| @@ -48,6 +48,7 @@ __all__ = [ | |||||
| 'prepare_jittor_dataloader', | 'prepare_jittor_dataloader', | ||||
| 'prepare_paddle_dataloader', | 'prepare_paddle_dataloader', | ||||
| 'prepare_torch_dataloader', | 'prepare_torch_dataloader', | ||||
| "prepare_dataloader", | |||||
| # dataset | # dataset | ||||
| 'DataSet', | 'DataSet', | ||||
| @@ -32,7 +32,7 @@ class CheckpointCallback(Callback): | |||||
| model_save_fn 为 None ,则以上每个 folder 中,将生成 fastnlp_model.pkl.tar 文件。 | model_save_fn 为 None ,则以上每个 folder 中,将生成 fastnlp_model.pkl.tar 文件。 | ||||
| 若 model_save_fn 不为 None,则 fastNLP 将 folder 绝对路径传递给该函数,fastNLP 在该 folder 下不进行模型保存。 | 若 model_save_fn 不为 None,则 fastNLP 将 folder 绝对路径传递给该函数,fastNLP 在该 folder 下不进行模型保存。 | ||||
| :param monitor: 监控的 metric 值。如果在 evaluation 结果中没有找到完全一致的名称,将使用 最短公共字符串算法 找到最匹配 | |||||
| :param monitor: 监控的 metric 值。如果在 evaluation 结果中没有找到完全一致的名称,将使用 最长公共字符串算法 找到最匹配 | |||||
| 的那个作为 monitor 。如果为 None,将尝试使用 Trainer 设置的 monitor 。也可以传入一个函数,接受参数为 evaluation 的结 | 的那个作为 monitor 。如果为 None,将尝试使用 Trainer 设置的 monitor 。也可以传入一个函数,接受参数为 evaluation 的结 | ||||
| 果(字典类型),返回一个 float 值作为 monitor 的结果,如果当前结果中没有相关的 monitor 值请返回 None 。 | 果(字典类型),返回一个 float 值作为 monitor 的结果,如果当前结果中没有相关的 monitor 值请返回 None 。 | ||||
| :param folder: 保存的文件夹,fastNLP 将在该文件下以时间戳创建子文件夹,并在里面保存。因此不同次运行可以将被保存到不同的 | :param folder: 保存的文件夹,fastNLP 将在该文件下以时间戳创建子文件夹,并在里面保存。因此不同次运行可以将被保存到不同的 | ||||
| @@ -12,7 +12,7 @@ class EarlyStopCallback(HasMonitorCallback): | |||||
| def __init__(self, monitor:Union[str, Callable]=None, larger_better:bool=True, patience:int=10): | def __init__(self, monitor:Union[str, Callable]=None, larger_better:bool=True, patience:int=10): | ||||
| """ | """ | ||||
| :param str monitor: 监控的 metric 值。如果在 evaluation 结果中没有找到完全一致的名称,将使用 最短公共字符串算法 找到最匹配 | |||||
| :param str monitor: 监控的 metric 值。如果在 evaluation 结果中没有找到完全一致的名称,将使用 最长公共字符串算法 找到最匹配 | |||||
| 的那个作为 monitor 。如果为 None,将尝试使用 Trainer 设置的 monitor 。也可以传入一个函数,接受参数为 evaluation 的结 | 的那个作为 monitor 。如果为 None,将尝试使用 Trainer 设置的 monitor 。也可以传入一个函数,接受参数为 evaluation 的结 | ||||
| 果(字典类型),返回一个 float 值作为 monitor 的结果。 | 果(字典类型),返回一个 float 值作为 monitor 的结果。 | ||||
| :param larger_better: monitor 的值是否是越大越好。 | :param larger_better: monitor 的值是否是越大越好。 | ||||
| @@ -34,7 +34,7 @@ class ResultsMonitor: | |||||
| """ | """ | ||||
| 可用于监控某个数值,并通过 is_better_results() 等接口实现检测结果是否变得更好了。 | 可用于监控某个数值,并通过 is_better_results() 等接口实现检测结果是否变得更好了。 | ||||
| :param monitor: 监控的 metric 值。如果在 evaluation 结果中没有找到完全一致的名称,将使用 最短公共字符串算法 找到最匹配 | |||||
| :param monitor: 监控的 metric 值。如果在 evaluation 结果中没有找到完全一致的名称,将使用 最长公共字符串算法 找到最匹配 | |||||
| 的那个作为 monitor 。如果为 None,将尝试使用 Trainer 设置的 monitor 。也可以传入一个函数,接受参数为 evaluation 的结 | 的那个作为 monitor 。如果为 None,将尝试使用 Trainer 设置的 monitor 。也可以传入一个函数,接受参数为 evaluation 的结 | ||||
| 果(字典类型),返回一个 float 值作为 monitor 的结果,如果当前结果中没有相关的 monitor 值请返回 None 。 | 果(字典类型),返回一个 float 值作为 monitor 的结果,如果当前结果中没有相关的 monitor 值请返回 None 。 | ||||
| :param larger_better: monitor 是否时越大越好 | :param larger_better: monitor 是否时越大越好 | ||||
| @@ -171,7 +171,7 @@ class HasMonitorCallback(ResultsMonitor, Callback): | |||||
| 该 callback 不直接进行使用,作为其它相关 callback 的父类使用,如果 callback 有使用 monitor 可以继承该函数里面实现了 | 该 callback 不直接进行使用,作为其它相关 callback 的父类使用,如果 callback 有使用 monitor 可以继承该函数里面实现了 | ||||
| (1)判断monitor合法性;(2)在需要时, 根据trainer的monitor设置自己的monitor名称。 | (1)判断monitor合法性;(2)在需要时, 根据trainer的monitor设置自己的monitor名称。 | ||||
| :param monitor: 监控的 metric 值。如果在 evaluation 结果中没有找到完全一致的名称,将使用 最短公共字符串算法 找到最匹配 | |||||
| :param monitor: 监控的 metric 值。如果在 evaluation 结果中没有找到完全一致的名称,将使用 最长公共字符串算法 找到最匹配 | |||||
| 的那个作为 monitor 。如果为 None,将尝试使用 Trainer 设置的 monitor 。也可以传入一个函数,接受参数为 evaluation 的结 | 的那个作为 monitor 。如果为 None,将尝试使用 Trainer 设置的 monitor 。也可以传入一个函数,接受参数为 evaluation 的结 | ||||
| 果(字典类型),返回一个 float 值作为 monitor 的结果,如果当前结果中没有相关的 monitor 值请返回 None 。 | 果(字典类型),返回一个 float 值作为 monitor 的结果,如果当前结果中没有相关的 monitor 值请返回 None 。 | ||||
| :param larger_better: monitor 是否时越大越好 | :param larger_better: monitor 是否时越大越好 | ||||
| @@ -209,7 +209,7 @@ class ExecuteOnceBetterMonitor(HasMonitorCallback): | |||||
| """ | """ | ||||
| 当监控的 monitor 结果更好的时候,调用 execute_fn 函数。 | 当监控的 monitor 结果更好的时候,调用 execute_fn 函数。 | ||||
| :param monitor: 监控的 metric 值。如果在 evaluation 结果中没有找到完全一致的名称,将使用 最短公共字符串算法 找到最匹配 | |||||
