| @@ -245,10 +245,15 @@ class OneflowDDPDriver(OneflowDriver): | |||
| # evaluator | |||
| elif dist == "unrepeatdist": | |||
| args = self.get_dataloader_args(dataloader) | |||
| if type(args.batch_sampler) != BatchSampler: | |||
| # TODO 这里的目的是判断用户的 batch_sampler 是定制的,可能需要完善 | |||
| logger.warning("Note that you are using customized ``batch_sampler`` in evaluate dataloader or" \ | |||
| "train dataloader while testing ``overfit_batches``, which may cause that" \ | |||
| "the data for distributed evaluation is not unrepeated.") | |||
| if isinstance(args.sampler, ReproducibleSampler): | |||
| sampler = conversion_between_reproducible_and_unrepeated_sampler(args.sampler) | |||
| elif not isinstance(args.sampler, UnrepeatedSampler): | |||
| _check_dataloader_args_for_distributed(args, controller="Evaluator") | |||
| _check_dataloader_args_for_distributed(args, controller='Evaluator') | |||
| sampler = UnrepeatedSequentialSampler( | |||
| dataset=args.dataset | |||
| ) | |||
| @@ -258,6 +263,7 @@ class OneflowDDPDriver(OneflowDriver): | |||
| num_replicas=self.world_size, | |||
| rank=self.global_rank | |||
| ) | |||
| # TODO 这里暂时统一替换为 BatchSampler | |||
| batch_sampler = BatchSampler(sampler, args.batch_size, drop_last=False) | |||
| return replace_batch_sampler(dataloader, batch_sampler) | |||
| else: | |||
| @@ -43,7 +43,6 @@ def initialize_oneflow_driver(driver: str, device: Optional[Union[str, "oneflow. | |||
| raise ValueError("Parameter `device` can only be '-1' when it is smaller than 0.") | |||
| device = [oneflow.device(f"cuda:{w}") for w in range(_could_use_device_num)] | |||
| elif device >= _could_use_device_num: | |||
| print(device, _could_use_device_num) | |||
| raise ValueError("The gpu device that parameter `device` specifies is not existed.") | |||
| else: | |||
| device = oneflow.device(f"cuda:{device}") | |||
| @@ -280,12 +280,23 @@ def optimizer_state_to_device(state, device): | |||
| def _check_dataloader_args_for_distributed(args, controller='Trainer'): | |||
| if type(args.batch_sampler) is not oneflowBatchSampler or (type(args.sampler) not in {oneflowRandomSampler, | |||
| oneflowSequentialSampler}): | |||
| mode = 'training' if controller == 'Trainer' else 'evaluation' | |||
| substitution = 'fastNLP.RandomSampler' if controller == 'Trainer' else 'fastNLP.UnrepeatedSequentialSampler' | |||
| """ | |||
| 检查 dataloader 的 sampler 情况,如果用户替换了自己定制的 sampler ,为了防止 | |||
| 在分布式训练中出现错误会报错。 | |||
| """ | |||
| error_flag = (type(args.sampler) not in {oneflowRandomSampler, oneflowSequentialSampler}) | |||
| if controller == 'Trainer': | |||
| mode = 'training' | |||
| substitution = 'fastNLP.RandomSampler' | |||
| error_flag = (type(args.batch_sampler) != oneflowBatchSampler) or error_flag | |||
| else: # Evaluator | |||
| mode = 'evaluation' | |||
| substitution = 'fastNLP.UnrepeatedSequentialSampler' | |||
| if error_flag: | |||
| raise TypeError(f"Using customized ``batch_sampler`` or ``sampler`` for distributed {mode} may cause " | |||
| f"unpredictable problems, because fastNLP will substitute the dataloader's sampler into " | |||
| f"``{substitution}``. The customized sampler should set for distributed running " | |||
| f"before initializing ``{controller}`` , and then set the " | |||
| f"parameter ``use_dist_sampler`` of ``{controller}`` to ``False``.") | |||
| f"parameter ``use_dist_sampler`` of ``{controller}`` to ``False``." | |||
| f"\n Current batch_sampler: {type(args.batch_sampler)}" | |||
| f"\n Current sampler: {type(args.sampler)}") | |||
| @@ -112,6 +112,7 @@ if _NEED_IMPORT_PADDLE: | |||
| from paddle.optimizer import Optimizer | |||
| from paddle.fluid.reader import _DatasetKind | |||
