diff --git a/README.md b/README.md
index 2fd27048..74090646 100644
--- a/README.md
+++ b/README.md
@@ -6,4 +6,133 @@

[](http://fastnlp.readthedocs.io/?badge=latest)
-dev0.8.0正在开发中
\ No newline at end of file
+fastNLP是一款轻量级的自然语言处理(NLP)工具包,目标是快速实现NLP任务以及构建复杂模型。
+
+fastNLP具有如下的特性:
+
+- 统一的Tabular式数据容器,简化数据预处理过程;
+- 内置多种数据集的Loader和Pipe,省去预处理代码;
+- 各种方便的NLP工具,例如Embedding加载(包括ELMo和BERT)、中间数据cache等;
+- 部分[数据集与预训练模型](https://docs.qq.com/sheet/DVnpkTnF6VW9UeXdh?c=A1A0A0)的自动下载;
+- 提供多种神经网络组件以及复现模型(涵盖中文分词、命名实体识别、句法分析、文本分类、文本匹配、指代消解、摘要等任务);
+- Trainer提供多种内置Callback函数,方便实验记录、异常捕获等。
+
+## 安装指南
+
+fastNLP 依赖以下包:
+
++ numpy>=1.14.2
++ torch>=1.0.0
++ tqdm>=4.28.1
++ nltk>=3.4.1
++ requests
++ spacy
++ prettytable>=0.7.2
+
+其中torch的安装可能与操作系统及 CUDA 的版本相关,请参见 [PyTorch 官网](https://pytorch.org/) 。
+在依赖包安装完成后,您可以在命令行执行如下指令完成安装
+
+```shell
+pip install fastNLP
+python -m spacy download en
+```
+
+
+## fastNLP教程
+中文[文档](https://fastnlp.readthedocs.io/)、[教程](https://fastnlp.readthedocs.io/zh/latest/user/tutorials.html)
+
+### 快速入门
+
+- [0. 快速入门](https://fastnlp.readthedocs.io/zh/latest/user/quickstart.html)
+
+### 详细使用教程
+
+- [1. 使用DataSet预处理文本](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_1_data_preprocess.html)
+- [2. 使用Vocabulary转换文本与index](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_2_vocabulary.html)
+- [3. 使用Embedding模块将文本转成向量](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_3_embedding.html)
+- [4. 使用Loader和Pipe加载并处理数据集](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_4_load_dataset.html)
+- [5. 动手实现一个文本分类器I-使用Trainer和Tester快速训练和测试](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_5_loss_optimizer.html)
+- [6. 动手实现一个文本分类器II-使用DataSetIter实现自定义训练过程](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_6_datasetiter.html)
+- [7. 使用Metric快速评测你的模型](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_7_metrics.html)
+- [8. 使用Modules和Models快速搭建自定义模型](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_8_modules_models.html)
+- [9. 快速实现序列标注模型](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_9_seq_labeling.html)
+- [10. 使用Callback自定义你的训练过程](https://fastnlp.readthedocs.io/zh/latest/tutorials/tutorial_10_callback.html)
+
+### 扩展教程
+
+- [Extend-1. BertEmbedding的各种用法](https://fastnlp.readthedocs.io/zh/latest/tutorials/extend_1_bert_embedding.html)
+- [Extend-2. 分布式训练简介](https://fastnlp.readthedocs.io/zh/latest/tutorials/extend_2_dist.html)
+- [Extend-3. 使用fitlog 辅助 fastNLP 进行科研](https://fastnlp.readthedocs.io/zh/latest/tutorials/extend_3_fitlog.html)
+
+
+## 内置组件
+
+大部分用于的 NLP 任务神经网络都可以看做由词嵌入(embeddings)和两种模块:编码器(encoder)、解码器(decoder)组成。
+
+以文本分类任务为例,下图展示了一个BiLSTM+Attention实现文本分类器的模型流程图:
+
+
+
+
+fastNLP 在 embeddings 模块中内置了几种不同的embedding:静态embedding(GloVe、word2vec)、上下文相关embedding
+(ELMo、BERT)、字符embedding(基于CNN或者LSTM的CharEmbedding)
+
+与此同时,fastNLP 在 modules 模块中内置了两种模块的诸多组件,可以帮助用户快速搭建自己所需的网络。 两种模块的功能和常见组件如下:
+
+
+
+ 类型 |
+ 功能 |
+ 例子 |
+
+
+ encoder |
+ 将输入编码为具有具有表示能力的向量 |
+ Embedding, RNN, CNN, Transformer, ...
+ |
+
+ decoder |
+ 将具有某种表示意义的向量解码为需要的输出形式 |
+ MLP, CRF, ... |
+
+
+
+
+## 项目结构
+
+
+
+
+
+fastNLP的大致工作流程如上图所示,而项目结构如下:
+
+
+
+ fastNLP |
+ 开源的自然语言处理库 |
+
+
+ fastNLP.core |
+ 实现了核心功能,包括数据处理组件、训练器、测试器等 |
+
+
+ fastNLP.models |
+ 实现了一些完整的神经网络模型 |
+
+
+ fastNLP.modules |
+ 实现了用于搭建神经网络模型的诸多组件 |
+
+
+ fastNLP.embeddings |
+ 实现了将序列index转为向量序列的功能,包括读取预训练embedding等 |
+
+
+ fastNLP.io |
+ 实现了读写功能,包括数据读入与预处理,模型读写,数据与模型自动下载等 |
+
+
+
+
+
+*In memory of @FengZiYjun. May his soul rest in peace. We will miss you very very much!*
diff --git a/fastNLP/core/callbacks/__init__.py b/fastNLP/core/callbacks/__init__.py
index f45cf5e0..a47ab998 100644
--- a/fastNLP/core/callbacks/__init__.py
+++ b/fastNLP/core/callbacks/__init__.py
@@ -4,7 +4,8 @@ __all__ = [
'EventsList',
'Filter',
'CallbackManager',
- 'CheckpointCallback',
+ 'ModelCheckpointCallback',
+ 'TrainerCheckpointCallback',
'choose_progress_callback',
'ProgressCallback',
'RichCallback',
@@ -16,7 +17,7 @@ __all__ = [
from .callback import Callback
from .callback_events import EventsList, Events, Filter
from .callback_manager import CallbackManager
-from .checkpoint_callback import CheckpointCallback
+from .checkpoint_callback import ModelCheckpointCallback, TrainerCheckpointCallback
from .progress_callback import choose_progress_callback, ProgressCallback, RichCallback
from .lr_scheduler_callback import LRSchedCallback
from .load_best_model_callback import LoadBestModelCallback
diff --git a/fastNLP/core/callbacks/callback_manager.py b/fastNLP/core/callbacks/callback_manager.py
index c239f8b1..8b53c70b 100644
--- a/fastNLP/core/callbacks/callback_manager.py
+++ b/fastNLP/core/callbacks/callback_manager.py
@@ -8,7 +8,7 @@ __all__ = [
from .callback_events import Events
from .callback import Callback
-from .checkpoint_callback import CheckpointCallback
+from .checkpoint_callback import TrainerCheckpointCallback
from .progress_callback import ProgressCallback, choose_progress_callback
from fastNLP.core.log import logger
@@ -98,7 +98,7 @@ class CallbackManager:
:return:
"""
for each_callback in self.class_callbacks:
- if isinstance(each_callback, CheckpointCallback) and each_callback.is_trainer_checkpoint:
+ if isinstance(each_callback, TrainerCheckpointCallback):
self._has_trainer_checkpoint = True
self.dissect_one_callback(each_callback)
@@ -210,7 +210,7 @@ class CallbackManager:
each_callback.on_load_checkpoint(trainer, None)
@property
- def has_trainer_chechpoint(self) -> bool:
+ def has_trainer_checkpoint(self) -> bool:
return self._has_trainer_checkpoint
@_transfer
diff --git a/fastNLP/core/callbacks/checkpoint_callback.py b/fastNLP/core/callbacks/checkpoint_callback.py
index 5fcc7e26..d3a3b52d 100644
--- a/fastNLP/core/callbacks/checkpoint_callback.py
+++ b/fastNLP/core/callbacks/checkpoint_callback.py
@@ -1,12 +1,13 @@
+__all__ = [
+ 'ModelCheckpointCallback',
+ 'TrainerCheckpointCallback'
+]
import os
-from typing import Union, Optional, Callable, Dict, Sequence
+from typing import Union, Optional, Callable, Dict, Sequence, Any, Mapping
from pathlib import Path
-from functools import partial
-from time import sleep
+from abc import ABC
+import sys
-__all__ = [
- 'CheckpointCallback'
-]
import fastNLP
from .callback import Callback, Filter
@@ -14,35 +15,37 @@ from fastNLP.core.callbacks.utils import _get_monitor_value
from fastNLP.core.log import logger
from fastNLP.envs import FASTNLP_LAUNCH_TIME
from fastNLP.core.utils import synchronize_safe_rm, synchronize_mkdir
+from fastNLP.core.utils import apply_to_collection
-class CheckpointCallback(Callback):
+class CanItemDataType(ABC):
"""
- 1. 因为只有 'Trainer' 才有 callback,因此评测 metric 实际上就是 validate 时干的事情;
- 2. 默认 'save_last' 为 True,即 model_checkpoint 的默认逻辑是在每一个 epoch 下保存最后的一个模型,模型名字为 last.pth.tar;
- 3. 理论上一个 model_checkpoint 的实例只会负责一个 monitor 的监视,如果用户在训练过程中指定了多个 monitor 的监视,例如 "acc1",
- "acc2", ... 那么我们会为用户创建多个 model_checkpoint 的实例;
- 4. 理论上,在实际保存的过程中,topk 模式和 固定频率保存的模式是完全独立的,我们确实应当采取一些措施至少保证两者的名字不一样;
+ 检测可以进行传输的对象。
+
"""
+ @classmethod
+ def __subclasshook__(cls, subclass: Any) -> Union[bool, Any]:
+ if cls is CanItemDataType:
+ item = getattr(subclass, 'item', None)
+ return callable(item)
+ return NotImplemented
+
+
+
+class CheckpointCallback(Callback):
def __init__(
self,
monitor,
- is_trainer_checkpoint: Optional[bool] = False,
-
save_folder: Optional[Union[str, Path]] = None,
-
save_every_n_epochs: Optional[int] = None,
- save_every_n_global_batches: Optional[int] = None,
+ save_every_n_batches: Optional[int] = None,
save_last: bool = True,
save_topk: Optional[int] = None,
save_on_exception: Optional[Union[BaseException, Sequence[BaseException]]] = None,
-
larger_better: bool = True,
only_state_dict: bool = True,
-
model_save_fn: Optional[Callable] = None,
-
**kwargs,
):
if monitor is None and save_topk is not None:
@@ -51,9 +54,6 @@ class CheckpointCallback(Callback):
if monitor is not None and not isinstance(monitor, str):
raise ValueError("Parameter `monitor` should be of 'str' type.")
