param y_true: ndarray, true label, [n_samples] | |||
:param y_prob: ndarray, label probabilities, [n_samples, n_classes] | |||
:param k: int, k in top-k | |||
:return :accuracy of top-k | |||
""" | |||
y_pred_topk = np.argsort(y_prob, axis=-1)[:, -1:-k - 1:-1] | |||
@@ -195,16 +192,14 @@ def accuracy_topk(y_true, y_prob, k=1): | |||
def pred_topk(y_prob, k=1): | |||
""" | |||
Return top-k predicted labels and corresponding probabilities. | |||
Args: | |||
y_prob - ndarray, size [n_samples, n_classes], probabilities on labels | |||
k - int, k of top-k | |||
Returns: | |||
y_pred_topk - ndarray, size [n_samples, k], predicted top-k labels | |||
y_prob_topk - ndarray, size [n_samples, k], probabilities for | |||
top-k labels | |||
"""Return top-k predicted labels and corresponding probabilities. | |||
:param y_prob: ndarray, size [n_samples, n_classes], probabilities on labels | |||
:param k: int, k of top-k | |||
:returns | |||
y_pred_topk: ndarray, size [n_samples, k], predicted top-k labels | |||
y_prob_topk: ndarray, size [n_samples, k], probabilities for top-k labels | |||
""" | |||
y_pred_topk = np.argsort(y_prob, axis=-1)[:, -1:-k - 1:-1] | |||
@@ -4,7 +4,6 @@ import torch | |||
class Optimizer(object): | |||
"""Wrapper of optimizer from framework | |||
names: arguments (type) | |||
1. Adam: lr (float), weight_decay (float) | |||
2. AdaGrad | |||
3. RMSProp | |||
@@ -16,20 +15,29 @@ class Optimizer(object): | |||
""" | |||
:param optimizer_name: str, the name of the optimizer | |||
:param kwargs: the arguments | |||
""" | |||
self.optim_name = optimizer_name | |||
self.kwargs = kwargs | |||
@property | |||
def name(self): | |||
"""The name of the optimizer. | |||
:return: str | |||
""" | |||
return self.optim_name | |||
@property | |||
def params(self): | |||
"""The arguments used to create the optimizer. | |||
:return: dict of (str, *) | |||
""" | |||
return self.kwargs | |||
def construct_from_pytorch(self, model_params): | |||
"""construct a optimizer from framework over given model parameters""" | |||
"""Construct a optimizer from framework over given model parameters.""" | |||
if self.optim_name in ["SGD", "sgd"]: | |||
if "lr" in self.kwargs: | |||
@@ -70,7 +70,7 @@ class Predictor(object): | |||
def predict(self, network, data): | |||
"""Perform inference using the trained model. | |||
:param network: a PyTorch model | |||
:param network: a PyTorch model (cpu) | |||
:param data: list of list of strings | |||
:return: list of list of strings, [num_examples, tag_seq_length] | |||
""" | |||
@@ -17,12 +17,24 @@ DEFAULT_WORD_TO_INDEX = {DEFAULT_PADDING_LABEL: 0, DEFAULT_UNKNOWN_LABEL: 1, | |||
# the first vocab in dict with the index = 5 | |||
def save_pickle(obj, pickle_path, file_name): | |||
"""Save an object into a pickle file. | |||
:param obj: an object | |||
:param pickle_path: str, the directory where the pickle file is to be saved | |||
:param file_name: str, the name of the pickle file. In general, it should be ended by "pkl". | |||
""" | |||
with open(os.path.join(pickle_path, file_name), "wb") as f: | |||
_pickle.dump(obj, f) | |||
print("{} saved in {}".format(file_name, pickle_path)) | |||
def load_pickle(pickle_path, file_name): | |||
"""Load an object from a given pickle file. | |||
:param pickle_path: str, the directory where the pickle file is. | |||
:param file_name: str, the name of the pickle file. | |||
:return obj: an object stored in the pickle | |||
""" | |||
with open(os.path.join(pickle_path, file_name), "rb") as f: | |||
obj = _pickle.load(f) | |||
print("{} loaded from {}".format(file_name, pickle_path)) | |||
@@ -30,7 +42,8 @@ def load_pickle(pickle_path, file_name): | |||
def pickle_exist(pickle_path, pickle_name): | |||
""" | |||
"""Check if a given pickle file exists in the directory. | |||
:param pickle_path: the directory of target pickle file | |||
:param pickle_name: the filename of target pickle file | |||
:return: True if file exists else False | |||
@@ -45,6 +58,19 @@ def pickle_exist(pickle_path, pickle_name): | |||
class BasePreprocess(object): | |||
"""Base class of all preprocessors. | |||
Preprocessors are responsible for converting data of strings into data of indices. | |||
During the pre-processing, the following pickle files will be built: | |||
- "word2id.pkl", a mapping from words(tokens) to indices | |||
- "id2word.pkl", a reversed dictionary | |||
- "label2id.pkl", a dictionary on labels | |||
- "id2label.pkl", a reversed dictionary on labels | |||
These four pickle files are expected to be saved in the given pickle directory once they are constructed. | |||
Preprocessors will check if those files are already in the directory and will reuse them in future calls. | |||
""" | |||
def __init__(self): | |||
self.word2index = None | |||
self.label2index = None | |||
@@ -59,6 +85,7 @@ class BasePreprocess(object): | |||
def run(self, train_dev_data, test_data=None, pickle_path="./", train_dev_split=0, cross_val=False, n_fold=10): | |||
"""Main preprocessing pipeline. | |||
:param train_dev_data: three-level list, with either single label or multiple labels in a sample. | |||
:param test_data: three-level list, with either single label or multiple labels in a sample. (optional) | |||
:param pickle_path: str, the path to save the pickle files. | |||
@@ -67,6 +94,7 @@ class BasePreprocess(object): | |||
:param n_fold: int, the number of folds of cross validation. Only useful when cross_val is True. | |||
:return results: a tuple of datasets after preprocessing. | |||
""" | |||
if pickle_exist(pickle_path, "word2id.pkl") and pickle_exist(pickle_path, "class2id.pkl"): | |||
self.word2index = load_pickle(pickle_path, "word2id.pkl") | |||
self.label2index = load_pickle(pickle_path, "class2id.pkl") | |||
@@ -182,25 +210,31 @@ class SeqLabelPreprocess(BasePreprocess): | |||
"""Preprocess pipeline, including building mapping from words to index, from index to words, | |||
from labels/classes to index, from index to labels/classes. | |||
data of three-level list which have multiple labels in each sample. | |||
:: | |||
[ | |||
[ [word_11, word_12, ...], [label_1, label_1, ...] ], | |||
[ [word_21, word_22, ...], [label_2, label_1, ...] ], | |||
... | |||
] | |||
""" | |||
def __init__(self): | |||
super(SeqLabelPreprocess, self).__init__() | |||
def build_dict(self, data): | |||
""" | |||
Add new words with indices into self.word_dict, new labels with indices into self.label_dict. | |||
"""Add new words with indices into self.word_dict, new labels with indices into self.label_dict. | |||
:param data: three-level list | |||
:: | |||
[ | |||
[ [word_11, word_12, ...], [label_1, label_1, ...] ], | |||
[ [word_21, word_22, ...], [label_2, label_1, ...] ], | |||
... | |||
] | |||
:return word2index: dict of {str, int} | |||
label2index: dict of {str, int} | |||
""" | |||
@@ -216,14 +250,17 @@ class SeqLabelPreprocess(BasePreprocess): | |||
return word2index, label2index | |||
def to_index(self, data): | |||
""" | |||
Convert word strings and label strings into indices. | |||
"""Convert word strings and label strings into indices. | |||
:param data: three-level list | |||
:: | |||
[ | |||
[ [word_11, word_12, ...], [label_1, label_1, ...] ], | |||
[ [word_21, word_22, ...], [label_2, label_1, ...] ], | |||
... | |||
] | |||
:return data_index: the same shape as data, but each string is replaced by its corresponding index | |||
""" | |||
data_index = [] | |||
@@ -242,11 +279,14 @@ class ClassPreprocess(BasePreprocess): | |||
Preprocess pipeline, including building mapping from words to index, from index to words, | |||
from labels/classes to index, from index to labels/classes. | |||
design for data of three-level list which has a single label in each sample. | |||
:: | |||
[ | |||
[ [word_11, word_12, ...], label_1 ], | |||
[ [word_21, word_22, ...], label_2 ], | |||
... | |||
] | |||
""" | |||
def __init__(self): | |||
@@ -269,18 +309,21 @@ class ClassPreprocess(BasePreprocess): | |||
for word in sent: | |||
if word not in word2index: | |||
word2index[word[0]] = len(word2index) | |||
word2index[word] = len(word2index) | |||
return word2index, label2index | |||
def to_index(self, data): | |||
""" | |||
Convert word strings and label strings into indices. | |||
"""Convert word strings and label strings into indices. | |||
:param data: three-level list | |||
:: | |||
[ | |||
[ [word_11, word_12, ...], label_1 ], | |||
[ [word_21, word_22, ...], label_2 ], | |||
... | |||
] | |||
:return data_index: the same shape as data, but each string is replaced by its corresponding index | |||
""" | |||
data_index = [] | |||
@@ -295,14 +338,15 @@ class ClassPreprocess(BasePreprocess): | |||