| :param monitor: 监控的 metric 值。如果在 evaluation 结果中没有找到完全一致的名称,将使用 最长公共字符串算法 找到最匹配 | |||||
| 的那个作为 monitor 。如果为 None,将尝试使用 Trainer 设置的 monitor 。也可以传入一个函数,接受参数为 evaluation 的结 | 的那个作为 monitor 。如果为 None,将尝试使用 Trainer 设置的 monitor 。也可以传入一个函数,接受参数为 evaluation 的结 | ||||
| 果(字典类型),返回一个 float 值作为 monitor 的结果,如果当前结果中没有相关的 monitor 值请返回 None 。 | 果(字典类型),返回一个 float 值作为 monitor 的结果,如果当前结果中没有相关的 monitor 值请返回 None 。 | ||||
| :param larger_better: monitor 是否时越大越好 | :param larger_better: monitor 是否时越大越好 | ||||
| @@ -21,7 +21,7 @@ class LoadBestModelCallback(HasMonitorCallback): | |||||
| """ | """ | ||||
| 保存最佳的 monitor 值最佳的模型,并在训练结束的时候重新加载模型。仅在训练正常结束的时候才能加载最好的模型。 | 保存最佳的 monitor 值最佳的模型,并在训练结束的时候重新加载模型。仅在训练正常结束的时候才能加载最好的模型。 | ||||
| :param str monitor: 监控的 metric 值。如果在 evaluation 结果中没有找到完全一致的名称,将使用 最短公共字符串算法 找到最匹配 | |||||
| :param str monitor: 监控的 metric 值。如果在 evaluation 结果中没有找到完全一致的名称,将使用 最长公共字符串算法 找到最匹配 | |||||
| 的那个作为 monitor 。如果为 None,将尝试使用 Trainer 设置的 monitor 。也可以传入一个函数,接受参数为 evaluation 的结 | 的那个作为 monitor 。如果为 None,将尝试使用 Trainer 设置的 monitor 。也可以传入一个函数,接受参数为 evaluation 的结 | ||||
| 果(字典类型),返回一个 float 值作为 monitor 的结果,如果当前结果中没有相关的 monitor 值请返回 None 。 | 果(字典类型),返回一个 float 值作为 monitor 的结果,如果当前结果中没有相关的 monitor 值请返回 None 。 | ||||
| :param larger_better: 该 metric 值是否是越大越好。 | :param larger_better: 该 metric 值是否是越大越好。 | ||||
| @@ -37,7 +37,7 @@ class MoreEvaluateCallback(HasMonitorCallback): | |||||
| 一个 bool 值,返回为 True 说明需要进行 evaluate ;将在每个 batch 结束后调用该函数判断是否需要 evaluate 。 | 一个 bool 值,返回为 True 说明需要进行 evaluate ;将在每个 batch 结束后调用该函数判断是否需要 evaluate 。 | ||||
| :param watch_monitor: 这个值用来表示监控的 Trainer 中的 evaluate 结果的,当该值不为 None ,evaluate_every 失效。本参数的 | :param watch_monitor: 这个值用来表示监控的 Trainer 中的 evaluate 结果的,当该值不为 None ,evaluate_every 失效。本参数的 | ||||
| 意义是,当检测到 Trainer 中 evaluate results 的 {watch_monitor} 的结果更好时,则进行一次 evaluate 。该参数有两种 | 意义是,当检测到 Trainer 中 evaluate results 的 {watch_monitor} 的结果更好时,则进行一次 evaluate 。该参数有两种 | ||||
| 取值: (1) str 类型,监控的 metric 值。如果在 evaluation 结果中没有找到完全一致的名称,将使用 最短公共字符串算法 找到最 | |||||
| 取值: (1) str 类型,监控的 metric 值。如果在 evaluation 结果中没有找到完全一致的名称,将使用 最长公共字符串算法 找到最 | |||||
| 匹配的那个作为 monitor ; (2) 也可以传入一个函数,接受参数为 evaluation 的结果(字典类型),返回一个 float 值作为 monitor | 匹配的那个作为 monitor ; (2) 也可以传入一个函数,接受参数为 evaluation 的结果(字典类型),返回一个 float 值作为 monitor | ||||
| 的结果,如果当前结果中没有相关的monitor 值请返回 None 。 | 的结果,如果当前结果中没有相关的monitor 值请返回 None 。 | ||||
| :param watch_monitor_larger_better: watch_monitor 是否越大越好。 | :param watch_monitor_larger_better: watch_monitor 是否越大越好。 | ||||
| @@ -46,7 +46,7 @@ class RichCallback(ProgressCallback): | |||||
| :param print_every: 多少个 batch 更新一次显示。 | :param print_every: 多少个 batch 更新一次显示。 | ||||
| :param loss_round_ndigit: 显示的 loss 保留多少位有效数字 | :param loss_round_ndigit: 显示的 loss 保留多少位有效数字 | ||||
| :param monitor: 当检测到这个key的结果更好时,会打印出不同的颜色进行提示。监控的 metric 值。如果在 evaluation 结果中没有找到 | :param monitor: 当检测到这个key的结果更好时,会打印出不同的颜色进行提示。监控的 metric 值。如果在 evaluation 结果中没有找到 | ||||
| 完全一致的名称,将使用 最短公共字符串算法 找到最匹配的那个作为 monitor 。如果为 None,将尝试使用 Trainer 设置的 monitor | |||||
| 完全一致的名称,将使用 最长公共字符串算法 找到最匹配的那个作为 monitor 。如果为 None,将尝试使用 Trainer 设置的 monitor | |||||
| 。也可以传入一个函数,接受参数为 evaluation 的结果(字典类型),返回一个 float 值作为 monitor 的结果,如果当前结果中没有 | 。也可以传入一个函数,接受参数为 evaluation 的结果(字典类型),返回一个 float 值作为 monitor 的结果,如果当前结果中没有 | ||||
| 相关的 monitor 值请返回 None 。 | 相关的 monitor 值请返回 None 。 | ||||
| :param larger_better: 是否是 monitor 的结果越大越好。 | :param larger_better: 是否是 monitor 的结果越大越好。 | ||||
| @@ -141,7 +141,7 @@ class RawTextCallback(ProgressCallback): | |||||
| :param print_every: 多少个 batch 更新一次显示。 | :param print_every: 多少个 batch 更新一次显示。 | ||||
| :param loss_round_ndigit: 显示的 loss 保留多少位有效数字 | :param loss_round_ndigit: 显示的 loss 保留多少位有效数字 | ||||
| :param monitor: 当检测到这个key的结果更好时,会打印出不同的颜色进行提示。监控的 metric 值。如果在 evaluation 结果中没有找到 | :param monitor: 当检测到这个key的结果更好时,会打印出不同的颜色进行提示。监控的 metric 值。如果在 evaluation 结果中没有找到 | ||||
| 完全一致的名称,将使用 最短公共字符串算法 找到最匹配的那个作为 monitor 。如果为 None,将尝试使用 Trainer 设置的 monitor | |||||
| 完全一致的名称,将使用 最长公共字符串算法 找到最匹配的那个作为 monitor 。如果为 None,将尝试使用 Trainer 设置的 monitor | |||||
| 。也可以传入一个函数,接受参数为 evaluation 的结果(字典类型),返回一个 float 值作为 monitor 的结果,如果当前结果中没有 | 。也可以传入一个函数,接受参数为 evaluation 的结果(字典类型),返回一个 float 值作为 monitor 的结果,如果当前结果中没有 | ||||
| 相关的 monitor 值请返回 None 。 | 相关的 monitor 值请返回 None 。 | ||||
| :param larger_better: 是否是monitor的结果越大越好。 | :param larger_better: 是否是monitor的结果越大越好。 | ||||