- if not isinstance(is_trainer_checkpoint, bool):
- raise TypeError("Parameter 'is_trainer_checkpoint' can only be `bool` type.")
-
if save_folder is None:
logger.warning(
"Parameter `path` is None, and we will use the current work directory to find and load your model.")
@@ -67,15 +67,15 @@ class CheckpointCallback(Callback):
if not isinstance(save_every_n_epochs, int) or save_every_n_epochs < 1:
raise ValueError("parameter save_after_epoch_num should be an int and greater than or equal to 1.")
- # 突然发现有一个骚操作在于 'Filter' 内部记载的状态值例如 'num_called' 是这个类全局的,而每次调用 __call__ 中输入的
- # 函数却是及时传入的,也就是说,我们可以保证 'Filter' 的正常控制频率的逻辑,然后每一次运行的函数都不一样;
- self._filter_every_n_epochs = Filter(every=save_every_n_epochs)
+ else:
+ save_every_n_epochs = sys.maxsize # 使得没有数字可以整除
- if save_every_n_global_batches is not None:
- if not isinstance(save_every_n_global_batches, int) or save_every_n_global_batches < 1:
+ if save_every_n_batches is not None:
+ if not isinstance(save_every_n_batches, int) or save_every_n_batches < 1:
raise ValueError(
- "parameter save_every_n_global_batches should be an int and greater than or equal to 1.")
- self._filter_every_n_global_batches = Filter(every=save_every_n_global_batches)
+ "parameter save_every_n_batches should be an int and greater than or equal to 1.")
+ else:
+ save_every_n_batches = sys.maxsize # 使得没有数字可以整除
if save_topk is not None:
if not isinstance(save_topk, int) or save_topk < 1:
@@ -89,12 +89,12 @@ class CheckpointCallback(Callback):
if not issubclass(exception, BaseException):
raise TypeError("Each exception in parameter `save_on_exception` can only be "
"`BaseException` type.")
-
+ else:
+ save_on_exception = []
self.monitor = monitor
- self.is_trainer_checkpoint = is_trainer_checkpoint
self.save_folder = Path(save_folder)
self.save_every_n_epochs = save_every_n_epochs
- self.save_every_n_global_batches = save_every_n_global_batches
+ self.save_every_n_batches = save_every_n_batches
self.save_last = save_last
self.save_topk = save_topk
self.larger_better = larger_better
@@ -107,7 +107,7 @@ class CheckpointCallback(Callback):
self._topk_model = {}
self._topn = 0 # 表示目前已经保存了几个最好的模型;
- # 因为我们在 `_get_validate_metric` 函数中,当在返回的 `validate_res` 字典中找不到 `monitor` 时,是使用模糊匹配找到的第一个
+ # 因为我们在 `_get_validate_metric` 函数中,当在返回的 `validate_res` 字典中找不到 `monitor` 时,是使用匹配找到的
# key 对应的 value 当做结果;但是这样存在的一个问题在于如果用户传入的 metric 返回的 sub_metric 的名字可能会混淆,并且其在下一次
# 训练的代码中修改了这些 sub_metric 返回的顺序,那么就会导致模糊匹配拿到的 key 和 value 与之前的不是同一个,这显然不是合理的行为;
# 因此我们通过该变量来表示我们通过模糊匹配拿到的 key;
@@ -115,76 +115,83 @@ class CheckpointCallback(Callback):
# 注意这里应当保证只有进程 0 在执行这个操作,因为当用户使用 python -m torch.distributed.launch 来拉起进程的时候,
# FASTNLP_LAUNCH_TIME 在每一个进程上的值是不一样的;
- self.log_filepath = self.save_folder.joinpath(os.environ[FASTNLP_LAUNCH_TIME])
+ self.timestamp_path = self.save_folder.joinpath(os.environ[FASTNLP_LAUNCH_TIME])
# 我们只需要保证这个创建文件夹的操作只在进程 0 上进行即可;因为后续的实际的保存操作,其它进程实际并不会去执行;
- synchronize_mkdir(self.log_filepath)
+ synchronize_mkdir(self.timestamp_path)
def on_validate_end(self, trainer, validate_res):
self._save_topk(trainer, validate_res)
def on_train_epoch_end(self, trainer: "fastNLP.Trainer"):
- self._save_every_n_epochs(trainer)
- self._save_last(trainer)
+ if trainer.cur_epoch_idx % self.save_every_n_epochs == 0:
+ folder_name = f'{self.folder_prefix}-epoch_{trainer.cur_epoch_idx}'
+ self.save(trainer, folder_name=folder_name)
+ if self.save_last:
+ folder_name = f'{self.folder_prefix}-last'
+ self.save(trainer, folder_name=folder_name)
def on_train_batch_end(self, trainer):
- self._save_every_n_global_batches(trainer)
+ if trainer.global_forward_batches % self.save_every_n_batches == 0:
+ folder_name = f'{self.folder_prefix}-epoch_{trainer.cur_epoch_idx}-batch_{trainer.global_forward_batches}'
+ self.save(trainer, folder_name=folder_name)
def on_exception(self, trainer, exception: BaseException):
- if self.save_on_exception is not None and exception.__class__ in self.save_on_exception:
- folder = self._get_checkpoint_real_save_folder(trainer=trainer, topk=False, metric=None)
- folder = folder + f"_{exception.__class__.__name__}"
- self._save_fn(trainer=trainer, topk=False, metric=None, substitute_folder=folder)
+ if exception.__class__ in self.save_on_exception:
+ folder_name = f'{self.folder_prefix}-epoch_{trainer.cur_epoch_idx}-batch_{trainer.global_forward_batches}-' \
+ f'exception_{exception.__class__.__name__}'
+ self.save(trainer=trainer, folder_name=folder_name)
def on_sanity_check_end(self, trainer, sanity_check_res):
+ # 主要核对一下 monitor 是否存在。
self._get_validate_metric(sanity_check_res)
def on_save_checkpoint(self, trainer) -> Dict:
"""
- 我们需要保存 CheckpointCallback 内部的几个 filter 的状态;
+ 保存 timestamp_path 使得之后可以继续训练并保存到该文件夹。
+ topk_model的状态
+ _real_monitor的值
"""
+
states = {}
- if self.save_every_n_epochs is not None:
- states["_filter_every_n_epochs"] = self._filter_every_n_epochs.state_dict()
- if self.save_every_n_global_batches is not None:
- states["_filter_every_n_global_batches"] = self._filter_every_n_global_batches.state_dict()
- states["real_monitor"] = self._real_monitor
+ states['timestamp_path'] = str(self.timestamp_path.absolute())
+ states['_topk_model'] = apply_to_collection(self._topk_model, dtype=CanItemDataType,
+ function=lambda x:x.item())
+ states['save_topk'] = 0 if self.save_topk is None else self.save_topk
+ states['_real_monitor'] = self._real_monitor
return states
def on_load_checkpoint(self, trainer, states: Optional[Dict]):
- if self.save_every_n_epochs is not None:
- self._filter_every_n_epochs.load_state_dict(states["_filter_every_n_epochs"])
- if self.save_every_n_global_batches is not None:
- self._filter_every_n_global_batches.load_state_dict(states["_filter_every_n_global_batches"])
+ timestamp_path = states['timestamp_path']
+ if not os.path.exists(timestamp_path):
+ logger.info(f"The resuming save folder {timestamp_path} is not exists, will checkpoint save to "
+ f" {self.timestamp_path.absolute()}.")