| from paddle.fluid.dygraph import parallel_helper | |||
| from paddle.io import BatchSampler | |||
| __all__ = [ | |||
| "PaddleFleetDriver", | |||
| @@ -471,9 +472,15 @@ class PaddleFleetDriver(PaddleDriver): | |||
| # evaluator | |||
| elif dist == "unrepeatdist": | |||
| args = self.get_dataloader_args(dataloader) | |||
| if type(args.batch_sampler) != BatchSampler: | |||
| # TODO 这里的目的是判断用户的 batch_sampler 是定制的,可能需要完善 | |||
| logger.warning("Note that you are using customized ``batch_sampler`` in evaluate dataloader or" \ | |||
| "train dataloader while testing ``overfit_batches``, which may cause that" \ | |||
| "the data for distributed evaluation is not unrepeated.") | |||
| if isinstance(args.sampler, ReproducibleSampler): | |||
| sampler = conversion_between_reproducible_and_unrepeated_sampler(args.sampler) | |||
| elif not isinstance(args.sampler, UnrepeatedSampler): | |||
| _check_dataloader_args_for_distributed(args, controller='Evaluator') | |||
| sampler = UnrepeatedSequentialSampler( | |||
| dataset=args.dataset | |||
| ) | |||
| @@ -483,7 +490,9 @@ class PaddleFleetDriver(PaddleDriver): | |||
| num_replicas=self.world_size, | |||
| rank=self.global_rank | |||
| ) | |||
| return replace_sampler(dataloader, sampler) | |||
| # TODO 这里暂时统一替换为 BatchSampler | |||
| batch_sampler = BatchSampler(sampler, args.batch_size, drop_last=False) | |||
| return replace_batch_sampler(dataloader, batch_sampler) | |||
| else: | |||
| raise ValueError("Parameter `dist_sampler` can only be one of three values: ('dist', 'unrepeatdist', None).") | |||
| @@ -266,12 +266,23 @@ def optimizer_state_to_device(state, device): | |||
| return new_state | |||
| def _check_dataloader_args_for_distributed(args, controller='Trainer'): | |||
| if type(args.batch_sampler) is not BatchSampler or (type(args.sampler) not in {RandomSampler, | |||
| SequenceSampler}): | |||
| mode = 'training' if controller == 'Trainer' else 'evaluation' | |||
| substitution = 'fastNLP.RandomSampler' if controller == 'Trainer' else 'fastNLP.UnrepeatedSequentialSampler' | |||
| """ | |||
| 检查 dataloader 的 sampler 情况,如果用户替换了自己定制的 sampler ,为了防止 | |||
| 在分布式训练中出现错误会报错。 | |||
| """ | |||
| error_flag = (type(args.sampler) not in {RandomSampler, SequenceSampler}) | |||
| if controller == 'Trainer': | |||
| mode = 'training' | |||
| substitution = 'fastNLP.RandomSampler' | |||
| error_flag = (type(args.batch_sampler) != BatchSampler) or error_flag | |||
| else: # Evaluator | |||
| mode = 'evaluation' | |||
| substitution = 'fastNLP.UnrepeatedSequentialSampler' | |||
| if error_flag: | |||
| raise TypeError(f"Using customized ``batch_sampler`` or ``sampler`` for distributed {mode} may cause " | |||
| f"unpredictable problems, because fastNLP will substitute the dataloader's sampler into " | |||
| f"``{substitution}``. The customized sampler should set for distributed running " | |||
| f"before initializing ``{controller}`` , and then set the " | |||
| f"parameter ``use_dist_sampler`` of ``{controller}`` to ``False``.") | |||
| f"parameter ``use_dist_sampler`` of ``{controller}`` to ``False``." | |||
| f"\n Current batch_sampler: {type(args.batch_sampler)}" | |||
| f"\n Current sampler: {type(args.sampler)}") | |||
| @@ -617,7 +617,6 @@ class TorchDDPDriver(TorchDriver): | |||
| if isinstance(args.sampler, ReproducibleSampler): | |||
| sampler = conversion_between_reproducible_and_unrepeated_sampler(args.sampler) | |||
| elif not isinstance(args.sampler, UnrepeatedSampler): | |||
| # TODO 避开 batch_sampler 的情况 | |||
| _check_dataloader_args_for_distributed(args, controller='Evaluator') | |||
| sampler = UnrepeatedSequentialSampler( | |||
| dataset=args.dataset | |||