| @@ -183,7 +183,7 @@ class TopkSaver(ResultsMonitor, Saver): | |||||
| :param topk: 保存 topk 多少的模型,-1 为保存所有模型;0 为都不保存;大于 0 的数为保存 topk 个。 | :param topk: 保存 topk 多少的模型,-1 为保存所有模型;0 为都不保存;大于 0 的数为保存 topk 个。 | ||||
| :param monitor: 监控哪个指标判断是否是 topk 的。监控的 metric 值。如果在 evaluation 结果中没有找到完全一致的名称,将使用 | :param monitor: 监控哪个指标判断是否是 topk 的。监控的 metric 值。如果在 evaluation 结果中没有找到完全一致的名称,将使用 | ||||
| 最短公共字符串算法 找到最匹配的那个作为 monitor 。如果为 None,将尝试使用 Trainer 设置的 monitor 。也可以传入一个函数, | |||||
| 最长公共字符串算法 找到最匹配的那个作为 monitor 。如果为 None,将尝试使用 Trainer 设置的 monitor 。也可以传入一个函数, | |||||
| 接受参数为 evaluation 的结果(字典类型),返回一个 float 值作为 monitor 的结果,如果当前结果中没有相关的 monitor 值请 | 接受参数为 evaluation 的结果(字典类型),返回一个 float 值作为 monitor 的结果,如果当前结果中没有相关的 monitor 值请 | ||||
| 返回 None 。 | 返回 None 。 | ||||
| :param larger_better: 该 monitor 是否越大越好。 | :param larger_better: 该 monitor 是否越大越好。 | ||||
| @@ -6,19 +6,20 @@ from typing import List, Union, Dict, Callable, Sequence, Mapping | |||||
| import os | import os | ||||
| import sys | import sys | ||||
| import inspect | import inspect | ||||
| import re | |||||
| from fastNLP.core.log import logger | from fastNLP.core.log import logger | ||||
| from .padders.get_padder import get_padder | from .padders.get_padder import get_padder | ||||
| from ...envs import SUPPORT_BACKENDS | |||||
| import re | |||||
| from .packer_unpacker import SequencePackerUnpacker, SinglePackerUnpacker, MappingPackerUnpacker, \ | from .packer_unpacker import SequencePackerUnpacker, SinglePackerUnpacker, MappingPackerUnpacker, \ | ||||
| NestedMappingPackerUnpacker | NestedMappingPackerUnpacker | ||||
| sequence_idx_str = re.compile(r'^_\d+$') # 形如_0, _1 | sequence_idx_str = re.compile(r'^_\d+$') # 形如_0, _1 | ||||
| SUPPORTED_BACKENDS = ['torch', 'jittor', 'paddle', 'numpy', 'raw', 'auto', None] | SUPPORTED_BACKENDS = ['torch', 'jittor', 'paddle', 'numpy', 'raw', 'auto', None] | ||||
| CHECK_BACKEND = ['torch', 'jittor', 'paddle'] # backend 为 auto 时 检查是否是这些 backend | |||||
| # 由于 jittor DataLoader 存在自动的 to_jittor 的转换,所以只需要 collate 成为 numpy 就行 | |||||
| AUTO_BACKEND_MAPPING = {'jittor': 'numpy'} | |||||
| def _get_backend() -> str: | def _get_backend() -> str: | ||||
| """ | """ | ||||
| @@ -40,7 +41,7 @@ def _get_backend() -> str: | |||||
| catch_backend = [] | catch_backend = [] | ||||
| try: | try: | ||||
| file = module.__file__ | file = module.__file__ | ||||
| for backend in CHECK_BACKEND: | |||||
| for backend in SUPPORT_BACKENDS: | |||||
| if f'{os.sep}site-packages{os.sep}{backend}' in file: | if f'{os.sep}site-packages{os.sep}{backend}' in file: | ||||
| catch_backend = [backend, file] | catch_backend = [backend, file] | ||||
| except: | except: | ||||
| @@ -62,10 +63,10 @@ def _get_backend() -> str: | |||||
| break | break | ||||
| if len(catch_backend): | if len(catch_backend): | ||||
| logger.debug(f"Find a file named:{catch_backend[1]} from stack contains backend:{catch_backend[0]}.") | logger.debug(f"Find a file named:{catch_backend[1]} from stack contains backend:{catch_backend[0]}.") | ||||
| return catch_backend[0] | |||||
| return AUTO_BACKEND_MAPPING.get(catch_backend[0], catch_backend[0]) | |||||
| # 方式 (2) | # 方式 (2) | ||||
| for backend in CHECK_BACKEND: | |||||
| for backend in SUPPORT_BACKENDS: | |||||
| if backend in sys.modules: | if backend in sys.modules: | ||||
| logger.debug(f"sys.modules contains backend:{backend}.") | logger.debug(f"sys.modules contains backend:{backend}.") | ||||
| return backend | return backend | ||||
| @@ -30,7 +30,8 @@ if _NEED_IMPORT_PADDLE: | |||||
| } | } | ||||
| from .padder import Padder | from .padder import Padder | ||||
| from .utils import is_number_or_numpy_number, is_number, is_numpy_number_dtype, get_shape, is_numpy_generic_class | |||||
| from .utils import is_number_or_numpy_number, is_number, is_numpy_number_dtype, is_numpy_generic_class, \ | |||||
| get_padded_numpy_array | |||||
| from .exceptions import * | from .exceptions import * | ||||
| @@ -54,7 +55,6 @@ def is_paddle_dtype_str(dtype): | |||||
| return False | return False | ||||
| def _get_dtype(ele_dtype, dtype, class_name): | def _get_dtype(ele_dtype, dtype, class_name): | ||||