def infer_preprocess(pickle_path, data): | |||
""" | |||
Preprocess over inference data. | |||
Transform three-level list of strings into that of index. | |||
"""Preprocess over inference data. Transform three-level list of strings into that of index. | |||
:: | |||
[ | |||
[word_11, word_12, ...], | |||
[word_21, word_22, ...], | |||
... | |||
] | |||
""" | |||
word2index = load_pickle(pickle_path, "word2id.pkl") | |||
data_index = [] | |||
@@ -38,7 +38,7 @@ class BaseTester(object): | |||
Obviously, "required_args" is the subset of "default_args". | |||
The value in "default_args" to the keys in "required_args" is simply for type check. | |||
""" | |||
# TODO: required arguments | |||
# add required arguments here | |||
required_args = {} | |||
for req_key in required_args: | |||
@@ -56,7 +56,7 @@ class BaseTester(object): | |||
logger.error(msg) | |||
raise ValueError(msg) | |||
else: | |||
# BeseTester doesn't care about extra arguments | |||
# BaseTester doesn't care about extra arguments | |||
pass | |||
print(default_args) | |||
@@ -69,8 +69,8 @@ class BaseTester(object): | |||
self.print_every_step = default_args["print_every_step"] | |||
self._model = None | |||
self.eval_history = [] | |||
self.batch_output = [] | |||
self.eval_history = [] # evaluation results of all batches | |||
self.batch_output = [] # outputs of all batches | |||
def test(self, network, dev_data): | |||
if torch.cuda.is_available() and self.use_cuda: | |||
@@ -83,10 +83,10 @@ class BaseTester(object): | |||
self.eval_history.clear() | |||
self.batch_output.clear() | |||
iterator = iter(Batchifier(RandomSampler(dev_data), self.batch_size, drop_last=True)) | |||
iterator = iter(Batchifier(RandomSampler(dev_data), self.batch_size, drop_last=False)) | |||
step = 0 | |||
for batch_x, batch_y in self.make_batch(iterator, dev_data): | |||
for batch_x, batch_y in self.make_batch(iterator): | |||
with torch.no_grad(): | |||
prediction = self.data_forward(network, batch_x) | |||
eval_results = self.evaluate(prediction, batch_y) | |||
@@ -99,7 +99,7 @@ class BaseTester(object): | |||
print_output = "[test step {}] {}".format(step, eval_results) | |||
logger.info(print_output) | |||
if self.print_every_step > 0 and step % self.print_every_step == 0: | |||
print(print_output) | |||
print(self.make_eval_output(prediction, eval_results)) | |||
step += 1 | |||
def mode(self, model, test): | |||
@@ -115,28 +115,48 @@ class BaseTester(object): | |||
raise NotImplementedError | |||
def evaluate(self, predict, truth): | |||
"""Compute evaluation metrics for the model. """ | |||
"""Compute evaluation metrics. | |||
:param predict: Tensor | |||
:param truth: Tensor | |||
:return eval_results: can be anything. It will be stored in self.eval_history | |||
""" | |||
raise NotImplementedError | |||
@property | |||
def metrics(self): | |||
"""Return a list of metrics. """ | |||
"""Compute and return metrics. | |||
Use self.eval_history to compute metrics over the whole dev set. | |||
Please refer to metrics.py for common metric functions. | |||
:return : variable number of outputs | |||
""" | |||
raise NotImplementedError | |||
def show_matrices(self): | |||
"""This is called by Trainer to print evaluation results on dev set during training. | |||
def show_metrics(self): | |||
"""Customize evaluation outputs in Trainer. | |||
Called by Trainer to print evaluation results on dev set during training. | |||
Use self.metrics to fetch available metrics. | |||
:return print_str: str | |||
""" | |||
raise NotImplementedError | |||
def make_batch(self, iterator, data): | |||
def make_batch(self, iterator): | |||
raise NotImplementedError | |||
def make_eval_output(self, predictions, eval_results): | |||
"""Customize Tester outputs. | |||
:param predictions: Tensor | |||
:param eval_results: Tensor | |||
:return: str, to be printed. | |||
""" | |||
raise NotImplementedError | |||
class SeqLabelTester(BaseTester): | |||
""" | |||
Tester for sequence labeling. | |||
"""Tester for sequence labeling. | |||
""" | |||
def __init__(self, **test_args): | |||
@@ -194,15 +214,15 @@ class SeqLabelTester(BaseTester): | |||
batch_accuracy = np.mean([x[1] for x in self.eval_history]) | |||
return batch_loss, batch_accuracy | |||
def show_matrices(self): | |||
""" | |||
This is called by Trainer to print evaluation on dev set. | |||
def show_metrics(self): | |||
"""This is called by Trainer to print evaluation on dev set. | |||
:return print_str: str | |||
""" | |||
loss, accuracy = self.metrics() | |||
return "dev loss={:.2f}, accuracy={:.2f}".format(loss, accuracy) | |||
def make_batch(self, iterator, data): | |||
def make_batch(self, iterator): | |||
return Action.make_batch(iterator, use_cuda=self.use_cuda, output_length=True) | |||
@@ -211,12 +231,12 @@ class ClassificationTester(BaseTester): | |||
def __init__(self, **test_args): | |||
""" | |||
:param test_args: a dict-like object that has __getitem__ method, \ | |||
:param test_args: a dict-like object that has __getitem__ method. | |||
can be accessed by "test_args["key_str"]" | |||
""" | |||
super(ClassificationTester, self).__init__(**test_args) | |||
def make_batch(self, iterator, data, max_len=None): | |||
def make_batch(self, iterator, max_len=None): | |||
return Action.make_batch(iterator, use_cuda=self.use_cuda, max_len=max_len) | |||
def data_forward(self, network, x): | |||
@@ -1,10 +1,11 @@ | |||
import _pickle | |||
import copy | |||
import os | |||
import time | |||
from datetime import timedelta | |||
import torch | |||
import tensorboardX | |||
from tensorboardX import SummaryWriter | |||
from fastNLP.core.action import Action | |||
from fastNLP.core.action import RandomSampler, Batchifier | |||
@@ -15,16 +16,12 @@ from fastNLP.modules import utils | |||
from fastNLP.saver.logger import create_logger | |||
from fastNLP.saver.model_saver import ModelSaver | |||
DEFAULT_QUEUE_SIZE = 300 | |||
logger = create_logger(__name__, "./train_test.log") | |||
class BaseTrainer(object): | |||
"""Operations to train a model, including data loading, SGD, and validation. | |||
"""Operations of training a model, including data loading, gradient descent, and validation. | |||
Subclasses must implement the following abstract methods: | |||
- grad_backward | |||
- get_loss | |||
""" | |||
def __init__(self, **kwargs): | |||
@@ -32,10 +29,10 @@ class BaseTrainer(object): | |||
:param kwargs: dict of (key, value), or dict-like object. key is str. | |||
The base trainer requires the following keys: | |||
- epochs: int, the number of epochs in training | |||
- validate: bool, whether or not to validate on dev set | |||
- batch_size: int | |||
- pickle_path: str, the path to pickle files for pre-processing | |||
- epochs: int, the number of epochs in training | |||
- validate: bool, whether or not to validate on dev set | |||
- batch_size: int | |||
- pickle_path: str, the path to pickle files for pre-processing | |||
""" | |||
super(BaseTrainer, self).__init__() | |||
@@ -47,7 +44,7 @@ class BaseTrainer(object): | |||
""" | |||
default_args = {"epochs": 3, "batch_size": 8, "validate": True, "use_cuda": True, "pickle_path": "./save/", | |||
"save_best_dev": True, "model_name": "default_model_name.pkl", "print_every_step": 1, | |||
"loss": Loss(None), | |||
"loss": Loss(None), # used to pass type check | |||
"optimizer": Optimizer("Adam", lr=0.001, weight_decay=0) | |||
} | |||
""" | |||
@@ -56,7 +53,7 @@ class BaseTrainer(object): | |||
Obviously, "required_args" is the subset of "default_args". | |||
The value in "default_args" to the keys in "required_args" is simply for type check. | |||
""" | |||
# TODO: required arguments | |||
# add required arguments here | |||
required_args = {} | |||
for req_key in required_args: | |||
@@ -91,9 +88,12 @@ class BaseTrainer(object): | |||
self._loss_func = default_args["loss"].get() # return a pytorch loss function or None | |||
self._optimizer = None | |||
self._optimizer_proto = default_args["optimizer"] | |||
self._summary_writer = SummaryWriter(self.pickle_path + 'tensorboard_logs') | |||
self._graph_summaried = False | |||
def train(self, network, train_data, dev_data=None): | |||
"""General Training Procedure | |||
:param network: a model | |||
:param train_data: three-level list, the training set. | |||
:param dev_data: three-level list, the validation data (optional) | |||
@@ -144,12 +144,13 @@ class BaseTrainer(object): | |||
print("Saved better model selected by validation.") | |||
logger.info("Saved better model selected by validation.") | |||
valid_results = validator.show_matrices() | |||
valid_results = validator.show_metrics() | |||
print("[epoch {}] {}".format(epoch, valid_results)) | |||
