|
|
@@ -0,0 +1,28 @@ |
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
|
from reproduction.chinese_word_segment.cws_io.cws_reader import NaiveCWSReader |
|
|
|
from fastNLP.core.sampler import SequentialSampler |
|
|
|
from fastNLP.core.batch import Batch |
|
|
|
from reproduction.chinese_word_segment.utils import calculate_pre_rec_f1 |
|
|
|
|
|
|
|
ds_name = 'ncc' |
|
|
|
|
|
|
|
test_dict = torch.load('models/test_context.pkl') |
|
|
|
|
|
|
|
|
|
|
|
pp = test_dict['pipeline'] |
|
|
|
model = test_dict['model'].cuda() |
|
|
|
|
|
|
|
reader = NaiveCWSReader() |
|
|
|
te_filename = '/hdd/fudanNLP/CWS/Multi_Criterion/all_data/{}/{}_raw_data/{}_raw_test.txt'.format(ds_name, ds_name, |
|
|
|
ds_name) |
|
|
|
te_dataset = reader.load(te_filename) |
|
|
|
pp(te_dataset) |
|
|
|
|
|
|
|
batch_size = 64 |
|
|
|
te_batcher = Batch(te_dataset, batch_size, SequentialSampler(), use_cuda=False) |
|
|
|
pre, rec, f1 = calculate_pre_rec_f1(model, te_batcher) |
|
|
|
print("f1:{:.2f}, pre:{:.2f}, rec:{:.2f}".format(f1 * 100, |
|
|
|
pre * 100, |
|
|
|
rec * 100)) |