| if not (ele_dtype is None or is_number_or_numpy_number(ele_dtype) or is_paddle_tensor(ele_dtype) or is_paddle_dtype_str(ele_dtype)): | if not (ele_dtype is None or is_number_or_numpy_number(ele_dtype) or is_paddle_tensor(ele_dtype) or is_paddle_dtype_str(ele_dtype)): | ||||
| raise EleDtypeUnsupportedError(f"`{class_name}` only supports padding python numbers " | raise EleDtypeUnsupportedError(f"`{class_name}` only supports padding python numbers " | ||||
| @@ -131,7 +131,7 @@ class PaddleTensorPadder(Padder): | |||||
| def pad(batch_field, pad_val, dtype): | def pad(batch_field, pad_val, dtype): | ||||
| try: | try: | ||||
| if not isinstance(batch_field[0], paddle.Tensor): | if not isinstance(batch_field[0], paddle.Tensor): | ||||
| batch_field = [paddle.to_tensor(field.tolist(), dtype=dtype) for field in batch_field] | |||||
| batch_field = [np.array(field.tolist()) for field in batch_field] | |||||
| else: | else: | ||||
| if dtype is None: | if dtype is None: | ||||
| dtype = batch_field[0].dtype | dtype = batch_field[0].dtype | ||||
| @@ -141,46 +141,14 @@ class PaddleTensorPadder(Padder): | |||||
| shapes = [field.shape for field in batch_field] | shapes = [field.shape for field in batch_field] | ||||
| max_shape = [len(batch_field)] + [max(*_) for _ in zip(*shapes)] | max_shape = [len(batch_field)] + [max(*_) for _ in zip(*shapes)] | ||||
| tensor = paddle.full(max_shape, fill_value=pad_val, dtype=dtype) | |||||
| array = np.full(max_shape, fill_value=pad_val) | |||||
| for i, field in enumerate(batch_field): | for i, field in enumerate(batch_field): | ||||
| slices = (i, ) + tuple(slice(0, s) for s in shapes[i]) | slices = (i, ) + tuple(slice(0, s) for s in shapes[i]) | ||||
| tensor[slices] = field | |||||
| array[slices] = field | |||||
| tensor = paddle.to_tensor(array, dtype=dtype) | |||||
| return tensor | return tensor | ||||
| def fill_tensor(batch_field, padded_batch, dtype): | |||||
| """ | |||||
| 将 batch_field 中的值填入到 tensor 中。 | |||||
| :param batch_field: 需要填充进入 array 中的内容 | |||||
| :param padded_batch: 待填充的 tensor | |||||
| :param dtype: 数据的类别 | |||||
| :return: | |||||
| """ | |||||
| if padded_batch.ndim == 2: | |||||
| for i, content_i in enumerate(batch_field): | |||||
| padded_batch[i, :len(content_i)] = paddle.to_tensor(content_i, dtype=dtype) | |||||
| elif padded_batch.ndim == 3: | |||||
| for i, content_i in enumerate(batch_field): | |||||
| for j, content_ii in enumerate(content_i): | |||||
| padded_batch[i, j, :len(content_ii)] = paddle.to_tensor(content_ii, dtype=dtype) | |||||
| elif padded_batch.ndim == 4: | |||||
| try: # 应该是图像,所以直接应该就 ok 了。 | |||||
| padded_batch = np.array(batch_field) | |||||
| except: | |||||
| for i, content_i in enumerate(batch_field): | |||||
| for j, content_ii in enumerate(content_i): | |||||
| for k, content_iii in enumerate(content_ii): | |||||
| padded_batch[i, j, k, :len(content_iii)] = paddle.to_tensor(content_iii, dtype=dtype) | |||||
| elif padded_batch.ndim == 1: | |||||
| padded_batch[:] = paddle.to_tensor(batch_field, dtype=dtype) | |||||
| else: | |||||
| raise RuntimeError("fastNLP does not support padding for more than 3 dimensions. If you need this, please " | |||||
| "report.") | |||||
| return padded_batch | |||||
| def get_padded_paddle_tensor(batch_field, dtype=None, pad_val=0): | def get_padded_paddle_tensor(batch_field, dtype=None, pad_val=0): | ||||
| """ | """ | ||||
| 例如: | 例如: | ||||
| @@ -192,7 +160,6 @@ def get_padded_paddle_tensor(batch_field, dtype=None, pad_val=0): | |||||
| :param pad_val: pad 的 value | :param pad_val: pad 的 value | ||||
| :return: | :return: | ||||
| """ | """ | ||||
| shapes = get_shape(batch_field) | |||||
| tensor = paddle.to_tensor(np.full(shape=shapes, fill_value=pad_val), dtype=dtype) | |||||
| tensor = fill_tensor(batch_field, tensor, dtype=dtype) | |||||
| array = get_padded_numpy_array(batch_field=batch_field, dtype=None, pad_val=pad_val) | |||||
| tensor = paddle.to_tensor(array, dtype=dtype) | |||||
| return tensor | return tensor | ||||
| @@ -161,6 +161,7 @@ class Evaluator: | |||||
| self.reset() | self.reset() | ||||
| self.driver.barrier() | self.driver.barrier() | ||||
| except BaseException as e: | except BaseException as e: | ||||
| self.driver.on_exception() | |||||
| raise e | raise e | ||||