logger.info("[epoch {}] {}".format(epoch, valid_results)) | |||
def _train_step(self, data_iterator, network, **kwargs): | |||
"""Training process in one epoch. | |||
kwargs should contain: | |||
- n_print: int, print training information every n steps. | |||
- start: time.time(), the starting time of this step. | |||
@@ -163,6 +164,11 @@ class BaseTrainer(object): | |||
loss = self.get_loss(prediction, batch_y) | |||
self.grad_backward(loss) | |||
self.update() | |||
self._summary_writer.add_scalar("loss", loss.item(), global_step=step) | |||
if not self._graph_summaried: | |||
self._summary_writer.add_graph(network, batch_x) | |||
self._graph_summaried = True | |||
if kwargs["n_print"] > 0 and step % kwargs["n_print"] == 0: | |||
end = time.time() | |||
@@ -198,21 +204,6 @@ class BaseTrainer(object): | |||
network_copy = copy.deepcopy(network) | |||
self.train(network_copy, train_data_cv[i], dev_data_cv[i]) | |||
def load_train_data(self, pickle_path): | |||
""" | |||
For task-specific processing. | |||
:param pickle_path: | |||
:return data_train | |||
""" | |||
file_path = os.path.join(pickle_path, "data_train.pkl") | |||
if os.path.exists(file_path): | |||
with open(file_path, 'rb') as f: | |||
data = _pickle.load(f) | |||
else: | |||
logger.error("cannot find training data {}. invalid input path for training data.".format(file_path)) | |||
raise RuntimeError("cannot find training data {}".format(file_path)) | |||
return data | |||
def make_batch(self, iterator): | |||
raise NotImplementedError | |||
@@ -220,14 +211,13 @@ class BaseTrainer(object): | |||
Action.mode(network, test) | |||
def define_optimizer(self): | |||
""" | |||
Define framework-specific optimizer specified by the models. | |||
"""Define framework-specific optimizer specified by the models. | |||
""" | |||
self._optimizer = self._optimizer_proto.construct_from_pytorch(self._model.parameters()) | |||
def update(self): | |||
""" | |||
Perform weight update on a model. | |||
"""Perform weight update on a model. | |||
For PyTorch, just call optimizer to update. | |||
""" | |||
@@ -237,8 +227,8 @@ class BaseTrainer(object): | |||
raise NotImplementedError | |||
def grad_backward(self, loss): | |||
""" | |||
Compute gradient with link rules. | |||
"""Compute gradient with link rules. | |||
:param loss: a scalar where back-prop starts | |||
For PyTorch, just do "loss.backward()" | |||
@@ -247,8 +237,8 @@ class BaseTrainer(object): | |||
loss.backward() | |||
def get_loss(self, predict, truth): | |||
""" | |||
Compute loss given prediction and ground truth. | |||
"""Compute loss given prediction and ground truth. | |||
:param predict: prediction label vector | |||
:param truth: ground truth label vector | |||
:return: a scalar | |||
@@ -256,8 +246,9 @@ class BaseTrainer(object): | |||
return self._loss_func(predict, truth) | |||
def define_loss(self): | |||
""" | |||
if the model defines a loss, use model's loss. | |||
"""Define a loss for the trainer. | |||
If the model defines a loss, use model's loss. | |||
Otherwise, Trainer must has a loss argument, use it as loss. | |||
These two losses cannot be defined at the same time. | |||
Trainer does not handle loss definition or choose default losses. | |||
@@ -274,7 +265,8 @@ class BaseTrainer(object): | |||
logger.info("The model didn't define loss, use Trainer's loss.") | |||
def best_eval_result(self, validator): | |||
""" | |||
"""Check if the current epoch yields better validation results. | |||
:param validator: a Tester instance | |||
:return: bool, True means current results on dev set is the best. | |||
""" | |||
@@ -289,15 +281,14 @@ class BaseTrainer(object): | |||
""" | |||
if model_name[-4:] != ".pkl": | |||
model_name += ".pkl" | |||
ModelSaver(self.pickle_path + model_name).save_pytorch(network) | |||
ModelSaver(os.path.join(self.pickle_path, model_name)).save_pytorch(network) | |||
def _create_validator(self, valid_args): | |||
raise NotImplementedError | |||
class SeqLabelTrainer(BaseTrainer): | |||
""" | |||
Trainer for Sequence Labeling | |||
"""Trainer for Sequence Labeling | |||
""" | |||
@@ -327,11 +318,11 @@ class SeqLabelTrainer(BaseTrainer): | |||
return y | |||
def get_loss(self, predict, truth): | |||
""" | |||
Compute loss given prediction and ground truth. | |||
"""Compute loss given prediction and ground truth. | |||
:param predict: prediction label vector, [batch_size, max_len, tag_size] | |||
:param truth: ground truth label vector, [batch_size, max_len] | |||
:return: a scalar | |||
:return loss: a scalar | |||
""" | |||
batch_size, max_len = predict.size(0), predict.size(1) | |||
assert truth.shape == (batch_size, max_len) | |||
@@ -1,3 +1,5 @@ | |||
import os | |||
from fastNLP.core.predictor import SeqLabelInfer, ClassificationInfer | |||
from fastNLP.core.preprocess import load_pickle | |||
from fastNLP.loader.config_loader import ConfigLoader, ConfigSection | |||
@@ -31,6 +33,22 @@ FastNLP_MODEL_COLLECTION = { | |||
"type": "seq_label", | |||
"config_file_name": "config", | |||
"config_section_name": "text_class_model" | |||
}, | |||
"pos_tag_model": { | |||
"url": "", | |||
"class": "sequence_modeling.AdvSeqLabel", | |||
"pickle": "pos_tag_model_v_0.pkl", | |||
"type": "seq_label", | |||
"config_file_name": "pos_tag.config", | |||
"config_section_name": "pos_tag_model" | |||
}, | |||
"text_classify_model": { | |||
"url": "", | |||
"class": "cnn_text_classification.CNNText", | |||
"pickle": "text_class_model_v0.pkl", | |||
"type": "text_class", | |||
"config_file_name": "text_classify.cfg", | |||
"config_section_name": "model" | |||
} | |||
} | |||
@@ -77,7 +95,7 @@ class FastNLP(object): | |||
print("Restore model class {}".format(str(model_class))) | |||
model_args = ConfigSection() | |||
ConfigLoader.load_config(self.model_dir + config_file, {section_name: model_args}) | |||
ConfigLoader.load_config(os.path.join(self.model_dir, config_file), {section_name: model_args}) | |||
print("Restore model hyper-parameters {}".format(str(model_args.data))) | |||
# fetch dictionary size and number of labels from pickle files | |||
@@ -91,7 +109,7 @@ class FastNLP(object): | |||
print("Model constructed.") | |||
# To do: framework independent | |||
ModelLoader.load_pytorch(model, self.model_dir + FastNLP_MODEL_COLLECTION[model_name]["pickle"]) | |||
ModelLoader.load_pytorch(model, os.path.join(self.model_dir, FastNLP_MODEL_COLLECTION[model_name]["pickle"])) | |||
print("Model weights loaded.") | |||
self.model = model | |||
@@ -259,3 +277,38 @@ def interpret_word_seg_results(char_seq, label_seq): | |||
else: | |||
raise ValueError("invalid label {}".format(label[0])) | |||
return words | |||
def interpret_cws_pos_results(char_seq, label_seq): | |||
"""Transform model output into user-friendly contents. | |||
:param char_seq: list of string | |||
:param label_seq: list of string, the same length as char_seq. | |||
:return outputs: list of tuple (words, pos_tag): | |||
""" | |||
def pos_tag_check(seq): | |||
"""check whether all entries are the same """ | |||
return len(set(seq)) <= 1 | |||
word = [] | |||
word_pos = [] | |||
outputs = [] | |||
for char, label in zip(char_seq, label_seq): | |||
tmp = label.split("-") | |||
cws_label, pos_tag = tmp[0], tmp[1] | |||
if cws_label == "B" or cws_label == "M": | |||
word.append(char) | |||
word_pos.append(pos_tag) | |||
elif cws_label == "E": | |||
word.append(char) | |||
word_pos.append(pos_tag) | |||
if not pos_tag_check(word_pos): | |||
raise RuntimeError("character-wise pos tags inconsistent. ") | |||
outputs.append(("".join(word), word_pos[0])) | |||
word.clear() | |||
word_pos.clear() | |||
elif cws_label == "S": | |||
outputs.append((char, pos_tag)) | |||
return outputs |
@@ -1,9 +1,8 @@ | |||
class BaseLoader(object): | |||
"""docstring for BaseLoader""" | |||
def __init__(self, data_name, data_path): | |||
def __init__(self, data_path): | |||
super(BaseLoader, self).__init__() | |||
self.data_name = data_name | |||
self.data_path = data_path | |||
def load(self): | |||
@@ -25,8 +24,8 @@ class ToyLoader0(BaseLoader): | |||
For charLM | |||
""" | |||
def __init__(self, name, path): | |||
super(ToyLoader0, self).__init__(name, path) | |||
def __init__(self, data_path): | |||
super(ToyLoader0, self).__init__(data_path) | |||
def load(self): | |||
with open(self.data_path, 'r') as f: | |||
@@ -9,7 +9,7 @@ class ConfigLoader(BaseLoader): | |||
"""loader for configuration files""" | |||
def __int__(self, data_name, data_path): | |||
super(ConfigLoader, self).__init__(data_name, data_path) | |||
super(ConfigLoader, self).__init__(data_path) | |||
self.config = self.parse(super(ConfigLoader, self).load()) | |||
@staticmethod | |||