+ else:
+ logger.info(f"Resume to save in path: {timestamp_path}.")
+ self.timestamp_path = Path(timestamp_path)
+ _topk_model = states['_topk_model']
+ save_topk = None if int(states['save_topk']) == 0 else int(states['save_topk'])
+ if save_topk is not None and self.save_topk is not None:
+ assert self.save_topk == save_topk, f"The checkpoint set save_topk={save_topk}, while this callback set it " \
+ f"as {save_topk}."
+ self._topk_model.update(self._topk_model)
self._real_monitor = states["real_monitor"]
- def _save_every_n_epochs(self, trainer: "fastNLP.Trainer"):
- if self.save_every_n_epochs is not None:
- if self.is_trainer_checkpoint:
- _fn_every_n_epochs = trainer.save
- else:
- _fn_every_n_epochs = trainer.save_model
- _fn_every_n_epochs = partial(self._save_fn, trainer, False, None, _fn_every_n_epochs, None)
- _fn_every_n_epochs = self._filter_every_n_epochs(_fn_every_n_epochs)
- _fn_every_n_epochs()
-
- def _save_every_n_global_batches(self, trainer: "fastNLP.Trainer"):
- if self.save_every_n_global_batches is not None:
- if self.is_trainer_checkpoint:
- _fn_every_n_global_batches = trainer.save
- else:
- _fn_every_n_global_batches = trainer.save_model
- _fn_every_n_global_batches = partial(self._save_fn, trainer, False, None, _fn_every_n_global_batches, None)
- _fn_every_n_global_batches = self._filter_every_n_global_batches(_fn_every_n_global_batches)
- _fn_every_n_global_batches()
-
def _save_topk(self, trainer: "fastNLP.Trainer", validate_res: Dict):
+ """
+ 根据validate_res决定保存哪些model的函数。会自动移除掉不满足topk的文件夹。
+
+ :param trainer:
+ :param validate_res:
+ :return:
+ """
if self.save_topk is not None:
_metric_value = self._get_validate_metric(validate_res)
- _saved_name = self._get_checkpoint_real_save_folder(trainer=trainer, topk=True, metric=_metric_value)
+ folder_name = f"{self.folder_prefix}-epoch_{trainer.cur_epoch_idx}-batch_{trainer.global_forward_batches}" \
+ f"-{self._real_monitor}_{_metric_value}"
_should_save = False
if self._topn < self.save_topk:
- self._topk_model[_saved_name] = _metric_value
+ self._topk_model[folder_name] = _metric_value
self._topn += 1
_should_save = True
else:
@@ -192,39 +199,27 @@ class CheckpointCallback(Callback):
key=lambda x: self._topk_model[x])
if (self.larger_better and _metric_value > self._topk_model[_least_valuable_model]) or \
(self.larger_better is False and _metric_value < self._topk_model[_least_valuable_model]):
- self._topk_model[_saved_name] = _metric_value
+ self._topk_model[folder_name] = _metric_value
_should_save = True
self._topk_model.pop(_least_valuable_model)
- synchronize_safe_rm(self.log_filepath.joinpath(_least_valuable_model))
+ synchronize_safe_rm(self.timestamp_path.joinpath(_least_valuable_model))
assert len(self._topk_model) == self.save_topk == self._topn
if _should_save:
- self._save_fn(trainer=trainer, topk=True, metric=_metric_value, substitute_folder=_saved_name)
+ self.save(trainer, folder_name=folder_name)
- def _save_last(self, trainer: "fastNLP.Trainer"):
- if self.save_last:
- self._save_fn(trainer=trainer, topk=False, metric=None, substitute_folder="last")
-
- def _save_fn(self, trainer, topk: bool = False, metric: Optional[Union[int, float]] = None,
- substitute_fn: Optional[Callable] = None, substitute_folder: Optional[str] = None):
- # 首先根据当前的 epoch 和 batch 在 parent_path/FASTNLP_LAUNCH_TIME 下创建子文件夹 epoch-batch-monitor 或者
- # epoch-batch-monitor-monitor_value;
- if substitute_folder is None:
- folder = self.log_filepath.joinpath(self._get_checkpoint_real_save_folder(trainer, topk, metric))
- else:
- folder = self.log_filepath.joinpath(substitute_folder)
+ def save(self, trainer, folder_name):
+ """
+ 执行保存的函数,将数据保存在 save_folder/timestamp/folder_name 下。
+ :param trainer:
+ :param folder_name:
+ :return:
+ """
+ folder = self.timestamp_path.joinpath(folder_name)
synchronize_mkdir(folder)
-
- # 然后再调用 trainer 的 save_model(用于保存模型)或者 save(用于断点重训)函数;
- if substitute_fn is not None:
- _fn = substitute_fn
- else:
- if self.is_trainer_checkpoint:
- _fn = trainer.save
- else:
- _fn = trainer.save_model
+ _fn = getattr(trainer, self.save_fn_name)
_fn(
folder=folder,
only_state_dict=self.only_state_dict,
@@ -243,18 +238,95 @@ class CheckpointCallback(Callback):
self._real_monitor = use_monitor
return value
- def _get_checkpoint_real_save_folder(self, trainer: "fastNLP.Trainer", topk: bool = False,
- metric: Optional[Union[int, float]] = None) -> str:
+ @property
+ def folder_prefix(self):
+ raise NotImplementedError("The `folder_prefix` is not specified")
+
+ @property
+ def save_fn_name(self):
+ raise NotImplementedError("The `save_fn_name` is not specified.")
+
+
+class ModelCheckpointCallback(CheckpointCallback):
+ """
+ 保存模型 checkpoint 的 callback ,其保存的文件目录以及文件名命名规则如下
+
+ - save_folder/
+ - YYYY-mm-dd-HH_MM_SS_fffff/ # 自动根据当前脚本的启动时间创建的
+ - model-epoch_{epoch_idx}/ # 满足 save_every_n_epochs 条件保存的模型
+ - model-epoch_{epoch_idx}-batch_{global_batch_idx}/ # 满足 save_every_n_batches 保存的模型
+ - model-last/ # 最后一个 epoch 的保存
+ - model-epoch_{epoch_idx}-batch_{global_batch_idx}-exception_{exception_type}/ # exception时保存。
+ - model-epoch_{epoch_idx}-batch_{global_batch_idx}-{monitor}_{monitor_value}/ # 满足topk条件存储文件名
+
+ model_save_fn 为 None ,则以上每个 folder 中,将生成 fastnlp_model.pkl.tar 文件。
+ 若 model_save_fn 不为 None,则 fastNLP 将 folder 绝对路径传递给该函数,fastNLP 不在该 folder 下创建任何文件。
+
+ :param monitor: 监控的 metric 的名称。如果在 evaluation 结果中没有找到完全一致的名称,将使用 最短公共字符串算法 找到最匹配
+ 的那个作为 monitor 。
+ :param save_folder: 保存的文件夹,fastNLP 将在该文件下以时间戳创建子文件夹,并在里面保存。因此不同次运行可以将被保存到不同的
+ 时间戳文件夹中。如果为 None ,默认使用当前文件夹。
+ :param save_every_n_epochs: 多少个 epoch 保存一次。
+ :param save_every_n_batches: 多少个 batch 保存一次。
+ :param save_last: 如果为 True ,将在每次 epoch 运行结束都保存一次,会覆盖之前的保存。
+ :param save_topk: 保存 monitor 结果 topK 个。
+ :param save_on_exception: 在出异常信息时,是否保存。传入需要捕获的异常的类。
+ :param larger_better: monitor 的值是否时越大越好。
+ :param only_state_dict: 保存模型时是否只保存 state_dict 。当 model_save_fn 不为 None 时,该参数无效。
+ :param model_save_fn: 个性化的保存函数,当触发保存操作时,就调用这个函数,这个函数应当接受一个文件夹作为参数,不返回任何东西。
+ 如果传入了 model_save_fn 函数,fastNLP 将不再进行模型相关的保存。在多卡场景下,我们只在 rank 0 上会运行该函数。
+ :param kwargs:
+ """
+ @property
+ def save_fn_name(self):
+ return 'save_model'
+
+ @property
+ def callback_name(self):
"""