| finally: | finally: | ||||
| self.finally_progress_bar() | self.finally_progress_bar() | ||||
| @@ -125,7 +125,7 @@ class Trainer(TrainerEventTrigger): | |||||
| :param accumulation_steps: 梯度累积的步数,表示每隔几个 batch 优化器迭代一次;默认为 1; | :param accumulation_steps: 梯度累积的步数,表示每隔几个 batch 优化器迭代一次;默认为 1; | ||||
| :param fp16: 是否开启混合精度训练;默认为 False; | :param fp16: 是否开启混合精度训练;默认为 False; | ||||
| :param monitor: 当存在 evaluate_dataloaders 时,默认的 monitor metric 的名字。传入的 callback 如果有 monitor 参数且没有 | :param monitor: 当存在 evaluate_dataloaders 时,默认的 monitor metric 的名字。传入的 callback 如果有 monitor 参数且没有 | ||||
| 在 callback 初始化设定的,将采取这个值。如果在 evaluation 结果中没有找到完全一致的名称,将使用 最短公共字符串算法 找到最匹配 | |||||
| 在 callback 初始化设定的,将采取这个值。如果在 evaluation 结果中没有找到完全一致的名称,将使用 最长公共字符串算法 找到最匹配 | |||||
| 的那个作为 monitor 。也可以传入一个函数,接受参数为 evaluation 的结果(字典类型),返回一个 float 值作为 monitor 的结果。 | 的那个作为 monitor 。也可以传入一个函数,接受参数为 evaluation 的结果(字典类型),返回一个 float 值作为 monitor 的结果。 | ||||
| 如果 evaluate_dataloaders 与 metrics 没有提供,该参数无意义。 | 如果 evaluate_dataloaders 与 metrics 没有提供,该参数无意义。 | ||||
| :param larger_better: monitor 的值是否是越大越好。 | :param larger_better: monitor 的值是否是越大越好。 | ||||
| @@ -372,6 +372,14 @@ class Trainer(TrainerEventTrigger): | |||||
| self.on_exception(e) | self.on_exception(e) | ||||
| if not catch_KeyboardInterrupt: | if not catch_KeyboardInterrupt: | ||||
| raise e | raise e | ||||
| except RuntimeError as e: | |||||
| if 'torch' in self.driver_name.lower(): # 如果是 torch ,需要检测一下 find_unused_parameters | |||||
| if 'find_unused_parameters' in e.args[0]: | |||||
| logger.error("You may need to pass `torch_ddp_kwargs={'find_unused_parameters': True}` in the " | |||||
| "Trainer initialization to avoid this error.") | |||||
| self.driver.on_exception() | |||||
| self.on_exception(e) | |||||
| raise e | |||||
| except BaseException as e: | except BaseException as e: | ||||
| self.driver.on_exception() | self.driver.on_exception() | ||||
| self.on_exception(e) | self.on_exception(e) | ||||
| @@ -5,10 +5,13 @@ __all__ = [ | |||||
| 'JittorDataLoader', | 'JittorDataLoader', | ||||
| 'prepare_jittor_dataloader', | 'prepare_jittor_dataloader', | ||||
| 'prepare_paddle_dataloader', | 'prepare_paddle_dataloader', | ||||
| 'prepare_torch_dataloader' | |||||
| 'prepare_torch_dataloader', | |||||
| "prepare_dataloader" | |||||
| ] | ] | ||||
| from .mix_dataloader import MixDataLoader | from .mix_dataloader import MixDataLoader | ||||
| from .jittor_dataloader import JittorDataLoader, prepare_jittor_dataloader | from .jittor_dataloader import JittorDataLoader, prepare_jittor_dataloader | ||||
| from .torch_dataloader import TorchDataLoader, prepare_torch_dataloader | from .torch_dataloader import TorchDataLoader, prepare_torch_dataloader | ||||
| from .paddle_dataloader import PaddleDataLoader, prepare_paddle_dataloader | from .paddle_dataloader import PaddleDataLoader, prepare_paddle_dataloader | ||||
| from .prepare_dataloader import prepare_dataloader | |||||
| @@ -4,6 +4,7 @@ __all__ = [ | |||||
| ] | ] | ||||
| from typing import Callable, Optional, List, Union | from typing import Callable, Optional, List, Union | ||||
| from copy import deepcopy | |||||
| from fastNLP.envs.imports import _NEED_IMPORT_JITTOR | from fastNLP.envs.imports import _NEED_IMPORT_JITTOR | ||||
| @@ -75,10 +76,12 @@ class JittorDataLoader: | |||||
| if isinstance(collate_fn, str): | if isinstance(collate_fn, str): | ||||
| if collate_fn == "auto": | if collate_fn == "auto": | ||||
| if isinstance(self.dataset.dataset, FDataSet): | if isinstance(self.dataset.dataset, FDataSet): | ||||
| self.collate_fn = self.dataset.dataset.collator | |||||
| self.collate_fn.set_backend(backend="jittor") | |||||
| self.collate_fn = deepcopy(self.dataset.dataset.collator) | |||||
| # jittor 比较特殊,只需要保证返回 numpy.array, 其Dataloader会转为jt.var | |||||
| self.collate_fn.set_backend(backend="numpy") | |||||
| else: | else: | ||||
| self.collate_fn = Collator(backend="jittor") | |||||
| # jittor 比较特殊,只需要保证返回 numpy.array, 其Dataloader会转为jt.var | |||||
| self.collate_fn = Collator(backend="numpy") | |||||
| else: | else: | ||||
| raise ValueError(f"collate_fn: {collate_fn} must be 'auto'") | raise ValueError(f"collate_fn: {collate_fn} must be 'auto'") | ||||
| elif isinstance(collate_fn, Callable): | elif isinstance(collate_fn, Callable): | ||||