@@ -100,7 +100,7 @@ class ConfigSection(object): | |||
if __name__ == "__main__": | |||
config = ConfigLoader('configLoader', 'there is no data') | |||
config = ConfigLoader('there is no data') | |||
section = {'General': ConfigSection(), 'My': ConfigSection(), 'A': ConfigSection()} | |||
""" | |||
@@ -6,8 +6,8 @@ from fastNLP.loader.base_loader import BaseLoader | |||
class DatasetLoader(BaseLoader): | |||
""""loader for data sets""" | |||
def __init__(self, data_name, data_path): | |||
super(DatasetLoader, self).__init__(data_name, data_path) | |||
def __init__(self, data_path): | |||
super(DatasetLoader, self).__init__(data_path) | |||
class POSDatasetLoader(DatasetLoader): | |||
@@ -31,8 +31,8 @@ class POSDatasetLoader(DatasetLoader): | |||
to label5. | |||
""" | |||
def __init__(self, data_name, data_path): | |||
super(POSDatasetLoader, self).__init__(data_name, data_path) | |||
def __init__(self, data_path): | |||
super(POSDatasetLoader, self).__init__(data_path) | |||
def load(self): | |||
assert os.path.exists(self.data_path) | |||
@@ -84,8 +84,8 @@ class TokenizeDatasetLoader(DatasetLoader): | |||
Data set loader for tokenization data sets | |||
""" | |||
def __init__(self, data_name, data_path): | |||
super(TokenizeDatasetLoader, self).__init__(data_name, data_path) | |||
def __init__(self, data_path): | |||
super(TokenizeDatasetLoader, self).__init__(data_path) | |||
def load_pku(self, max_seq_len=32): | |||
""" | |||
@@ -138,8 +138,8 @@ class TokenizeDatasetLoader(DatasetLoader): | |||
class ClassDatasetLoader(DatasetLoader): | |||
"""Loader for classification data sets""" | |||
def __init__(self, data_name, data_path): | |||
super(ClassDatasetLoader, self).__init__(data_name, data_path) | |||
def __init__(self, data_path): | |||
super(ClassDatasetLoader, self).__init__(data_path) | |||
def load(self): | |||
assert os.path.exists(self.data_path) | |||
@@ -177,7 +177,7 @@ class ConllLoader(DatasetLoader): | |||
:param str data_name: the name of the conll data set | |||
:param str data_path: the path to the conll data set | |||
""" | |||
super(ConllLoader, self).__init__(data_name, data_path) | |||
super(ConllLoader, self).__init__(data_path) | |||
self.data_set = self.parse(self.load()) | |||
def load(self): | |||
@@ -209,8 +209,8 @@ class ConllLoader(DatasetLoader): | |||
class LMDatasetLoader(DatasetLoader): | |||
def __init__(self, data_name, data_path): | |||
super(LMDatasetLoader, self).__init__(data_name, data_path) | |||
def __init__(self, data_path): | |||
super(LMDatasetLoader, self).__init__(data_path) | |||
def load(self): | |||
if not os.path.exists(self.data_path): | |||
@@ -220,13 +220,57 @@ class LMDatasetLoader(DatasetLoader): | |||
return text.strip().split() | |||
if __name__ == "__main__": | |||
class PeopleDailyCorpusLoader(DatasetLoader): | |||
""" | |||
data = POSDatasetLoader("xxx", "../../test/data_for_tests/people.txt").load_lines() | |||
for example in data: | |||
for w, l in zip(example[0], example[1]): | |||
print(w, l) | |||
People Daily Corpus: Chinese word segmentation, POS tag, NER | |||
""" | |||
ans = TokenizeDatasetLoader("xxx", "/home/zyfeng/Desktop/data/icwb2-data/training/test").load_pku() | |||
print(ans) | |||
def __init__(self, data_path): | |||
super(PeopleDailyCorpusLoader, self).__init__(data_path) | |||
def load(self): | |||
with open(self.data_path, "r", encoding="utf-8") as f: | |||
sents = f.readlines() | |||
pos_tag_examples = [] | |||
ner_examples = [] | |||
for sent in sents: | |||
inside_ne = False | |||
sent_pos_tag = [] | |||
sent_words = [] | |||
sent_ner = [] | |||
words = sent.strip().split()[1:] | |||
for word in words: | |||
if "[" in word and "]" in word: | |||
ner_tag = "U" | |||
print(word) | |||
elif "[" in word: | |||
inside_ne = True | |||
ner_tag = "B" | |||
word = word[1:] | |||
elif "]" in word: | |||
ner_tag = "L" | |||
word = word[:word.index("]")] | |||
if inside_ne is True: | |||
inside_ne = False | |||
else: | |||
raise RuntimeError("only ] appears!") | |||
else: | |||
if inside_ne is True: | |||
ner_tag = "I" | |||
else: | |||
ner_tag = "O" | |||
tmp = word.split("/") | |||
token, pos = tmp[0], tmp[1] | |||
sent_ner.append(ner_tag) | |||
sent_pos_tag.append(pos) | |||
sent_words.append(token) | |||
pos_tag_examples.append([sent_words, sent_pos_tag]) | |||
ner_examples.append([sent_words, sent_ner]) | |||
return pos_tag_examples, ner_examples | |||
if __name__ == "__main__": | |||
loader = PeopleDailyCorpusLoader("./") | |||
pos, ner = loader.load() | |||
print(pos[:10]) | |||
print(ner[:10]) |
@@ -1,8 +1,50 @@ | |||
import _pickle | |||
import os | |||
import numpy as np | |||
from fastNLP.loader.base_loader import BaseLoader | |||
class EmbedLoader(BaseLoader): | |||
"""docstring for EmbedLoader""" | |||
def __init__(self, data_name, data_path): | |||
super(EmbedLoader, self).__init__(data_name, data_path) | |||
def __init__(self, data_path): | |||
super(EmbedLoader, self).__init__(data_path) | |||
@staticmethod | |||
def load_embedding(emb_dim, emb_file, word_dict, emb_pkl): | |||
"""Load the pre-trained embedding and combine with the given dictionary. | |||
:param emb_file: str, the pre-trained embedding. | |||
The embedding file should have the following format: | |||
Each line is a word embedding, where a word string is followed by multiple floats. | |||
Floats are separated by space. The word and the first float are separated by space. | |||
:param word_dict: dict, a mapping from word to index. | |||
:param emb_dim: int, the dimension of the embedding. Should be the same as pre-trained embedding. | |||
:param emb_pkl: str, the embedding pickle file. | |||
:return embedding_np: numpy array of shape (len(word_dict), emb_dim) | |||
TODO: fragile code | |||
""" | |||
# If the embedding pickle exists, load it and return. | |||
if os.path.exists(emb_pkl): | |||
with open(emb_pkl, "rb") as f: | |||
embedding_np = _pickle.load(f) | |||
return embedding_np | |||
# Otherwise, load the pre-trained embedding. | |||
with open(emb_file, "r", encoding="utf-8") as f: | |||
# begin with a random embedding | |||
embedding_np = np.random.uniform(-1, 1, size=(len(word_dict), emb_dim)) | |||
for line in f: | |||
line = line.strip().split() | |||
if len(line) != emb_dim + 1: | |||
# skip this line if two embedding dimension not match | |||
continue | |||
if line[0] in word_dict: | |||
# find the word and replace its embedding with a pre-trained one | |||
embedding_np[word_dict[line[0]]] = [float(i) for i in line[1:]] | |||
# save and return the result | |||
with open(emb_pkl, "wb") as f: | |||
_pickle.dump(embedding_np, f) | |||
return embedding_np |
@@ -8,8 +8,8 @@ class ModelLoader(BaseLoader): | |||
Loader for models. | |||
""" | |||
def __init__(self, data_name, data_path): | |||
super(ModelLoader, self).__init__(data_name, data_path) | |||
def __init__(self, data_path): | |||
super(ModelLoader, self).__init__(data_path) | |||
@staticmethod | |||
def load_pytorch(empty_model, model_path): | |||
@@ -5,7 +5,7 @@ import torch | |||
import torch.nn as nn | |||
# import torch.nn.functional as F | |||
from fastNLP.modules.encoder.conv_maxpool import ConvMaxpool | |||
import fastNLP.modules.encoder as encoder | |||
class CNNText(torch.nn.Module): | |||
@@ -18,22 +18,22 @@ class CNNText(torch.nn.Module): | |||
def __init__(self, args): | |||
super(CNNText, self).__init__() | |||
class_num = args["num_classes"] | |||
num_classes = args["num_classes"] | |||
kernel_nums = [100, 100, 100] | |||
kernel_sizes = [3, 4, 5] | |||
embed_num = args["vocab_size"] | |||
vocab_size = args["vocab_size"] | |||
embed_dim = 300 | |||
pretrained_embed = None | |||
drop_prob = 0.5 | |||
# no support for pre-trained embedding currently | |||
self.embed = nn.Embedding(embed_num, embed_dim, padding_idx=0) | |||
self.conv_pool = ConvMaxpool( | |||
self.embed = encoder.embedding.Embedding(vocab_size, embed_dim) | |||
self.conv_pool = encoder.conv_maxpool.ConvMaxpool( | |||
in_channels=embed_dim, | |||
out_channels=kernel_nums, | |||
kernel_sizes=kernel_sizes) | |||
self.dropout = nn.Dropout(drop_prob) | |||
self.fc = nn.Linear(sum(kernel_nums), class_num) | |||
self.fc = encoder.linear.Linear(sum(kernel_nums), num_classes) | |||
def forward(self, x): | |||
x = self.embed(x) # [N,L] -> [N,L,C] | |||
@@ -1,3 +1,4 @@ | |||
from .CRF import ConditionalRandomField | |||
from .MLP import MLP | |||
__all__ = ["ConditionalRandomField"] | |||
__all__ = ["ConditionalRandomField", "MLP"] |
@@ -2,8 +2,10 @@ from .embedding import Embedding | |||
from .linear import Linear | |||
from .lstm import Lstm | |||
from .conv import Conv | |||
from .conv_maxpool import ConvMaxpool | |||
__all__ = ["Lstm", | |||
"Embedding", | |||