- 获取当前保存模型的真正地名字;
- metric 参数仅当 mode 为 'topk' 时起作用;
+ 通过该值决定两个 CheckpointCallback 实例是否可以共用断点重训的状态;
+ :return:
"""
- cur_epoch_idx = trainer.cur_epoch_idx
- global_forward_batches = trainer.global_forward_batches
- _other = ""
- if topk:
- _other = f"_{metric}"
- return f"epoch_{cur_epoch_idx}-global_batch_{global_forward_batches}-{self._real_monitor}{_other}"
+ return f"model_checkpoint#monitor-{self.monitor}#topK-{self.save_topk}#only_state_dict-{self.only_state_dict}"
+
+ @property
+ def folder_prefix(self):
+ return 'model'
+
+
+class TrainerCheckpointCallback(CheckpointCallback):
+ """
+ 保存 Trainer checkpoint 的 callback ,其保存的文件目录以及文件名命名规则如下
+
+ - save_folder/
+ - YYYY-mm-dd-HH_MM_SS_fffff/ # 自动根据当前脚本的启动时间创建的
+ - trainer-epoch_{epoch_idx}/ # 满足 save_every_n_epochs 条件保存的模型
+ - trainer-epoch_{epoch_idx}-batch_{global_batch_idx}/ # 满足 save_every_n_batches 保存的模型
+ - trainer-last/ # 最后一个 epoch 的保存
+ - trainer-epoch_{epoch_idx}-batch_{global_batch_idx}-exception_{exception_type}/ # exception时保存。
+ - trainer-epoch_{epoch_idx}-batch_{global_batch_idx}-{monitor}_{monitor_value}/ # 满足topk条件存储文件名
+
+ model_save_fn 为 None ,则以上每个 folder 中,将生成两个文件:fastnlp_trainer.pkl.tar 以及 fastnlp_model.pkl.tar 。
+ 若 model_save_fn 不为 None,则 fastNLP 只会在每个 folder 下生成 fastnlp_trainer.pkl.tar 文件。
+
+ :param monitor: 监控的 metric 的名称。如果在 evaluation 结果中没有找到完全一致的名称,将使用 最短公共字符串算法 找到最匹配
+ 的那个作为 monitor 。
+ :param save_folder: 保存的文件夹,fastNLP 将在该文件下以时间戳创建子文件夹,并在里面保存。因此不同次运行可以将被保存到不同的
+ 时间戳文件夹中。如果为 None ,默认使用当前文件夹。
+ :param save_every_n_epochs: 多少个 epoch 保存一次。
+ :param save_every_n_batches: 多少个 batch 保存一次。
+ :param save_last: 如果为 True ,将在每次 epoch 运行结束都保存一次,会覆盖之前的保存。
+ :param save_topk: 保存 monitor 结果 topK 个。
+ :param save_on_exception: 在出异常信息时,是否保存。
+ :param larger_better: monitor 的值是否时越大越好。
+ :param only_state_dict: 保存模型时是否只保存 state_dict 。当 model_save_fn 不为 None 时,该参数无意义。
+ :param model_save_fn: 个性化的保存函数,当触发保存操作时,就调用这个函数,这个函数应当接受一个文件夹作为参数,不返回任何东西。
+ 如果传入了 model_save_fn 函数,fastNLP 将不再进行模型相关的保存。在多卡场景下,我们只在 rank 0 上会运行该函数。
+ :param kwargs:
+ """
+ @property
+ def save_fn_name(self):
+ return 'save'
@property
def callback_name(self):
@@ -262,6 +334,8 @@ class CheckpointCallback(Callback):
通过该值决定两个 CheckpointCallback 实例是否可以共用断点重训的状态;
:return:
"""
- return f"monitor-{self.monitor}#trainer_checkpoint-{self.is_trainer_checkpoint}#only_state_dict-{self.only_state_dict}"
-
+ return f"trainer_checkpoint#monitor-{self.monitor}#topK-{self.save_topk}#only_state_dict-{self.only_state_dict}"
+ @property
+ def folder_prefix(self):
+ return 'trainer'
diff --git a/fastNLP/core/callbacks/load_best_model_callback.py b/fastNLP/core/callbacks/load_best_model_callback.py
index b4ef4e62..e7b94f8c 100644
--- a/fastNLP/core/callbacks/load_best_model_callback.py
+++ b/fastNLP/core/callbacks/load_best_model_callback.py
@@ -31,7 +31,7 @@ class LoadBestModelCallback(Callback):
请在函数内完成对模型的保存。
:param model_load_fn: 加载 model 的函数,与 model_save_fn 必须同时不为空。本函数的输入为一个已经创建好的文件夹,没有输出,
请在函数内完成对模型的加载。
- :param delete_after_train: 在加载了最佳模型之后是否删掉模型。
+ :param delete_after_train: 在训练结束后是否删掉模型。
"""
if model_load_fn is not None:
assert callable(model_load_fn), "`model_load_fn` must be a callable object."
diff --git a/fastNLP/core/controllers/evaluator.py b/fastNLP/core/controllers/evaluator.py
index f58a7faf..bd66d0a0 100644
--- a/fastNLP/core/controllers/evaluator.py
+++ b/fastNLP/core/controllers/evaluator.py
@@ -133,17 +133,18 @@ class Evaluator:
self.driver.barrier()
- def run(self, num_eval_batch_per_dl: int = -1) -> Dict:
+ def run(self, num_eval_batch_per_dl: int = -1, **kwargs) -> Dict:
"""
返回一个字典类型的数据,其中key为metric的名字,value为对应metric的结果。
- 如果存在多个metric,一个dataloader的情况,key的命名规则是
- metric_indicator_name#metric_name
- 如果存在多个数据集,一个metric的情况,key的命名规则是
- metric_indicator_name#dataloader_name (其中 # 是默认的 separator ,可以通过 Evaluator 初始化参数修改)。
- 如果存在多个metric,多个dataloader的情况,key的命名规则是
- metric_indicator_name#metric_name#dataloader_name
- :param num_eval_batch_per_dl: 每个 dataloader 测试多少个 batch 的数据,-1 为测试所有数据。
+ 如果存在多个metric,一个dataloader的情况,key的命名规则是
+ metric_indicator_name#metric_name
+ 如果存在多个数据集,一个metric的情况,key的命名规则是
+ metric_indicator_name#metric_name#dataloader_name (其中 # 是默认的 separator ,可以通过 Evaluator 初始化参数修改)。
+ 如果存在多个metric,多个dataloader的情况,key的命名规则是
+ metric_indicator_name#metric_name#dataloader_name
+ 其中 metric_indicator_name 可能不存在。
+ :param num_eval_batch_per_dl: 每个 dataloader 测试多少个 batch 的数据,-1 为测试所有数据。
:return:
"""
assert isinstance(num_eval_batch_per_dl, int), "num_eval_batch_per_dl must be of int type."
@@ -157,7 +158,6 @@ class Evaluator:
assert self.driver.has_test_dataloaders()
metric_results = {}
-
self.reset()
evaluate_context = self.driver.get_evaluate_context()
self.driver.set_model_mode(mode='eval' if self.model_use_eval_mode else 'train')
diff --git a/fastNLP/core/controllers/trainer.py b/fastNLP/core/controllers/trainer.py
index 9e1ccfbf..11697bdc 100644
--- a/fastNLP/core/controllers/trainer.py
+++ b/fastNLP/core/controllers/trainer.py
@@ -23,7 +23,7 @@ from fastNLP.core.drivers import Driver
from fastNLP.core.drivers.utils import choose_driver
from fastNLP.core.utils import check_fn_not_empty_params, get_fn_arg_names, match_and_substitute_params, nullcontext
from fastNLP.envs import rank_zero_call
-from fastNLP.core.samplers import ReproducibleIterator, ReproducibleBatchSampler
+from fastNLP.core.samplers import ReproducibleSampler, RandomBatchSampler
from fastNLP.core.log import logger
from fastNLP.envs import FASTNLP_MODEL_FILENAME
@@ -251,7 +251,7 @@ class Trainer(TrainerEventTrigger):
self.driver.set_deterministic_dataloader(self.dataloader)
self.dataloader = self.driver.set_dist_repro_dataloader(dataloader=self.train_dataloader, dist=_dist_sampler,
- reproducible=self.callback_manager.has_trainer_chechpoint)
+ reproducible=self.callback_manager.has_trainer_checkpoint)
self.set_grad_to_none = kwargs.get("set_grad_to_none", True)
self.on_after_trainer_initialized(self.driver)
@@ -291,6 +291,7 @@ class Trainer(TrainerEventTrigger):
raise FileNotFoundError("You are using `resume_from`, but we can not find your specific file.")
if self.evaluator is not None and num_eval_sanity_batch > 0:
+ logger.info(f"Running evaluator sanity check for {num_eval_sanity_batch} batches.")