| @@ -4,6 +4,7 @@ __all__ = [ | |||||
| ] | ] | ||||
| from typing import Callable, List, Optional, Union, Dict, Sequence | from typing import Callable, List, Optional, Union, Dict, Sequence | ||||
| from copy import deepcopy | |||||
| from fastNLP.envs.imports import _NEED_IMPORT_PADDLE | from fastNLP.envs.imports import _NEED_IMPORT_PADDLE | ||||
| @@ -68,7 +69,7 @@ class PaddleDataLoader(DataLoader): | |||||
| if isinstance(collate_fn, str): | if isinstance(collate_fn, str): | ||||
| if collate_fn == 'auto': | if collate_fn == 'auto': | ||||
| if isinstance(dataset.dataset, FDataSet): | if isinstance(dataset.dataset, FDataSet): | ||||
| collate_fn = dataset.dataset.collator | |||||
| collate_fn = deepcopy(dataset.dataset.collator) | |||||
| collate_fn.set_backend(backend="paddle") | collate_fn.set_backend(backend="paddle") | ||||
| else: | else: | ||||
| collate_fn = Collator(backend="paddle") | collate_fn = Collator(backend="paddle") | ||||
| @@ -0,0 +1,114 @@ | |||||
| __all__ = [ | |||||
| 'prepare_dataloader' | |||||
| ] | |||||
| from typing import Union, Callable | |||||
| import os | |||||
| import sys | |||||
| from ..samplers import RandomBatchSampler, RandomSampler | |||||
| from .torch_dataloader import prepare_torch_dataloader | |||||
| from .paddle_dataloader import prepare_paddle_dataloader | |||||
| from .jittor_dataloader import prepare_jittor_dataloader | |||||
| from ...envs import FASTNLP_BACKEND, SUPPORT_BACKENDS, _module_available | |||||
| from ..log import logger | |||||
| def prepare_dataloader(dataset, batch_size: int = 16, shuffle: bool = False, drop_last: bool = False, | |||||
| collate_fn: Union[Callable, str, None] = 'auto', num_workers: int = 0, | |||||
| seed: int = 0, backend: str = 'auto'): | |||||
| """ | |||||
| 自动创建合适的 ``DataLoader`` 对象。例如,检测当当前环境是 ``torch`` 的,则返回 ``TorchDataLoader`` , 是 ``paddle`` 的则 | |||||
| 返回 ``PaddleDataLoader`` 。如果有更多需要定制的参数,请直接使用对应的 ``prepare`` 函数,例如 | |||||
| :func:`~fastNLP.prepare_torch_dataloader` 或 :func:`~fastNLP.prepare_paddle_dataloader` 等。 | |||||
| :param dataset: 实现 __getitem__() 和 __len__() 的对象;或这种对象的序列;或字典。 | |||||
| * 为单个数据集对象时 | |||||
| 返回一个 DataLoader 。 | |||||
| * 为数据集对象序列时 | |||||
| 返回一个序列的 DataLoader 。 | |||||
| * 为字典型 或 :class:`~fastNLP.io.DataBundle` 数据时,返回 `Dict` 类型的数据。 | |||||
| 返回一个字典 。 | |||||
| :param batch_size: 批次大小。 | |||||
| :param shuffle: 是否打乱数据集。 | |||||
| :param drop_last: 当最后一个 batch 不足 batch_size 数量的是否,是否丢弃。 | |||||
| :param collate_fn: 用于处理一个 batch 的函数,一般包括 padding 和转为 tensor。有以下三种取值: | |||||
| * 为 ``auto`` 时 | |||||
| 使用 :class:`~fastNLP.Collator` 进行 padding 和 转tensor 。 | |||||
| * 为 ``Callable`` 时 | |||||
| 应当接受一个 ``batch`` 的数据作为参数,同时输出一个对象 。 | |||||
| * 为 ``None`` 时 | |||||
| 使用各个框架的 DataLoader 的默认 ``collate_fn`` 。 | |||||
| :param num_workers: 使用多少进程进行数据的 fetch 。 | |||||
| :param seed: 使用的随机数种子。 | |||||
| :param backend: 当前支持 ``["auto", "torch", "paddle", "jittor"]`` 四种类型。 | |||||
| * 为 ``auto`` 时 | |||||
| 首先(1) 根据环境变量 "FASTNLP_BACKEND" 进行判断;如果没有设置则,(2)通过当前 ``sys.modules`` 中已经 import 的 | |||||
| ``backend`` 进行判定。如果以上均无法判定,则报错。如果找到了 ``backend`` ,则按照下述的方式处理。 | |||||
| * 为 ``torch`` 时 | |||||
| 使用 :func:`~fastNLP.prepare_torch_dataloader` 。 | |||||
| * 为 ``paddle`` 时 | |||||
| 使用 :func:`~fastNLP.prepare_paddle_dataloader` 。 | |||||
| * 为 ``jittor`` 时 | |||||
| 使用 :func:`~fastNLP.prepare_jittor_dataloader` 。 | |||||
| :return | |||||
| """ | |||||
| if backend == 'auto': | |||||
| backend = _get_backend() | |||||
| if backend == 'torch': | |||||
| batch_sampler = RandomBatchSampler(dataset=dataset, batch_size=batch_size, shuffle=shuffle, | |||||
| drop_last=drop_last, seed=seed) | |||||
| return prepare_torch_dataloader(ds_or_db=dataset, batch_sampler=batch_sampler, collate_fn=collate_fn, | |||||
| num_workers=num_workers, shuffle=False, sampler=None) | |||||
| elif backend == 'paddle': | |||||
| batch_sampler = RandomBatchSampler(dataset=dataset, batch_size=batch_size, shuffle=shuffle, | |||||
| drop_last=drop_last, seed=seed) | |||||
| return prepare_paddle_dataloader(ds_or_db=dataset, batch_sampler=batch_sampler, collate_fn=collate_fn, | |||||
| num_workers=num_workers) | |||||
| elif backend == 'jittor': | |||||