"Linear", | |||
"Conv"] | |||
"Conv", | |||
"ConvMaxpool"] |
@@ -4,6 +4,7 @@ | |||
import torch | |||
import torch.nn as nn | |||
import torch.nn.functional as F | |||
from torch.nn.init import xavier_uniform_ | |||
class ConvMaxpool(nn.Module): | |||
@@ -21,6 +22,7 @@ class ConvMaxpool(nn.Module): | |||
if isinstance(kernel_sizes, int): | |||
out_channels = [out_channels] | |||
kernel_sizes = [kernel_sizes] | |||
self.convs = nn.ModuleList([nn.Conv1d( | |||
in_channels=in_channels, | |||
out_channels=oc, | |||
@@ -31,6 +33,9 @@ class ConvMaxpool(nn.Module): | |||
groups=groups, | |||
bias=bias) | |||
for oc, ks in zip(out_channels, kernel_sizes)]) | |||
for conv in self.convs: | |||
xavier_uniform_(conv.weight) # weight initialization | |||
else: | |||
raise Exception( | |||
'Incorrect kernel sizes: should be list, tuple or int') | |||
@@ -1,114 +0,0 @@ | |||
import sys | |||
sys.path.append("..") | |||
from fastNLP.loader.config_loader import ConfigLoader, ConfigSection | |||
from fastNLP.core.trainer import SeqLabelTrainer | |||
from fastNLP.loader.dataset_loader import TokenizeDatasetLoader, BaseLoader | |||
from fastNLP.core.preprocess import SeqLabelPreprocess, load_pickle | |||
from fastNLP.saver.model_saver import ModelSaver | |||
from fastNLP.loader.model_loader import ModelLoader | |||
from fastNLP.core.tester import SeqLabelTester | |||
from fastNLP.models.sequence_modeling import SeqLabeling | |||
from fastNLP.core.predictor import Predictor | |||
data_name = "pku_training.utf8" | |||
cws_data_path = "/home/zyfeng/data/pku_training.utf8" | |||
pickle_path = "./save/" | |||
data_infer_path = "/home/zyfeng/data/pku_test.utf8" | |||
def infer(): | |||
# Load infer configuration, the same as test | |||
test_args = ConfigSection() | |||
ConfigLoader("config.cfg", "").load_config("./data_for_tests/config", {"POS_test": test_args}) | |||
# fetch dictionary size and number of labels from pickle files | |||
word2index = load_pickle(pickle_path, "word2id.pkl") | |||
test_args["vocab_size"] = len(word2index) | |||
index2label = load_pickle(pickle_path, "id2class.pkl") | |||
test_args["num_classes"] = len(index2label) | |||
# Define the same model | |||
model = SeqLabeling(test_args) | |||
# Dump trained parameters into the model | |||
ModelLoader.load_pytorch(model, "./data_for_tests/saved_model.pkl") | |||
print("model loaded!") | |||
# Data Loader | |||
raw_data_loader = BaseLoader(data_name, data_infer_path) | |||
infer_data = raw_data_loader.load_lines() | |||
# Inference interface | |||
infer = Predictor(pickle_path) | |||
results = infer.predict(model, infer_data) | |||
print(results) | |||
print("Inference finished!") | |||
def train_test(): | |||
# Config Loader | |||
train_args = ConfigSection() | |||
test_args = ConfigSection() | |||
ConfigLoader("good_name", "good_path").load_config("./cws.cfg", {"train": train_args, "test": test_args}) | |||
# Data Loader | |||
loader = TokenizeDatasetLoader(data_name, cws_data_path) | |||
train_data = loader.load_pku() | |||
# Preprocessor | |||
preprocess = SeqLabelPreprocess() | |||
data_train, data_dev = preprocess.run(train_data, pickle_path=pickle_path, train_dev_split=0.3) | |||
train_args["vocab_size"] = preprocess.vocab_size | |||
train_args["num_classes"] = preprocess.num_classes | |||
# Trainer | |||
trainer = SeqLabelTrainer(train_args) | |||
# Model | |||
model = SeqLabeling(train_args) | |||
# Start training | |||
trainer.train(model, data_train, data_dev) | |||
print("Training finished!") | |||
# Saver | |||
saver = ModelSaver("./save/saved_model.pkl") | |||
saver.save_pytorch(model) | |||
print("Model saved!") | |||
# testing with validation set | |||
test(data_dev) | |||
def test(test_data): | |||
# Config Loader | |||
train_args = ConfigSection() | |||
ConfigLoader("config.cfg", "").load_config("./data_for_tests/config", {"POS": train_args}) | |||
# Define the same model | |||
model = SeqLabeling(train_args) | |||
# Dump trained parameters into the model | |||
ModelLoader.load_pytorch(model, "./data_for_tests/saved_model.pkl") | |||
print("model loaded!") | |||
# Load test configuration | |||
test_args = ConfigSection() | |||
ConfigLoader("config.cfg", "").load_config("./data_for_tests/config", {"POS_test": test_args}) | |||
# Tester | |||
tester = SeqLabelTester(test_args) | |||
# Start testing | |||
tester.test(model, test_data) | |||
# print test results | |||
print(tester.show_matrices()) | |||
print("model tested!") | |||
if __name__ == "__main__": | |||
train_test() |
@@ -31,4 +31,16 @@ pickle_path = "./save/" | |||
use_crf = true | |||
use_cuda = true | |||
rnn_hidden_units = 100 | |||
word_emb_dim = 100 | |||
[model] | |||
save_output = true | |||
validate_in_training = true | |||
save_dev_input = false | |||
save_loss = true | |||
batch_size = 640 | |||
pickle_path = "./save/" | |||
use_crf = true | |||
use_cuda = true | |||
rnn_hidden_units = 100 | |||
word_emb_dim = 100 |
@@ -27,7 +27,7 @@ data_infer_path = os.path.join(datadir, "infer.utf8") | |||
def infer(): | |||
# Config Loader | |||
test_args = ConfigSection() | |||
ConfigLoader("config", "").load_config(cfgfile, {"POS_test": test_args}) | |||
ConfigLoader("config").load_config(cfgfile, {"POS_test": test_args}) | |||
# fetch dictionary size and number of labels from pickle files | |||
word2index = load_pickle(pickle_path, "word2id.pkl") | |||
@@ -47,7 +47,7 @@ def infer(): | |||
raise | |||
# Data Loader | |||
raw_data_loader = BaseLoader(data_name, data_infer_path) | |||
raw_data_loader = BaseLoader(data_infer_path) | |||
infer_data = raw_data_loader.load_lines() | |||
print('data loaded') | |||
@@ -63,10 +63,10 @@ def train(): | |||
# Config Loader | |||
train_args = ConfigSection() | |||
test_args = ConfigSection() | |||
ConfigLoader("good_name", "good_path").load_config(cfgfile, {"train": train_args, "test": test_args}) | |||
ConfigLoader("good_path").load_config(cfgfile, {"train": train_args, "test": test_args}) | |||
# Data Loader | |||
loader = TokenizeDatasetLoader(data_name, cws_data_path) | |||
loader = TokenizeDatasetLoader(cws_data_path) | |||
train_data = loader.load_pku() | |||
# Preprocessor | |||
@@ -100,7 +100,7 @@ def train(): | |||
def test(): | |||
# Config Loader | |||
test_args = ConfigSection() | |||
ConfigLoader("config", "").load_config(cfgfile, {"POS_test": test_args}) | |||
ConfigLoader("config").load_config(cfgfile, {"POS_test": test_args}) | |||
# fetch dictionary size and number of labels from pickle files | |||
word2index = load_pickle(pickle_path, "word2id.pkl") | |||
@@ -125,7 +125,7 @@ def test(): | |||
tester.test(model, dev_data) | |||
# print test results | |||
print(tester.show_matrices()) | |||
print(tester.show_metrics()) | |||
print("model tested!") | |||
@@ -1,29 +1,35 @@ | |||
[train] | |||
epochs = 10 | |||
batch_size = 32 | |||
epochs = 30 | |||
batch_size = 64 | |||
pickle_path = "./save/" | |||
validate = true | |||
save_best_dev = true | |||
model_saved_path = "./save/" | |||
rnn_hidden_units = 100 | |||
rnn_layers = 2 | |||
rnn_bi_direction = true | |||
word_emb_dim = 100 | |||
dropout = 0.5 | |||
use_crf = true | |||
use_cuda = true | |||
print_every_step = 10 | |||
[test] | |||
save_output = true | |||
validate_in_training = true | |||
save_dev_input = false | |||
save_loss = true | |||
batch_size = 64 | |||
batch_size = 640 | |||
pickle_path = "./save/" | |||
use_crf = true | |||
use_cuda = true | |||
[POS_test] | |||
save_output = true | |||
validate_in_training = true | |||
save_dev_input = false | |||
save_loss = true | |||
batch_size = 640 | |||
pickle_path = "./save/" | |||
rnn_hidden_units = 100 | |||
rnn_layers = 1 | |||
rnn_bi_direction = true | |||
word_emb_dim = 100 | |||
dropout = 0.5 | |||
use_crf = true | |||
use_cuda = true | |||
rnn_hidden_units = 100 | |||
word_emb_dim = 100 |
@@ -0,0 +1,146 @@ | |||
import os | |||
import sys | |||
sys.path.append(os.path.join(os.path.dirname(__file__), '../..')) | |||
from fastNLP.loader.config_loader import ConfigLoader, ConfigSection | |||
from fastNLP.core.trainer import SeqLabelTrainer | |||
from fastNLP.loader.dataset_loader import PeopleDailyCorpusLoader, BaseLoader | |||
from fastNLP.core.preprocess import SeqLabelPreprocess, load_pickle | |||
from fastNLP.saver.model_saver import ModelSaver | |||
from fastNLP.loader.model_loader import ModelLoader | |||
from fastNLP.core.tester import SeqLabelTester | |||
from fastNLP.models.sequence_modeling import AdvSeqLabel | |||
from fastNLP.core.predictor import SeqLabelInfer | |||
# not in the file's dir | |||
if len(os.path.dirname(__file__)) != 0: | |||
os.chdir(os.path.dirname(__file__)) | |||
datadir = "/home/zyfeng/data/" | |||