self.on_sanity_check_begin()
sanity_check_res = self.evaluator.run(num_eval_batch_per_dl=num_eval_sanity_batch)
self.on_sanity_check_end(sanity_check_res)
@@ -509,7 +510,7 @@ class Trainer(TrainerEventTrigger):
:param folder: 保存模型的地址;
:param only_state_dict: 是否只保存模型的 `state_dict`;
- :param save_fn: 用户自己定制的用来替换该保存函数本身保存逻辑的函数;
+ :param model_save_fn: 用户自己定制的用来替换该保存函数本身保存逻辑的函数;
:param kwargs: 一些 driver 的保存模型的函数的参数另有其它;
"""
@@ -534,7 +535,16 @@ class Trainer(TrainerEventTrigger):
def load_model(self, folder: Union[str, Path, BinaryIO, io.BytesIO], only_state_dict: bool = False,
model_load_fn: Optional[Callable] = None, **kwargs):
+ """
+ 加载模型
+ :param folder: 读取 model 的文件夹,默认会尝试读取该文件夹下的 fastnlp_model.pkl.tar 文件。在 model_load_fn 不为空时,
+ 直接将该 folder 传递到 model_load_fn 中。
+ :param only_state_dict: 要读取的文件中是否仅包含模型权重。在 model_load_fn 不为 None 时,该参数无意义。
+ :param model_load_fn: callable 的函数,接受一个 folder 作为参数,不返回任何内容。
+ :param kwargs:
+ :return:
+ """
self.on_load_model()
self.driver.barrier()
if not isinstance(folder, (io.BytesIO, BinaryIO)):
@@ -555,7 +565,13 @@ class Trainer(TrainerEventTrigger):
def save(self, folder: Union[str, Path], only_state_dict: bool = True, model_save_fn: Optional[Callable] = None, **kwargs):
r"""
- 用于断点重训的保存函数;
+ 用于断点重训 Trainer 的保存函数;
+
+ :param folder:
+ :param only_state_dict:
+ :param model_save_fn:
+ :param kwargs:
+ :return:
"""
self.driver.barrier()
@@ -594,7 +610,7 @@ class Trainer(TrainerEventTrigger):
r"""
用于断点重训的加载函数;
注意在 fastNLP 中断点重训的保存和加载逻辑是分开的,因此可能存在一种情况:用户只希望加载一个断点重训的状态,而在之后不再进行断点重训的
- 保存;在这种情况下,dataloader 的 sampler 就不一定会被替换成我们的 ReproducibleIterator;
+ 保存;在这种情况下,dataloader 的 sampler 就不一定会被替换成我们的 ReproducibleSampler;
注意我们目前不支持单卡到多卡的断点重训;
diff --git a/fastNLP/core/dataloaders/torch_dataloader/fdl.py b/fastNLP/core/dataloaders/torch_dataloader/fdl.py
index 0cae39ac..d56dbac9 100644
--- a/fastNLP/core/dataloaders/torch_dataloader/fdl.py
+++ b/fastNLP/core/dataloaders/torch_dataloader/fdl.py
@@ -24,6 +24,7 @@ class _FDataSet:
对Dataset的封装,主要是修改dataset的__getitem__函数,增加返回下标idx,值得注意的是dataset需要实现__getattribute__函数才能在_FDataset
中调用dataset的方法
"""
+
def __init__(self, dataset) -> None:
self.dataset = dataset
@@ -45,6 +46,7 @@ class TorchDataLoader(DataLoader):
提供给使用pytorch框架的DataLoader函数,若是配套使用FastNLP的dataset则可以自动使用AutoCollate函数对数据进行自动padding操作,用户也可以通过
提供的方法调节设置collate_fn的若干参数。
"""
+
def __init__(self, dataset, batch_size: int = 1,
shuffle: bool = False, sampler: Optional["Sampler[int]"] = None,
batch_sampler: Optional["Sampler[Sequence[int]]"] = None,
@@ -175,17 +177,17 @@ class TorchDataLoader(DataLoader):
def prepare_torch_dataloader(ds_or_db: Union[DataSet, DataBundle, Sequence[DataSet], Mapping[str, DataSet]],
- batch_size: int = 1,
- shuffle: bool = False, sampler: Optional["Sampler[int]"] = None,
- batch_sampler: Optional["Sampler[Sequence[int]]"] = None,
- num_workers: int = 0, collate_fn: Optional[Callable] = None,
- pin_memory: bool = False, drop_last: bool = False,
- timeout: float = 0, worker_init_fn: Optional[Callable] = None,
- multiprocessing_context=None, generator=None, prefetch_factor: int = 2,
- persistent_workers: bool = False, non_train_sampler: Optional["Sampler[int]"] = None,
- non_train_batch_size: int = 16, as_numpy: bool = False,
- input_fields: Union[List, str] = None)\
- -> Union[TorchDataLoader, Dict[str, TorchDataLoader], Sequence[TorchDataLoader]]:
+ batch_size: int = 1,
+ shuffle: bool = False, sampler: Optional["Sampler[int]"] = None,
+ batch_sampler: Optional["Sampler[Sequence[int]]"] = None,
+ num_workers: int = 0, collate_fn: Optional[Callable] = None,
+ pin_memory: bool = False, drop_last: bool = False,
+ timeout: float = 0, worker_init_fn: Optional[Callable] = None,
+ multiprocessing_context=None, generator=None, prefetch_factor: int = 2,
+ persistent_workers: bool = False, non_train_sampler: Optional["Sampler[int]"] = None,
+ non_train_batch_size: int = 16, as_numpy: bool = False,
+ input_fields: Union[List, str, None] = None) \
+ -> Union[TorchDataLoader, Dict[str, TorchDataLoader], Sequence[TorchDataLoader]]:
"""
传入dataset或者data_bundle后,将其处理返回相对应的FdataLoader实例化对象
@@ -221,7 +223,8 @@ def prepare_torch_dataloader(ds_or_db: Union[DataSet, DataBundle, Sequence[DataS
multiprocessing_context=multiprocessing_context, generator=generator,
prefetch_factor=prefetch_factor, persistent_workers=persistent_workers,
as_numpy=as_numpy)
- dl.set_input(*input_fields)
+ if input_fields:
+ dl.set_input(*input_fields)
return dl
elif isinstance(ds_or_db, DataBundle):
@@ -233,17 +236,21 @@ def prepare_torch_dataloader(ds_or_db: Union[DataSet, DataBundle, Sequence[DataS
num_workers=num_workers, collate_fn=collate_fn, pin_memory=pin_memory,
drop_last=drop_last, timeout=timeout, worker_init_fn=worker_init_fn,
multiprocessing_context=multiprocessing_context, generator=generator,
- prefetch_factor=prefetch_factor, persistent_workers=persistent_workers,
+ prefetch_factor=prefetch_factor,
+ persistent_workers=persistent_workers,
as_numpy=as_numpy)
else:
dl_bundle[name] = TorchDataLoader(dataset=ds, batch_size=non_train_batch_size,
- shuffle=shuffle, sampler=non_train_sampler, batch_sampler=batch_sampler,
+ shuffle=shuffle, sampler=non_train_sampler,
+ batch_sampler=batch_sampler,
num_workers=num_workers, collate_fn=collate_fn, pin_memory=pin_memory,
drop_last=drop_last, timeout=timeout, worker_init_fn=worker_init_fn,
multiprocessing_context=multiprocessing_context, generator=generator,
- prefetch_factor=prefetch_factor, persistent_workers=persistent_workers,
+ prefetch_factor=prefetch_factor,
+ persistent_workers=persistent_workers,
as_numpy=as_numpy)
- dl_bundle[name].set_input(*input_fields)
+ if input_fields:
+ dl_bundle[name].set_input(*input_fields)
return dl_bundle
elif isinstance(ds_or_db, Sequence):
@@ -269,8 +276,9 @@ def prepare_torch_dataloader(ds_or_db: Union[DataSet, DataBundle, Sequence[DataS
prefetch_factor=prefetch_factor, persistent_workers=persistent_workers,
as_numpy=as_numpy)
)
- for dl in dl_bundle:
- dl.set_input(*input_fields)
+ if input_fields:
+ for dl in dl_bundle:
+ dl.set_input(*input_fields)
return dl_bundle
elif isinstance(ds_or_db, Mapping):
@@ -282,18 +290,22 @@ def prepare_torch_dataloader(ds_or_db: Union[DataSet, DataBundle, Sequence[DataS
num_workers=num_workers, collate_fn=collate_fn, pin_memory=pin_memory,
drop_last=drop_last, timeout=timeout, worker_init_fn=worker_init_fn,
multiprocessing_context=multiprocessing_context, generator=generator,
- prefetch_factor=prefetch_factor, persistent_workers=persistent_workers,
+ prefetch_factor=prefetch_factor,
+ persistent_workers=persistent_workers,
as_numpy=as_numpy)
else:
dl_bundle[name] = TorchDataLoader(dataset=ds, batch_size=non_train_batch_size,
- shuffle=shuffle, sampler=non_train_sampler, batch_sampler=batch_sampler,
+ shuffle=shuffle, sampler=non_train_sampler,
+ batch_sampler=batch_sampler,
num_workers=num_workers, collate_fn=collate_fn, pin_memory=pin_memory,
drop_last=drop_last, timeout=timeout, worker_init_fn=worker_init_fn,
multiprocessing_context=multiprocessing_context, generator=generator,
- prefetch_factor=prefetch_factor, persistent_workers=persistent_workers,
+ prefetch_factor=prefetch_factor,
+ persistent_workers=persistent_workers,
as_numpy=as_numpy)
- dl_bundle[name].set_input(*input_fields)
+ if input_fields:
+ dl_bundle[name].set_input(*input_fields)
return dl_bundle
else:
diff --git a/fastNLP/core/dataset/dataset.py b/fastNLP/core/dataset/dataset.py
index 037fde00..9630a3a0 100644
--- a/fastNLP/core/dataset/dataset.py
+++ b/fastNLP/core/dataset/dataset.py
@@ -8,9 +8,8 @@ __all__ = [
import _pickle as pickle
from copy import deepcopy
-from typing import Optional, List, Callable, Union, Dict, Any
+from typing import Optional, List, Callable, Union, Dict, Any, Mapping
from functools import partial
-import warnings
import numpy as np
from threading import Thread
@@ -197,6 +196,20 @@ class DataSet:
else:
raise KeyError("Unrecognized type {} for idx in __getitem__ method".format(type(idx)))
+ def __setitem__(self, key, value):
+ assert isinstance(key, int) and keyList:
"""
# # 首先将所有的都移动到cpu上并且连续,防止有 pickle 出问题
# obj = apply_to_collection(obj, torch.Tensor, _to_device, device=torch.device('cpu'))
+ if device is None:
+ device = torch.cuda.current_device()
if _TORCH_GREATER_EQUAL_1_8:
objs = [None for _ in range(dist.get_world_size(group))]
dist.all_gather_object(objs, obj)
+ objs = apply_to_collection(objs, torch.Tensor, _to_device, device=device) # 保证如果有tensor的话,所有tensor都在当前卡上
return objs
- if device is None:
- device = torch.cuda.current_device()
group = group if group is not None else torch.distributed.group.WORLD
data = convert_to_tensors(obj, device=device)
data = apply_to_collection(data, (torch.Tensor, tuple), _all_gather, group=group)
diff --git a/fastNLP/core/drivers/torch_driver/initialize_torch_driver.py b/fastNLP/core/drivers/torch_driver/initialize_torch_driver.py
index 35b20b72..2c9c5162 100644
--- a/fastNLP/core/drivers/torch_driver/initialize_torch_driver.py
+++ b/fastNLP/core/drivers/torch_driver/initialize_torch_driver.py
@@ -27,7 +27,7 @@ def initialize_torch_driver(driver: str, device: Optional[Union[str, torch.devic
# world_size 和 rank
if FASTNLP_BACKEND_LAUNCH in os.environ:
if device is not None:
- logger.warning("Parameter `device` would be ignored when you are using `torch.distributed.run` to pull "
+ logger.info("Parameter `device` would be ignored when you are using `torch.distributed.run` to pull "
"up your script. And we will directly get the local device via "
"`os.environ['LOCAL_RANK']`.")