| sampler = RandomSampler(dataset=dataset, shuffle=shuffle, seed=seed) | |||||
| prepare_jittor_dataloader(ds_or_db=dataset, sampler=sampler, collate_fn=collate_fn, | |||||
| num_workers=num_workers, batch_size=batch_size, shuffle=shuffle, | |||||
| drop_last=drop_last) | |||||
| else: | |||||
| raise ValueError(f"Currently we do not support backend:{backend}.") | |||||
| def _check_module(module): | |||||
| """ | |||||
| 检查该 module 是否含有 某个 backend 的特征 | |||||
| :param module: module 对象 | |||||
| :return: | |||||
| """ | |||||
| try: | |||||
| file = module.__file__ | |||||
| for backend in SUPPORT_BACKENDS: | |||||
| if f'{os.sep}site-packages{os.sep}{backend}' in file: | |||||
| return backend | |||||
| except: | |||||
| pass | |||||
| return None | |||||
| def _get_backend(): | |||||
| if os.environ.get(FASTNLP_BACKEND, None) != None: | |||||
| backend = os.environ.get(FASTNLP_BACKEND) | |||||
| logger.debug(f"Get Dataloader backend:{backend} from os.environ") | |||||
| else: | |||||
| available_backends = set() | |||||
| for module in sys.modules.values(): | |||||
| _backend = _check_module(module) | |||||
| if _backend: | |||||
| available_backends.add(_backend) | |||||
| if len(available_backends) == 1: | |||||
| backend = available_backends.pop() | |||||
| logger.debug(f"Get Dataloader backend:{backend} from sys.modules.") | |||||
| else: | |||||
| raise RuntimeError("Fail to detect dataloader backend automatically, please set it manually.") | |||||
| return backend | |||||
| @@ -4,7 +4,7 @@ __all__ = [ | |||||
| ] | ] | ||||
| from typing import Optional, Callable, Sequence, Union, Tuple, Dict, Mapping, List | from typing import Optional, Callable, Sequence, Union, Tuple, Dict, Mapping, List | ||||
| import inspect | |||||
| from copy import deepcopy | |||||
| from fastNLP.core.dataset import DataSet | from fastNLP.core.dataset import DataSet | ||||
| from fastNLP.core.collators import Collator | from fastNLP.core.collators import Collator | ||||
| @@ -84,7 +84,7 @@ class TorchDataLoader(DataLoader): | |||||
| if isinstance(collate_fn, str): | if isinstance(collate_fn, str): | ||||
| if collate_fn == 'auto': | if collate_fn == 'auto': | ||||
| if isinstance(dataset.dataset, DataSet): # 使用了 fastnlp dataset | if isinstance(dataset.dataset, DataSet): # 使用了 fastnlp dataset | ||||
| collate_fn = dataset.dataset.collator | |||||
| collate_fn = deepcopy(dataset.dataset.collator) | |||||
| collate_fn.set_backend(backend="torch") | collate_fn.set_backend(backend="torch") | ||||
| else: | else: | ||||
| collate_fn = Collator(backend="torch") | collate_fn = Collator(backend="torch") | ||||
| @@ -178,8 +178,8 @@ class TorchDataLoader(DataLoader): | |||||
| def prepare_torch_dataloader(ds_or_db: Union[DataSet, Sequence[DataSet], Mapping[str, DataSet]], | def prepare_torch_dataloader(ds_or_db: Union[DataSet, Sequence[DataSet], Mapping[str, DataSet]], | ||||
| batch_size: int = 16, | |||||
| shuffle: bool = True, | |||||
| batch_size: int = 1, | |||||
| shuffle: bool = False, | |||||
| sampler: Union["Sampler[int]", ReproducibleSampler, UnrepeatedSampler] = None, | sampler: Union["Sampler[int]", ReproducibleSampler, UnrepeatedSampler] = None, | ||||
| batch_sampler: Union["Sampler[Sequence[int]]", ReproducibleBatchSampler] = None, | batch_sampler: Union["Sampler[Sequence[int]]", ReproducibleBatchSampler] = None, | ||||
| num_workers: int = 0, collate_fn: Union[str, Callable, None] = 'auto', | num_workers: int = 0, collate_fn: Union[str, Callable, None] = 'auto', | ||||
| @@ -250,26 +250,15 @@ def prepare_torch_dataloader(ds_or_db: Union[DataSet, Sequence[DataSet], Mapping | |||||
| elif isinstance(ds_or_db, Sequence): | elif isinstance(ds_or_db, Sequence): | ||||
| dl_bundle = [] | dl_bundle = [] | ||||
| for idx, ds in enumerate(ds_or_db): | for idx, ds in enumerate(ds_or_db): | ||||
| if idx == 0: | |||||
| dl_bundle.append( | |||||
| TorchDataLoader(dataset=ds, batch_size=batch_size, | |||||
| shuffle=shuffle, sampler=sampler, batch_sampler=batch_sampler, | |||||
| num_workers=num_workers, collate_fn=collate_fn, pin_memory=pin_memory, | |||||
| drop_last=drop_last, timeout=timeout, worker_init_fn=worker_init_fn, | |||||
| multiprocessing_context=multiprocessing_context, generator=generator, | |||||