cfgfile = './pos_tag.cfg' | |||
data_name = "CWS_POS_TAG_NER_people_daily.txt" | |||
pos_tag_data_path = os.path.join(datadir, data_name) | |||
pickle_path = "save" | |||
data_infer_path = os.path.join(datadir, "infer.utf8") | |||
def infer(): | |||
# Config Loader | |||
test_args = ConfigSection() | |||
ConfigLoader("config").load_config(cfgfile, {"POS_test": test_args}) | |||
# fetch dictionary size and number of labels from pickle files | |||
word2index = load_pickle(pickle_path, "word2id.pkl") | |||
test_args["vocab_size"] = len(word2index) | |||
index2label = load_pickle(pickle_path, "id2class.pkl") | |||
test_args["num_classes"] = len(index2label) | |||
# Define the same model | |||
model = AdvSeqLabel(test_args) | |||
try: | |||
ModelLoader.load_pytorch(model, "./save/saved_model.pkl") | |||
print('model loaded!') | |||
except Exception as e: | |||
print('cannot load model!') | |||
raise | |||
# Data Loader | |||
raw_data_loader = BaseLoader(data_infer_path) | |||
infer_data = raw_data_loader.load_lines() | |||
print('data loaded') | |||
# Inference interface | |||
infer = SeqLabelInfer(pickle_path) | |||
results = infer.predict(model, infer_data) | |||
print(results) | |||
print("Inference finished!") | |||
def train(): | |||
# Config Loader | |||
train_args = ConfigSection() | |||
test_args = ConfigSection() | |||
ConfigLoader("good_name").load_config(cfgfile, {"train": train_args, "test": test_args}) | |||
# Data Loader | |||
loader = PeopleDailyCorpusLoader(pos_tag_data_path) | |||
train_data, _ = loader.load() | |||
# Preprocessor | |||
preprocessor = SeqLabelPreprocess() | |||
data_train, data_dev = preprocessor.run(train_data, pickle_path=pickle_path, train_dev_split=0.3) | |||
train_args["vocab_size"] = preprocessor.vocab_size | |||
train_args["num_classes"] = preprocessor.num_classes | |||
# Trainer | |||
trainer = SeqLabelTrainer(**train_args.data) | |||
# Model | |||
model = AdvSeqLabel(train_args) | |||
try: | |||
ModelLoader.load_pytorch(model, "./save/saved_model.pkl") | |||
print('model parameter loaded!') | |||
except Exception as e: | |||
print("No saved model. Continue.") | |||
pass | |||
# Start training | |||
trainer.train(model, data_train, data_dev) | |||
print("Training finished!") | |||
# Saver | |||
saver = ModelSaver("./save/saved_model.pkl") | |||
saver.save_pytorch(model) | |||
print("Model saved!") | |||
def test(): | |||
# Config Loader | |||
test_args = ConfigSection() | |||
ConfigLoader("config").load_config(cfgfile, {"POS_test": test_args}) | |||
# fetch dictionary size and number of labels from pickle files | |||
word2index = load_pickle(pickle_path, "word2id.pkl") | |||
test_args["vocab_size"] = len(word2index) | |||
index2label = load_pickle(pickle_path, "id2class.pkl") | |||
test_args["num_classes"] = len(index2label) | |||
# load dev data | |||
dev_data = load_pickle(pickle_path, "data_dev.pkl") | |||
# Define the same model | |||
model = AdvSeqLabel(test_args) | |||
# Dump trained parameters into the model | |||
ModelLoader.load_pytorch(model, "./save/saved_model.pkl") | |||
print("model loaded!") | |||
# Tester | |||
tester = SeqLabelTester(**test_args.data) | |||
# Start testing | |||
tester.test(model, dev_data) | |||
# print test results | |||
print(tester.show_metrics()) | |||
print("model tested!") | |||
if __name__ == "__main__": | |||
import argparse | |||
parser = argparse.ArgumentParser(description='Run a chinese word segmentation model') | |||
parser.add_argument('--mode', help='set the model\'s model', choices=['train', 'test', 'infer']) | |||
args = parser.parse_args() | |||
if args.mode == 'train': | |||
train() | |||
elif args.mode == 'test': | |||
test() | |||
elif args.mode == 'infer': | |||
infer() | |||
else: | |||
print('no mode specified for model!') | |||
parser.print_help() |
@@ -1,3 +1,4 @@ | |||
numpy>=1.14.2 | |||
torch==0.4.0 | |||
torchvision>=0.1.8 | |||
tensorboardX |
@@ -0,0 +1,24 @@ | |||
#!/usr/bin/env python | |||
# coding=utf-8 | |||
from setuptools import setup, find_packages | |||
with open('README.md') as f: | |||
readme = f.read() | |||
with open('LICENSE') as f: | |||
license = f.read() | |||
with open('requirements.txt') as f: | |||
reqs = f.read() | |||
setup( | |||
name='fastNLP', | |||
version='0.0.1', | |||
description='fastNLP: Deep Learning Toolkit for NLP, developed by Fudan FastNLP Team', | |||
long_description=readme, | |||
license=license, | |||
author='fudanNLP', | |||
python_requires='>=3.5', | |||
packages=find_packages(), | |||
install_requires=reqs.strip().split('\n'), | |||
) |
@@ -1,9 +1,8 @@ | |||
import os | |||
import unittest | |||
from fastNLP.core.action import Action, Batchifier, SequentialSampler | |||
class TestAction(unittest.TestCase): | |||
def test_case_1(self): | |||
x = [1, 2, 3, 4, 5, 6, 7, 8] | |||
@@ -1,13 +1,12 @@ | |||
import os | |||
import configparser | |||
import json | |||
import os | |||
import unittest | |||
from fastNLP.loader.config_loader import ConfigSection, ConfigLoader | |||
from fastNLP.loader.dataset_loader import TokenizeDatasetLoader, POSDatasetLoader, LMDatasetLoader | |||
class TestConfigLoader(unittest.TestCase): | |||
def test_case_ConfigLoader(self): | |||
@@ -33,8 +32,8 @@ class TestConfigLoader(unittest.TestCase): | |||
return dict | |||
test_arg = ConfigSection() | |||
ConfigLoader("config", "").load_config(os.path.join("./test/loader", "config"), {"test": test_arg}) | |||
#ConfigLoader("config", "").load_config("/home/ygxu/github/fastNLP_testing/fastNLP/test/loader/config", | |||
ConfigLoader("config").load_config(os.path.join("./test/loader", "config"), {"test": test_arg}) | |||
# ConfigLoader("config").load_config("/home/ygxu/github/fastNLP_testing/fastNLP/test/loader/config", | |||
# {"test": test_arg}) | |||
#dict = read_section_from_config("/home/ygxu/github/fastNLP_testing/fastNLP/test/loader/config", "test") | |||
@@ -58,18 +57,18 @@ class TestConfigLoader(unittest.TestCase): | |||
class TestDatasetLoader(unittest.TestCase): | |||
def test_case_TokenizeDatasetLoader(self): | |||
loader = TokenizeDatasetLoader("cws_pku_utf_8", "./test/data_for_tests/cws_pku_utf_8") | |||
loader = TokenizeDatasetLoader("./test/data_for_tests/cws_pku_utf_8") | |||
data = loader.load_pku(max_seq_len=32) | |||
print("pass TokenizeDatasetLoader test!") | |||
def test_case_POSDatasetLoader(self): | |||
loader = POSDatasetLoader("people", "./test/data_for_tests/people.txt") | |||
loader = POSDatasetLoader("./test/data_for_tests/people.txt") | |||
data = loader.load() | |||
datas = loader.load_lines() | |||
print("pass POSDatasetLoader test!") | |||
def test_case_LMDatasetLoader(self): | |||
loader = LMDatasetLoader("cws_pku_utf_8", "./test/data_for_tests/cws_pku_utf_8") | |||
loader = LMDatasetLoader("./test/data_for_tests/cws_pku_utf_8") | |||
data = loader.load() | |||
datas = loader.load_lines() | |||
print("pass TokenizeDatasetLoader test!") |
@@ -1,138 +0,0 @@ | |||
import _pickle | |||
import os | |||
import numpy as np | |||
import torch | |||
from fastNLP.core.preprocess import SeqLabelPreprocess | |||
from fastNLP.core.tester import SeqLabelTester | |||
from fastNLP.core.trainer import SeqLabelTrainer | |||
from fastNLP.models.sequence_modeling import AdvSeqLabel | |||
class MyNERTrainer(SeqLabelTrainer): | |||
def __init__(self, train_args): | |||
super(MyNERTrainer, self).__init__(train_args) | |||
self.scheduler = None | |||
def define_optimizer(self): | |||
""" | |||
override | |||
:return: | |||
""" | |||
self.optimizer = torch.optim.Adam(self._model.parameters(), lr=0.001) | |||
self.scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer, step_size=3000, gamma=0.5) | |||
def update(self): | |||
""" | |||
override | |||
:return: | |||
""" | |||
self.optimizer.step() | |||
self.scheduler.step() | |||
def _create_validator(self, valid_args): | |||
return MyNERTester(valid_args) | |||
def best_eval_result(self, validator): | |||
accuracy = validator.metrics() | |||
if accuracy > self.best_accuracy: | |||
self.best_accuracy = accuracy | |||
return True | |||
else: | |||
return False | |||
class MyNERTester(SeqLabelTester): | |||
def __init__(self, test_args): | |||
super(MyNERTester, self).__init__(test_args) | |||
def _evaluate(self, prediction, batch_y, seq_len): | |||
""" | |||
:param prediction: [batch_size, seq_len, num_classes] | |||
:param batch_y: [batch_size, seq_len] | |||
:param seq_len: [batch_size] | |||
:return: | |||
""" | |||
summ = 0 | |||
correct = 0 | |||
_, indices = torch.max(prediction, 2) | |||
for p, y, l in zip(indices, batch_y, seq_len): | |||
summ += l | |||
correct += np.sum(p[:l].cpu().numpy() == y[:l].cpu().numpy()) | |||
return float(correct / summ) | |||