return TorchDDPDriver(model, torch.device(f"cuda:{os.environ['LOCAL_RANK']}"), True, **kwargs)
@@ -39,11 +39,14 @@ def initialize_torch_driver(driver: str, device: Optional[Union[str, torch.devic
if isinstance(device, str):
device = torch.device(device)
elif isinstance(device, int):
- if device < 0 and device != -1:
- raise ValueError("Parameter `device` can only be '-1' when it is smaller than 0.")
- if device >= _could_use_device_num:
+ if device < 0:
+ if device != -1:
+ raise ValueError("Parameter `device` can only be '-1' when it is smaller than 0.")
+ device = [torch.device(f"cuda:{w}") for w in range(_could_use_device_num)]
+ elif device >= _could_use_device_num:
raise ValueError("The gpu device that parameter `device` specifies is not existed.")
- device = torch.device(f"cuda:{device}")
+ else:
+ device = torch.device(f"cuda:{device}")
elif isinstance(device, Sequence):
device = list(set(device))
for each in device:
@@ -62,7 +65,7 @@ def initialize_torch_driver(driver: str, device: Optional[Union[str, torch.devic
if not isinstance(device, List):
return TorchSingleDriver(model, device, **kwargs)
else:
- logger.warning("Notice you are using `torch` driver but your chosen `device` are multi gpus, we will use "
+ logger.info("Notice you are using `torch` driver but your chosen `device` are multi gpus, we will use "
"`TorchDDPDriver` by default. But if you mean using `TorchDDPDriver`, you should choose parameter"
"`driver` as `TorchDDPDriver`.")
return TorchDDPDriver(model, device, **kwargs)
diff --git a/fastNLP/core/drivers/torch_driver/single_device.py b/fastNLP/core/drivers/torch_driver/single_device.py
index 952712be..cf8c19a8 100644
--- a/fastNLP/core/drivers/torch_driver/single_device.py
+++ b/fastNLP/core/drivers/torch_driver/single_device.py
@@ -13,9 +13,8 @@ __all__ = [
from .torch_driver import TorchDriver
from fastNLP.core.drivers.torch_driver.utils import replace_sampler, replace_batch_sampler
from fastNLP.core.utils import auto_param_call
-from fastNLP.core.samplers import ReproducibleBatchSampler, ReproducibleIterator
+from fastNLP.core.samplers import RandomBatchSampler, ReproducibleSampler, re_instantiate_sampler
from fastNLP.core.log import logger
-from fastNLP.core.samplers import re_instantiate_sampler
class TorchSingleDriver(TorchDriver):
@@ -130,25 +129,31 @@ class TorchSingleDriver(TorchDriver):
else:
return self._test_step(batch)
- def set_dist_repro_dataloader(self, dataloader, dist: Union[str, ReproducibleBatchSampler, ReproducibleIterator]=None,
+ def set_dist_repro_dataloader(self, dataloader, dist: Union[str, RandomBatchSampler, ReproducibleSampler]=None,
reproducible: bool = False):
- if isinstance(dist, ReproducibleBatchSampler):
+
+ # 如果 dist 为 RandomBatchSampler, ReproducibleIterator 说明是在断点重训时 driver.load 函数调用;
+ if isinstance(dist, RandomBatchSampler):
return replace_batch_sampler(dataloader, dist)
- elif isinstance(dist, ReproducibleIterator):
+ elif isinstance(dist, ReproducibleSampler):
return replace_sampler(dataloader, dist)
+ # 如果 dist 为 str 或者 None,说明是在 trainer 初试化时调用;
+ args = self.get_dataloader_args(dataloader)
+ if isinstance(args.batch_sampler, RandomBatchSampler):
+ batch_sampler = re_instantiate_sampler(args.batch_sampler)
+ return replace_batch_sampler(dataloader, batch_sampler)
+ elif isinstance(args.sampler, ReproducibleSampler):
+ sampler = re_instantiate_sampler(args.sampler)
+ return replace_sampler(dataloader, sampler)
+
if reproducible:
- args = self.get_dataloader_args(dataloader)
- if isinstance(args.sampler, ReproducibleIterator):
- sampler = re_instantiate_sampler(args.sampler)
- return replace_sampler(dataloader, sampler)
- else:
- batch_sampler = ReproducibleBatchSampler(
- batch_sampler=args.batch_sampler,
- batch_size=args.batch_size,
- drop_last=args.drop_last
- )
- return replace_batch_sampler(dataloader, batch_sampler)
+ batch_sampler = RandomBatchSampler(
+ batch_sampler=args.batch_sampler,
+ batch_size=args.batch_size,
+ drop_last=args.drop_last
+ )
+ return replace_batch_sampler(dataloader, batch_sampler)
else:
return dataloader
diff --git a/fastNLP/core/drivers/torch_driver/torch_driver.py b/fastNLP/core/drivers/torch_driver/torch_driver.py
index 96d11761..b3386f5a 100644
--- a/fastNLP/core/drivers/torch_driver/torch_driver.py
+++ b/fastNLP/core/drivers/torch_driver/torch_driver.py
@@ -30,7 +30,7 @@ from fastNLP.core.utils import apply_to_collection, torch_move_data_to_device
from fastNLP.envs import rank_zero_call
from fastNLP.envs import FASTNLP_SEED_WORKERS, FASTNLP_GLOBAL_RANK, FASTNLP_MODEL_FILENAME, FASTNLP_CHECKPOINT_FILENAME
from fastNLP.core.log import logger
-from fastNLP.core.samplers import ReproducibleBatchSampler
+from fastNLP.core.samplers import RandomBatchSampler, ReproducibleIterator
class TorchDriver(Driver):
@@ -143,8 +143,6 @@ class TorchDriver(Driver):
:param filepath: 保存到哪个文件夹;
:param only_state_dict: 是否只保存权重;
- :param model_save_fn:
-
:return:
"""
model = self.unwrap_model()
@@ -184,10 +182,10 @@ class TorchDriver(Driver):
# trainer.dataloader 来改变 dataloader 的状态,从而适配训练或者评测环境;
# 1. sampler 的状态,因为我们支持 resume training,即精确恢复到具体的一个 batch;
- # 首先 pytorch 的 DataLoader 一定会有 sampler;另一方面,我们在断点重训的时候一定会在 `replace_sampler` 中将 dataloader 的
- # sampler 替换为 `ReproducibleIterator`;否则就是在单卡情况下将 batch_sampler 替换为 `ReproducibleBatchSampler`;
+ # 首先 pytorch 的 DataLoader 一定会有 sampler;另一方面,我们在断点重训的时候一定会在 `set_` 中将 dataloader 的
+ # sampler 替换为 `ReproducibleSampler`;否则就是在单卡情况下将 batch_sampler 替换为 `RandomBatchSampler`;
dataloader_args = self.get_dataloader_args(dataloader)
- if isinstance(dataloader_args.batch_sampler, ReproducibleBatchSampler):
+ if isinstance(dataloader_args.batch_sampler, RandomBatchSampler):
sampler = dataloader_args.batch_sampler
elif dataloader_args.sampler:
sampler = dataloader_args.sampler
@@ -247,25 +245,25 @@ class TorchDriver(Driver):
# 3. 恢复 sampler 的状态;
dataloader_args = self.get_dataloader_args(dataloader)
-
- sampler = dataloader_args.sampler
- if not (hasattr(sampler, 'load_state_dict') and callable(sampler.load_state_dict)):
- # 说明这里需要使用 ReproduceSampler 来弄一下了
- if self.is_distributed():
- raise RuntimeError(
- "It is not allowed to use single device checkpoint retraining before but ddp now.")