| prefetch_factor=prefetch_factor, persistent_workers=persistent_workers, | |||||
| ) | |||||
| ) | |||||
| else: | |||||
| dl_bundle.append( | |||||
| TorchDataLoader(dataset=ds, batch_size=batch_size, | |||||
| shuffle=shuffle, sampler=sampler, batch_sampler=batch_sampler, | |||||
| num_workers=num_workers, collate_fn=collate_fn, pin_memory=pin_memory, | |||||
| drop_last=drop_last, timeout=timeout, worker_init_fn=worker_init_fn, | |||||
| multiprocessing_context=multiprocessing_context, generator=generator, | |||||
| prefetch_factor=prefetch_factor, persistent_workers=persistent_workers, | |||||
| ) | |||||
| ) | |||||
| dl_bundle.append( | |||||
| TorchDataLoader(dataset=ds, batch_size=batch_size, | |||||
| shuffle=shuffle, sampler=sampler, batch_sampler=batch_sampler, | |||||
| num_workers=num_workers, collate_fn=collate_fn, pin_memory=pin_memory, | |||||
| drop_last=drop_last, timeout=timeout, worker_init_fn=worker_init_fn, | |||||
| multiprocessing_context=multiprocessing_context, generator=generator, | |||||
| prefetch_factor=prefetch_factor, persistent_workers=persistent_workers, | |||||
| ) | |||||
| ) | |||||
| return dl_bundle | return dl_bundle | ||||
| elif isinstance(ds_or_db, Mapping): | elif isinstance(ds_or_db, Mapping): | ||||
| @@ -285,7 +285,7 @@ class PaddleFleetDriver(PaddleDriver): | |||||
| self.world_size = int(os.environ.get("PADDLE_TRAINERS_NUM")) | self.world_size = int(os.environ.get("PADDLE_TRAINERS_NUM")) | ||||
| self.global_rank = int(os.environ.get("PADDLE_TRAINER_ID")) | self.global_rank = int(os.environ.get("PADDLE_TRAINER_ID")) | ||||
| reset_seed() | reset_seed() | ||||
| logger.info(f"\nworld size, global rank: {self.world_size}, {self.global_rank}\n") | |||||
| logger.info(f"World size: {self.world_size}, Global rank: {self.global_rank}") | |||||
| if not parallel_helper._is_parallel_ctx_initialized(): | if not parallel_helper._is_parallel_ctx_initialized(): | ||||
| fleet.init(self.role_maker, self.is_collective, self.strategy) | fleet.init(self.role_maker, self.is_collective, self.strategy) | ||||
| @@ -251,7 +251,7 @@ class TorchDDPDriver(TorchDriver): | |||||
| self.world_size = int(os.environ.get("WORLD_SIZE")) | self.world_size = int(os.environ.get("WORLD_SIZE")) | ||||
| self.global_rank = int(os.environ.get("RANK")) | self.global_rank = int(os.environ.get("RANK")) | ||||
| reset_seed() | reset_seed() | ||||
| logger.info(f"World size:{self.world_size}, Global rank:{self.global_rank}") | |||||
| logger.info(f"World size: {self.world_size}, Global rank: {self.global_rank}") | |||||
| if not dist.is_initialized(): | if not dist.is_initialized(): | ||||
| dist.init_process_group( | dist.init_process_group( | ||||
| @@ -61,7 +61,7 @@ def initialize_torch_driver(driver: str, device: Optional[Union[str, "torch.devi | |||||
| elif device is not None and not isinstance(device, torch.device): | elif device is not None and not isinstance(device, torch.device): | ||||
| raise ValueError("Parameter `device` is wrong type, please check our documentation for the right use.") | raise ValueError("Parameter `device` is wrong type, please check our documentation for the right use.") | ||||
| if driver == "torch": | |||||
| if driver == "torch": # single, ddp, 直接启动。 | |||||
| if not isinstance(device, List): | if not isinstance(device, List): | ||||
| return TorchSingleDriver(model, device, **kwargs) | return TorchSingleDriver(model, device, **kwargs) | ||||
| else: | else: | ||||
| @@ -22,6 +22,8 @@ import numpy as np | |||||
| from pathlib import Path | from pathlib import Path | ||||
| from fastNLP.core.log import logger | from fastNLP.core.log import logger | ||||
| from ...envs import SUPPORT_BACKENDS | |||||
| __all__ = [ | __all__ = [ | ||||
| 'get_fn_arg_names', | 'get_fn_arg_names', | ||||
| @@ -0,0 +1,13 @@ | |||||
| import pytest | |||||
| from fastNLP import prepare_dataloader | |||||
| from fastNLP import DataSet | |||||
| @pytest.mark.torch | |||||
| def test_torch(): | |||||
| import torch | |||||
| ds = DataSet({"x": [[1, 2], [2, 3, 4], [4, 5, 6, 7]] * 10, "y": [1, 0, 1] * 10}) | |||||
| dl = prepare_dataloader(ds, batch_size=2, shuffle=True) | |||||
| for batch in dl: | |||||
| assert isinstance(batch['x'], torch.Tensor) | |||||