def evaluate(self, predict, truth): | |||
return self._evaluate(predict, truth, self.seq_len) | |||
def metrics(self): | |||
return np.mean(self.eval_history) | |||
def show_matrices(self): | |||
return "dev accuracy={:.2f}".format(float(self.metrics())) | |||
def embedding_process(emb_file, word_dict, emb_dim, emb_pkl): | |||
if os.path.exists(emb_pkl): | |||
with open(emb_pkl, "rb") as f: | |||
embedding_np = _pickle.load(f) | |||
return embedding_np | |||
with open(emb_file, "r", encoding="utf-8") as f: | |||
embedding_np = np.random.uniform(-1, 1, size=(len(word_dict), emb_dim)) | |||
for line in f: | |||
line = line.strip().split() | |||
if len(line) != emb_dim + 1: | |||
continue | |||
if line[0] in word_dict: | |||
embedding_np[word_dict[line[0]]] = [float(i) for i in line[1:]] | |||
with open(emb_pkl, "wb") as f: | |||
_pickle.dump(embedding_np, f) | |||
return embedding_np | |||
def data_load(data_file): | |||
with open(data_file, "r", encoding="utf-8") as f: | |||
all_data = [] | |||
sent = [] | |||
label = [] | |||
for line in f: | |||
line = line.strip().split() | |||
if not len(line) <= 1: | |||
sent.append(line[0]) | |||
label.append(line[1]) | |||
else: | |||
all_data.append([sent, label]) | |||
sent = [] | |||
label = [] | |||
return all_data | |||
data_path = "data_for_tests/people.txt" | |||
pick_path = "data_for_tests/" | |||
emb_path = "data_for_tests/emb50.txt" | |||
save_path = "data_for_tests/" | |||
if __name__ == "__main__": | |||
data = data_load(data_path) | |||
preprocess = SeqLabelPreprocess() | |||
data_train, data_dev = preprocess.run(data, pickle_path=pick_path, train_dev_split=0.3) | |||
# emb = embedding_process(emb_path, p.word2index, 50, os.path.join(pick_path, "embedding.pkl")) | |||
emb = None | |||
args = {"epochs": 20, | |||
"batch_size": 1, | |||
"pickle_path": pick_path, | |||
"validate": True, | |||
"save_best_dev": True, | |||
"model_saved_path": save_path, | |||
"use_cuda": True, | |||
"vocab_size": preprocess.vocab_size, | |||
"num_classes": preprocess.num_classes, | |||
"word_emb_dim": 50, | |||
"rnn_hidden_units": 100 | |||
} | |||
# emb = torch.Tensor(emb).float().cuda() | |||
networks = AdvSeqLabel(args, emb) | |||
trainer = MyNERTrainer(args) | |||
trainer.train(networks, data_train, data_dev) | |||
print("Training finished!") |
@@ -1,129 +0,0 @@ | |||
import _pickle | |||
import os | |||
import torch | |||
from fastNLP.core.predictor import SeqLabelInfer | |||
from fastNLP.core.trainer import SeqLabelTrainer | |||
from fastNLP.loader.model_loader import ModelLoader | |||
from fastNLP.models.sequence_modeling import AdvSeqLabel | |||
class Decode(SeqLabelTrainer): | |||
def __init__(self, args): | |||
super(Decode, self).__init__(args) | |||
def decoder(self, network, sents, model_path): | |||
self.model = network | |||
self.model.load_state_dict(torch.load(model_path)) | |||
out_put = [] | |||
self.mode(network, test=True) | |||
for batch_x in sents: | |||
prediction = self.data_forward(self.model, batch_x) | |||
seq_tag = self.model.prediction(prediction, batch_x[1]) | |||
out_put.append(list(seq_tag)[0]) | |||
return out_put | |||
def process_sent(sents, word2id): | |||
sents_num = [] | |||
for s in sents: | |||
sent_num = [] | |||
for c in s: | |||
if c in word2id: | |||
sent_num.append(word2id[c]) | |||
else: | |||
sent_num.append(word2id["<unk>"]) | |||
sents_num.append(([sent_num], [len(sent_num)])) # batch_size is 1 | |||
return sents_num | |||
def process_tag(sents, tags, id2class): | |||
Tags = [] | |||
for ttt in tags: | |||
Tags.append([id2class[t] for t in ttt]) | |||
Segs = [] | |||
PosNers = [] | |||
for sent, tag in zip(sents, tags): | |||
word__ = [] | |||
lll__ = [] | |||
for c, t in zip(sent, tag): | |||
t = id2class[t] | |||
l = t.split("-") | |||
split_ = l[0] | |||
pn = l[1] | |||
if split_ == "S": | |||
word__.append(c) | |||
lll__.append(pn) | |||
word_1 = "" | |||
elif split_ == "E": | |||
word_1 += c | |||
word__.append(word_1) | |||
lll__.append(pn) | |||
word_1 = "" | |||
elif split_ == "B": | |||
word_1 = "" | |||
word_1 += c | |||
else: | |||
word_1 += c | |||
Segs.append(word__) | |||
PosNers.append(lll__) | |||
return Segs, PosNers | |||
pickle_path = "data_for_tests/" | |||
model_path = "data_for_tests/model_best_dev.pkl" | |||
if __name__ == "__main__": | |||
with open(os.path.join(pickle_path, "id2word.pkl"), "rb") as f: | |||
id2word = _pickle.load(f) | |||
with open(os.path.join(pickle_path, "word2id.pkl"), "rb") as f: | |||
word2id = _pickle.load(f) | |||
with open(os.path.join(pickle_path, "id2class.pkl"), "rb") as f: | |||
id2class = _pickle.load(f) | |||
sent = ["中共中央总书记、国家主席江泽民", | |||
"逆向处理输入序列并返回逆序后的序列"] # here is input | |||
args = {"epochs": 1, | |||
"batch_size": 1, | |||
"pickle_path": "data_for_tests/", | |||
"validate": True, | |||
"save_best_dev": True, | |||
"model_saved_path": "data_for_tests/", | |||
"use_cuda": False, | |||
"vocab_size": len(word2id), | |||
"num_classes": len(id2class), | |||
"word_emb_dim": 50, | |||
"rnn_hidden_units": 100, | |||
} | |||
""" | |||
network = AdvSeqLabel(args, None) | |||
decoder_ = Decode(args) | |||
tags_num = decoder_.decoder(network, process_sent(sent, word2id), model_path=model_path) | |||
output_seg, output_pn = process_tag(sent, tags_num, id2class) # here is output | |||
print(output_seg) | |||
print(output_pn) | |||
""" | |||
# Define the same model | |||
model = AdvSeqLabel(args, None) | |||
# Dump trained parameters into the model | |||
ModelLoader.load_pytorch(model, "./data_for_tests/model_best_dev.pkl") | |||
print("model loaded!") | |||
# Inference interface | |||
infer = SeqLabelInfer(pickle_path) | |||
sent = [[ch for ch in s] for s in sent] | |||
results = infer.predict(model, sent) | |||
for res in results: | |||
print(res) | |||
print("Inference finished!") |
@@ -1,19 +1,13 @@ | |||
# python: 3.5 | |||
# pytorch: 0.4 | |||
################ | |||
# Test cross validation. | |||
################ | |||
from fastNLP.loader.preprocess import ClassPreprocess | |||
from fastNLP.core.loss import Loss | |||
from fastNLP.core.optimizer import Optimizer | |||
from fastNLP.core.predictor import ClassificationInfer | |||
from fastNLP.core.preprocess import ClassPreprocess | |||
from fastNLP.core.trainer import ClassificationTrainer | |||
from fastNLP.loader.dataset_loader import ClassDatasetLoader | |||
from fastNLP.models.base_model import BaseModel | |||
from fastNLP.modules import aggregation | |||
from fastNLP.modules import encoder | |||
from fastNLP.modules import decoder | |||
from fastNLP.modules import encoder | |||
class ClassificationModel(BaseModel): | |||
@@ -28,7 +22,7 @@ class ClassificationModel(BaseModel): | |||
self.enc = encoder.Conv( | |||
in_channels=300, out_channels=100, kernel_size=3) | |||
self.agg = aggregation.MaxPool() | |||
self.dec = decoder.MLP(100, num_classes=num_classes) | |||
self.dec = decoder.MLP(size_layer=[100, num_classes]) | |||
def forward(self, x): | |||
x = self.emb(x) # [N,L] -> [N,L,C] | |||
@@ -38,18 +32,17 @@ class ClassificationModel(BaseModel): | |||
return x | |||
data_dir = 'data' # directory to save data and model | |||
train_path = 'test/data_for_tests/text_classify.txt' # training set file | |||
data_dir = 'save/' # directory to save data and model | |||
train_path = './data_for_tests/text_classify.txt' # training set file | |||
# load dataset | |||
ds_loader = ClassDatasetLoader("train", train_path) | |||
ds_loader = ClassDatasetLoader(train_path) | |||
data = ds_loader.load() | |||
# pre-process dataset | |||
pre = ClassPreprocess(data, data_dir, cross_val=True, n_fold=5) | |||
# pre = ClassPreprocess(data, data_dir) | |||
n_classes = pre.num_classes | |||
vocab_size = pre.vocab_size | |||
pre = ClassPreprocess() | |||
train_set, dev_set = pre.run(data, train_dev_split=0.3, pickle_path=data_dir) | |||
n_classes, vocab_size = pre.num_classes, pre.vocab_size | |||
# construct model | |||
model_args = { | |||
@@ -58,22 +51,25 @@ model_args = { | |||
} | |||
model = ClassificationModel(num_classes=n_classes, vocab_size=vocab_size) | |||
# train model | |||
# construct trainer | |||
train_args = { | |||
"epochs": 10, | |||
"batch_size": 50, | |||
"epochs": 3, | |||
"batch_size": 16, | |||
"pickle_path": data_dir, | |||
"validate": False, | |||
"save_best_dev": False, | |||
"model_saved_path": None, | |||
"use_cuda": True, | |||
"learn_rate": 1e-3, | |||
"momentum": 0.9} | |||
trainer = ClassificationTrainer(train_args) | |||
# trainer.train(model, ['data_train.pkl', 'data_dev.pkl']) | |||
trainer.cross_validate(model) | |||
"loss": Loss("cross_entropy"), | |||
"optimizer": Optimizer("Adam", lr=0.001) | |||
} | |||
trainer = ClassificationTrainer(**train_args) | |||