- sampler = ReproducibleBatchSampler(
- batch_sampler=sampler,
+ if isinstance(dataloader_args.batch_sampler, RandomBatchSampler):
+ sampler = dataloader_args.batch_sampler
+ elif isinstance(dataloader_args.sampler, ReproducibleIterator):
+ sampler = dataloader_args.sampler
+ elif self.is_distributed():
+ raise RuntimeError("It is not allowed to use checkpoint retraining when you do not use our "
+ "`RandomBatchSampler` or `ReproducibleIterator`.")
+ else:
+ sampler = RandomBatchSampler(
+ batch_sampler=dataloader_args.batch_sampler if dataloader_args.batch_sampler is not None else dataloader_args.sampler,
batch_size=dataloader_args.batch_size,
drop_last=dataloader_args.drop_last
)
sampler.load_state_dict(states['sampler_states'])
-
states["dataloader"] = self.set_dist_repro_dataloader(dataloader, sampler)
# 4. 修改 trainer_state.batch_idx_in_epoch
# sampler 是类似 RandomSampler 的sampler,不是 batch_sampler;
- if not isinstance(sampler, ReproducibleBatchSampler):
+ if not isinstance(sampler, RandomBatchSampler):
if dataloader_args.drop_last:
batch_idx_in_epoch = len(
sampler) // dataloader_args.batch_size - sampler.num_left_samples // dataloader_args.batch_size
@@ -293,7 +291,7 @@ class TorchDriver(Driver):
@staticmethod
def worker_init_function(worker_id: int, rank: Optional[int] = None) -> None: # pragma: no cover
- """The worker_init_fn that Lightning automatically adds to your dataloader if you previously set set the seed
+ """The worker_init_fn that Lightning automatically adds to your dataloader if you previously set the seed
with ``seed_everything(seed, workers=True)``.
See also the PyTorch documentation on
diff --git a/fastNLP/core/metrics/backend/torch_backend/backend.py b/fastNLP/core/metrics/backend/torch_backend/backend.py
index 06304a98..8945ab01 100644
--- a/fastNLP/core/metrics/backend/torch_backend/backend.py
+++ b/fastNLP/core/metrics/backend/torch_backend/backend.py
@@ -33,7 +33,7 @@ class TorchBackend(Backend):
if dist.is_initialized():
if method is None:
raise AggregateMethodError(should_have_aggregate_method=True)
- tensor = self._gather_all(tensor)
+ tensor = fastnlp_torch_all_gather(tensor)
if isinstance(tensor[0], torch.Tensor):
tensor = torch.stack(tensor)
# 第一步, aggregate结果
@@ -68,59 +68,6 @@ class TorchBackend(Backend):
def get_scalar(self, tensor) -> float:
return tensor.item()
- @staticmethod
- def _gather_all(result, group: Optional[Any] = None) -> List:
- """Function to gather all tensors from several ddp processes onto a list that is broadcasted to all processes.
- Works on tensors that have the same number of dimensions, but where each dimension may differ. In this case
- tensors are padded, gathered and then trimmed to secure equal workload for all processes.
-
- Args:
- result: the value to sync
- group: the process group to gather results from. Defaults to all processes (world)
-
- Return:
- gathered_result: list with size equal to the process group where
- gathered_result[i] corresponds to result tensor from process i
- """
-
- if group is None:
- group = dist.group.WORLD
-
- # convert tensors to contiguous format
- result = result.contiguous()
-
- world_size = dist.get_world_size(group)
- dist.barrier(group=group)
-
- # if the tensor is scalar, things are easy
- if result.ndim == 0:
- return _simple_gather_all_tensors(result, group, world_size)
-
- # 1. Gather sizes of all tensors
- local_size = torch.tensor(result.shape, device=result.device)
- local_sizes = [torch.zeros_like(local_size) for _ in range(world_size)]
- dist.all_gather(local_sizes, local_size, group=group)
- max_size = torch.stack(local_sizes).max(dim=0).values
- all_sizes_equal = all(all(ls == max_size) for ls in local_sizes)
-
- # 2. If shapes are all the same, then do a simple gather:
- if all_sizes_equal:
- return _simple_gather_all_tensors(result, group, world_size)
-
- # 3. If not, we need to pad each local tensor to maximum size, gather and then truncate
- pad_dims = []
- pad_by = (max_size - local_size).detach().cpu()
- for val in reversed(pad_by):
- pad_dims.append(0)
- pad_dims.append(val.item())
- result_padded = torch.nn.functional.pad(result, pad_dims)
- gathered_result = [torch.zeros_like(result_padded) for _ in range(world_size)]
- dist.all_gather(gathered_result, result_padded, group)
- for idx, item_size in enumerate(local_sizes):
- slice_param = [slice(dim_size) for dim_size in item_size]
- gathered_result[idx] = gathered_result[idx][slice_param]
- return gathered_result
-
def tensor2numpy(self, tensor) -> np.array:
"""
将对应的tensor转为numpy对象
diff --git a/fastNLP/core/metrics/element.py b/fastNLP/core/metrics/element.py
index b3a496bf..22ba2635 100644
--- a/fastNLP/core/metrics/element.py
+++ b/fastNLP/core/metrics/element.py
@@ -11,12 +11,12 @@ from fastNLP.envs.env import FASTNLP_GLOBAL_RANK
class Element:
- def __init__(self, value: float, aggregate_method, backend: Backend, name=None):
+ def __init__(self, name, value: float, aggregate_method, backend: Backend):
+ self.name = name
self.init_value = value
self.aggregate_method = aggregate_method
- self.name = name
if backend == 'auto':
- raise RuntimeError("You have to specify the backend.")
+ raise RuntimeError(f"You have to specify the backend for Element:{self.name}.")
elif isinstance(backend, AutoBackend):
self.backend = backend
else:
@@ -34,20 +34,16 @@ class Element:
自动aggregate对应的元素
"""
+ self._check_value_initialized()
try:
self._value = self.backend.aggregate(self._value, self.aggregate_method)
except AggregateMethodError as e:
msg = 'If you see this message, please report a bug.'
if self.name and e.should_have_aggregate_method:
msg = f"Element:{self.name} has no specified `aggregate_method`."
- elif e.should_have_aggregate_method:
- msg = "Element has no specified `aggregate_method`."
elif self.name and not e.should_have_aggregate_method:
msg = f"Element:{self.name}'s backend:{self.backend.__class__.__name__} does not support " \
f'aggregate_method:{self.aggregate_method}.'
- elif not e.should_have_aggregate_method:
- msg = f"Element's backend:{self.backend.__class__.__name__} does not support " \
- f'aggregate_method:{self.aggregate_method}.'
if e.only_warn:
if int(os.environ.get(FASTNLP_GLOBAL_RANK, 0)) == 0:
logger.warning(msg)
@@ -74,6 +70,7 @@ class Element:
return self._value
def get_scalar(self) -> float:
+ self._check_value_initialized()
return self.backend.get_scalar(self._value)
def fill_value(self, value):
@@ -95,7 +92,7 @@ class Element:
def _check_value_when_call(self):
if self.value is None:
- prefix = f'Element:`{self.name}`' if self.name else 'Element'
+ prefix = f'Element:`{self.name}`'
raise RuntimeError(prefix + " is not initialized. Please either specify backend when creating this "
"element, or use it after it being used by the `Metric.compute()` method.")
@@ -273,9 +270,10 @@ class Element:
"""
try:
if self._value is None:
- prefix = f'Element:`{self.name}`' if self.name else 'Element'
+ prefix = f'Element:`{self.name}`'
raise RuntimeError(prefix + " is not initialized. Please either specify backend when creating this "
"element, or use it after it being used by the `Metric.compute()` method.")
return getattr(self._value, item)
except AttributeError as e:
+ logger.error(f"Element:{self.name} has no `{item}` attribute.")
raise e
diff --git a/fastNLP/core/metrics/metric.py b/fastNLP/core/metrics/metric.py
index 097671da..2fb575fc 100644
--- a/fastNLP/core/metrics/metric.py
+++ b/fastNLP/core/metrics/metric.py
@@ -35,7 +35,7 @@ class Metric:
def elements(self) -> dict:
return self._elements
- def register_element(self, name=None, value: float = 0, aggregate_method=None, backend='auto') -> Element:
+ def register_element(self, name, value: float = 0, aggregate_method=None, backend='auto') -> Element:
"""
注册一个 element 对象,注册之后便可以通过在 Metric 中直接通过 self.{name} 进行调用,可以认为该对象即为对应 backend 的
tensor 直接进行加减乘除计算即可。
@@ -57,11 +57,9 @@ class Metric:
else:
backend = AutoBackend(backend)
- # 当name为None,默认为变量取得变量名
- if name is None:
- name = f'ele_var_{len(self._elements)}'
+ assert name is not None and name not in self.elements
- element = Element(value=value, aggregate_method=aggregate_method, backend=backend, name=name)
+ element = Element(name=name, value=value, aggregate_method=aggregate_method, backend=backend)
self.elements[name] = element
setattr(self, name, element)
return element
diff --git a/fastNLP/core/metrics/span_f1_pre_rec_metric.py b/fastNLP/core/metrics/span_f1_pre_rec_metric.py
index 45b412c8..716cea30 100644
--- a/fastNLP/core/metrics/span_f1_pre_rec_metric.py
+++ b/fastNLP/core/metrics/span_f1_pre_rec_metric.py
@@ -216,9 +216,26 @@ def _compute_f_pre_rec(beta_square, tp, fn, fp):
class SpanFPreRecMetric(Metric):
- def __init__(self, backend: Union[str, Backend, None] = 'auto', tag_vocab: Vocabulary = None,
- encoding_type: str = None, ignore_labels: List[str] = None, only_gross: bool = True, f_type='micro',
- beta=1, aggregate_when_get_metric: bool = True,) -> None:
+ def __init__(self, tag_vocab: Vocabulary, encoding_type: str = None, ignore_labels: List[str] = None,
+ only_gross: bool = True, f_type='micro',
+ beta=1, backend: Union[str, Backend, None] = 'auto', aggregate_when_get_metric: bool = True,) -> None:
+ r"""
+
+ :param tag_vocab: 标签的 :class:`~fastNLP.Vocabulary` 。支持的标签为"B"(没有label);或"B-xxx"(xxx为某种label,比如POS中的NN),
+ 在解码时,会将相同xxx的认为是同一个label,比如['B-NN', 'E-NN']会被合并为一个'NN'.