# start training | |||
trainer.train(model, train_data=train_set, dev_data=dev_set) | |||
# predict using model | |||
data_infer = [x[0] for x in data] | |||
infer = ClassificationInfer(data_dir) | |||
labels_pred = infer.predict(model, data_infer) | |||
labels_pred = infer.predict(model.cpu(), data_infer) | |||
print(labels_pred) |
@@ -33,7 +33,7 @@ data_infer_path = args.infer | |||
def infer(): | |||
# Load infer configuration, the same as test | |||
test_args = ConfigSection() | |||
ConfigLoader("config.cfg", "").load_config(config_dir, {"POS_infer": test_args}) | |||
ConfigLoader("config.cfg").load_config(config_dir, {"POS_infer": test_args}) | |||
# fetch dictionary size and number of labels from pickle files | |||
word2index = load_pickle(pickle_path, "word2id.pkl") | |||
@@ -49,7 +49,7 @@ def infer(): | |||
print("model loaded!") | |||
# Data Loader | |||
raw_data_loader = BaseLoader("xxx", data_infer_path) | |||
raw_data_loader = BaseLoader(data_infer_path) | |||
infer_data = raw_data_loader.load_lines() | |||
# Inference interface | |||
@@ -65,11 +65,11 @@ def train_and_test(): | |||
# Config Loader | |||
trainer_args = ConfigSection() | |||
model_args = ConfigSection() | |||
ConfigLoader("config.cfg", "").load_config(config_dir, { | |||
ConfigLoader("config.cfg").load_config(config_dir, { | |||
"test_seq_label_trainer": trainer_args, "test_seq_label_model": model_args}) | |||
# Data Loader | |||
pos_loader = POSDatasetLoader("xxx", data_path) | |||
pos_loader = POSDatasetLoader(data_path) | |||
train_data = pos_loader.load_lines() | |||
# Preprocessor | |||
@@ -117,7 +117,7 @@ def train_and_test(): | |||
# Load test configuration | |||
tester_args = ConfigSection() | |||
ConfigLoader("config.cfg", "").load_config(config_dir, {"test_seq_label_tester": tester_args}) | |||
ConfigLoader("config.cfg").load_config(config_dir, {"test_seq_label_tester": tester_args}) | |||
# Tester | |||
tester = SeqLabelTester(save_output=False, | |||
@@ -134,10 +134,10 @@ def train_and_test(): | |||
tester.test(model, data_dev) | |||
# print test results | |||
print(tester.show_matrices()) | |||
print(tester.show_metrics()) | |||
print("model tested!") | |||
if __name__ == "__main__": | |||
train_and_test() | |||
# infer() | |||
# train_and_test() | |||
infer() |
@@ -22,7 +22,7 @@ data_infer_path = "data_for_tests/people_infer.txt" | |||
def infer(): | |||
# Load infer configuration, the same as test | |||
test_args = ConfigSection() | |||
ConfigLoader("config.cfg", "").load_config("./data_for_tests/config", {"POS_test": test_args}) | |||
ConfigLoader("config.cfg").load_config("./data_for_tests/config", {"POS_test": test_args}) | |||
# fetch dictionary size and number of labels from pickle files | |||
word2index = load_pickle(pickle_path, "word2id.pkl") | |||
@@ -38,7 +38,7 @@ def infer(): | |||
print("model loaded!") | |||
# Data Loader | |||
raw_data_loader = BaseLoader(data_name, data_infer_path) | |||
raw_data_loader = BaseLoader(data_infer_path) | |||
infer_data = raw_data_loader.load_lines() | |||
""" | |||
Transform strings into list of list of strings. | |||
@@ -61,10 +61,10 @@ def infer(): | |||
def train_test(): | |||
# Config Loader | |||
train_args = ConfigSection() | |||
ConfigLoader("config.cfg", "").load_config("./data_for_tests/config", {"POS": train_args}) | |||
ConfigLoader("config.cfg").load_config("./data_for_tests/config", {"POS": train_args}) | |||
# Data Loader | |||
loader = TokenizeDatasetLoader(data_name, cws_data_path) | |||
loader = TokenizeDatasetLoader(cws_data_path) | |||
train_data = loader.load_pku() | |||
# Preprocessor | |||
@@ -74,7 +74,7 @@ def train_test(): | |||
train_args["num_classes"] = p.num_classes | |||
# Trainer | |||
trainer = SeqLabelTrainer(train_args) | |||
trainer = SeqLabelTrainer(**train_args.data) | |||
# Model | |||
model = SeqLabeling(train_args) | |||
@@ -99,16 +99,16 @@ def train_test(): | |||
# Load test configuration | |||
test_args = ConfigSection() | |||
ConfigLoader("config.cfg", "").load_config("./data_for_tests/config", {"POS_test": test_args}) | |||
ConfigLoader("config.cfg").load_config("./data_for_tests/config", {"POS_test": test_args}) | |||
# Tester | |||
tester = SeqLabelTester(test_args) | |||
tester = SeqLabelTester(**test_args.data) | |||
# Start testing | |||
tester.test(model, data_train) | |||
# print test results | |||
print(tester.show_matrices()) | |||
print(tester.show_metrics()) | |||
print("model tested!") | |||
@@ -1,9 +1,12 @@ | |||
import sys | |||
sys.path.append("..") | |||
from fastNLP.fastnlp import FastNLP | |||
from fastNLP.fastnlp import interpret_word_seg_results | |||
from fastNLP.fastnlp import interpret_word_seg_results, interpret_cws_pos_results | |||
PATH_TO_CWS_PICKLE_FILES = "/home/zyfeng/fastNLP/reproduction/chinese_word_segment/save/" | |||
PATH_TO_POS_TAG_PICKLE_FILES = "/home/zyfeng/data/crf_seg/" | |||
PATH_TO_TEXT_CLASSIFICATION_PICKLE_FILES = "/home/zyfeng/data/text_classify/" | |||
def word_seg(): | |||
nlp = FastNLP(model_dir=PATH_TO_CWS_PICKLE_FILES) | |||
@@ -39,5 +42,44 @@ def test_word_seg_interpret(): | |||
print(interpret_word_seg_results(chars, labels)) | |||
def test_interpret_cws_pos_results(): | |||
foo = [ | |||
[('这', 'S-r'), ('是', 'S-v'), ('最', 'S-d'), ('好', 'S-a'), ('的', 'S-u'), ('基', 'B-p'), ('于', 'E-p'), ('深', 'B-d'), | |||
('度', 'E-d'), ('学', 'B-v'), ('习', 'E-v'), ('的', 'S-u'), ('中', 'B-nz'), ('文', 'E-nz'), ('分', 'B-vn'), | |||
('词', 'E-vn'), ('系', 'B-n'), ('统', 'E-n'), ('。', 'S-w')] | |||
] | |||
chars = [x[0] for x in foo[0]] | |||
labels = [x[1] for x in foo[0]] | |||
print(interpret_cws_pos_results(chars, labels)) | |||
def pos_tag(): | |||
nlp = FastNLP(model_dir=PATH_TO_POS_TAG_PICKLE_FILES) | |||
nlp.load("pos_tag_model", config_file="pos_tag.config", section_name="pos_tag_model") | |||
text = ["这是最好的基于深度学习的中文分词系统。", | |||
"大王叫我来巡山。", | |||
"我党多年来致力于改善人民生活水平。"] | |||
results = nlp.run(text) | |||
for example in results: | |||
words, labels = [], [] | |||
for res in example: | |||
words.append(res[0]) | |||
labels.append(res[1]) | |||
print(interpret_cws_pos_results(words, labels)) | |||
def text_classify(): | |||
nlp = FastNLP(model_dir=PATH_TO_TEXT_CLASSIFICATION_PICKLE_FILES) | |||
nlp.load("text_classify_model", config_file="text_classify.cfg", section_name="model") | |||
text = [ | |||
"世界物联网大会明日在京召开龙头股启动在即", | |||
"乌鲁木齐市新增一处城市中心旅游目的地", | |||
"朱元璋的大明朝真的源于明教吗?——告诉你一个真实的“明教”"] | |||
results = nlp.run(text) | |||
print(results) | |||
""" | |||
['finance', 'travel', 'history'] | |||
""" | |||
if __name__ == "__main__": | |||
word_seg() | |||
text_classify() |
@@ -5,19 +5,19 @@ from fastNLP.loader.dataset_loader import TokenizeDatasetLoader | |||
from fastNLP.models.sequence_modeling import SeqLabeling | |||
data_name = "pku_training.utf8" | |||
cws_data_path = "/home/zyfeng/Desktop/data/pku_training.utf8" | |||
pickle_path = "data_for_tests" | |||
def foo(): | |||
loader = TokenizeDatasetLoader(data_name, "./data_for_tests/cws_pku_utf_8") | |||
loader = TokenizeDatasetLoader("./data_for_tests/cws_pku_utf_8") | |||
train_data = loader.load_pku() | |||
train_args = ConfigSection() | |||
ConfigLoader("config.cfg", "").load_config("./data_for_tests/config", {"POS": train_args}) | |||
ConfigLoader("config.cfg").load_config("./data_for_tests/config", {"POS": train_args}) | |||
# Preprocessor | |||
p = SeqLabelPreprocess(train_data, pickle_path) | |||
p = SeqLabelPreprocess() | |||
train_data = p.run(train_data) | |||
train_args["vocab_size"] = p.vocab_size | |||
train_args["num_classes"] = p.num_classes | |||
@@ -26,11 +26,11 @@ def foo(): | |||
valid_args = {"save_output": True, "validate_in_training": True, "save_dev_input": True, | |||
"save_loss": True, "batch_size": 8, "pickle_path": "./data_for_tests/", | |||
"use_cuda": True} | |||
validator = SeqLabelTester(valid_args) | |||
validator = SeqLabelTester(**valid_args) | |||
print("start validation.") | |||
validator.test(model) | |||
print(validator.show_matrices()) | |||
validator.test(model, train_data) | |||
print(validator.show_metrics()) | |||
if __name__ == "__main__": | |||
@@ -34,7 +34,7 @@ config_dir = args.config | |||
def infer(): | |||
# load dataset | |||
print("Loading data...") | |||
ds_loader = ClassDatasetLoader("train", train_data_dir) | |||
ds_loader = ClassDatasetLoader(train_data_dir) | |||
data = ds_loader.load() | |||
unlabeled_data = [x[0] for x in data] | |||
@@ -69,7 +69,7 @@ def train(): | |||
# load dataset | |||
print("Loading data...") | |||
ds_loader = ClassDatasetLoader("train", train_data_dir) | |||
ds_loader = ClassDatasetLoader(train_data_dir) | |||
data = ds_loader.load() | |||
print(data[0]) | |||