+ :param str pred: 用该key在evaluate()时从传入dict中取出prediction数据。 为None,则使用 `pred` 取数据
+ :param str target: 用该key在evaluate()时从传入dict中取出target数据。 为None,则使用 `target` 取数据
+ :param str seq_len: 用该key在evaluate()时从传入dict中取出sequence length数据。为None,则使用 `seq_len` 取数据。
+ :param str encoding_type: 目前支持bio, bmes, bmeso, bioes。默认为None,通过tag_vocab自动判断.
+ :param list ignore_labels: str 组成的list. 这个list中的class不会被用于计算。例如在POS tagging时传入['NN'],则不会计算'NN'个label
+ :param bool only_gross: 是否只计算总的f1, precision, recall的值;如果为False,不仅返回总的f1, pre, rec, 还会返回每个label的f1, pre, rec
+ :param str f_type: `micro` 或 `macro` . `micro` :通过先计算总体的TP,FN和FP的数量,再计算f, precision, recall; `macro` : 分布计算每个类别的f, precision, recall,然后做平均(各类别f的权重相同)
+ :param float beta: f_beta分数, :math:`f_{beta} = \frac{(1 + {beta}^{2})*(pre*rec)}{({beta}^{2}*pre + rec)}` . 常用为 `beta=0.5, 1, 2` 若为0.5则精确率的权重高于召回率;若为1,则两者平等;若为2,则召回率权重高于精确率。
+ :param str backend: 目前支持四种类型的backend, ['auto', 'torch', 'paddle', 'jittor']。其中 auto 表示根据实际调用 Metric.update()
+ 函数时传入的参数决定具体的 backend ,一般情况下直接使用 'auto' 即可。
+ :param bool aggregate_when_get_metric: 在计算 metric 的时候是否自动将各个进程上的相同的 element 的数字聚合后再得到metric,
+ 当 backend 不支持分布式时,该参数无意义。
+ """
super(SpanFPreRecMetric, self).__init__(backend=backend, aggregate_when_get_metric=aggregate_when_get_metric)
if f_type not in ('micro', 'macro'):
raise ValueError("f_type only supports `micro` or `macro`', got {}.".format(f_type))
@@ -249,16 +266,25 @@ class SpanFPreRecMetric(Metric):
self.only_gross = only_gross
self.tag_vocab = tag_vocab
- self._true_positives = defaultdict(partial(self.register_element, aggregate_method='sum', name=None))
- self._false_positives = defaultdict(partial(self.register_element, aggregate_method='sum', name=None))
- self._false_negatives = defaultdict(partial(self.register_element, aggregate_method='sum', name=None))
+ self._true_positives = {}
+ self._false_positives = {}
+ self._false_negatives = {}
+ for word, _ in tag_vocab:
+ word = word.lower()
+ if word != 'o':
+ word = word[2:]
+ if word in self._true_positives:
+ continue
+ self._true_positives[word] = self.register_element(name=f'tp_{word}', aggregate_method='sum', backend=backend)
+ self._false_negatives[word] = self.register_element(name=f'fn_{word}', aggregate_method='sum', backend=backend)
+ self._false_positives[word] = self.register_element(name=f'fp_{word}', aggregate_method='sum', backend=backend)
def get_metric(self) -> dict:
evaluate_result = {}
if not self.only_gross or self.f_type == 'macro':
tags = set(self._false_negatives.keys())
- tags.update(set(self._false_positives.keys()))
- tags.update(set(self._true_positives.keys()))
+ tags.update(self._false_positives.keys())
+ tags.update(self._true_positives.keys())
f_sum = 0
pre_sum = 0
rec_sum = 0
@@ -266,6 +292,9 @@ class SpanFPreRecMetric(Metric):
tp = self._true_positives[tag].get_scalar()
fn = self._false_negatives[tag].get_scalar()
fp = self._false_positives[tag].get_scalar()
+ if tp == fn == fp == 0:
+ continue
+
f, pre, rec = _compute_f_pre_rec(self.beta_square, tp, fn, fp)
f_sum += f
pre_sum += pre
@@ -284,10 +313,17 @@ class SpanFPreRecMetric(Metric):
evaluate_result['rec'] = rec_sum / len(tags)
if self.f_type == 'micro':
+ tp, fn, fp = [], [], []
+ for val in self._true_positives.values():
+ tp.append(val.get_scalar())
+ for val in self._false_negatives.values():
+ fn.append(val.get_scalar())
+ for val in self._false_positives.values():
+ fp.append(val.get_scalar())
f, pre, rec = _compute_f_pre_rec(self.beta_square,
- sum(val.get_scalar() for val in self._true_positives.values()),
- sum(val.get_scalar() for val in self._false_negatives.values()),
- sum(val.get_scalar() for val in self._false_positives.values()))
+ sum(tp),
+ sum(fn),
+ sum(fp))
evaluate_result['f'] = f
evaluate_result['pre'] = pre
evaluate_result['rec'] = rec
diff --git a/fastNLP/core/samplers/__init__.py b/fastNLP/core/samplers/__init__.py
index 68928b66..3d6813f7 100644
--- a/fastNLP/core/samplers/__init__.py
+++ b/fastNLP/core/samplers/__init__.py
@@ -3,19 +3,30 @@ __all__ = [
'SortedSampler',
'ConstTokenNumSampler',
'ConstantTokenNumSampler',
- 'UnrepeatedDistributedSampler',
+
'MixSampler',
- 'InnerSampler',
'DopedSampler',
'MixSequentialSampler',
'PollingSampler',
- 'ReproducibleIterator',
+
+ 'ReproducibleSampler',
'RandomSampler',
- 're_instantiate_sampler'
+ "SequentialSampler",
+ "SortedSampler",
+
+ 'UnrepeatedSampler',
+ 'UnrepeatedRandomSampler',
+ "UnrepeatedSortedSampler",
+ "UnrepeatedSequentialSampler",
+
+ "re_instantiate_sampler",
+ "conversion_between_reproducible_and_unrepeated_sampler"
]
-from .sampler import BucketSampler, SortedSampler, ConstTokenNumSampler, ConstantTokenNumSampler, UnrepeatedDistributedSampler
-from .mix_sampler import MixSampler, InnerSampler, DopedSampler, MixSequentialSampler, PollingSampler
-from .reproducible_sampler import ReproducibleIterator, RandomSampler, re_instantiate_sampler
-from .reproducible_batch_sampler import ReproducibleBatchSampler, BucketedBatchSampler
+from .sampler import BucketSampler, SortedSampler, ConstTokenNumSampler, ConstantTokenNumSampler
+from .unrepeated_sampler import UnrepeatedSampler, UnrepeatedRandomSampler, UnrepeatedSortedSampler, UnrepeatedSequentialSampler
+from .mix_sampler import MixSampler, DopedSampler, MixSequentialSampler, PollingSampler
+from .reproducible_sampler import ReproducibleSampler, RandomSampler, SequentialSampler, SortedSampler
+from .utils import re_instantiate_sampler, conversion_between_reproducible_and_unrepeated_sampler
+from .reproducible_batch_sampler import RandomBatchSampler, BucketedBatchSampler
diff --git a/fastNLP/core/samplers/mix_sampler.py b/fastNLP/core/samplers/mix_sampler.py
index e219b6e2..f53c06a5 100644
--- a/fastNLP/core/samplers/mix_sampler.py
+++ b/fastNLP/core/samplers/mix_sampler.py
@@ -4,7 +4,6 @@ from typing import Union, List, Iterable, Dict
__all__ = [
'MixSampler',
- 'InnerSampler',
'DopedSampler',
'MixSequentialSampler',
'PollingSampler'
diff --git a/fastNLP/core/samplers/reproducible_batch_sampler.py b/fastNLP/core/samplers/reproducible_batch_sampler.py
index 3e39aca5..5a25110b 100644
--- a/fastNLP/core/samplers/reproducible_batch_sampler.py
+++ b/fastNLP/core/samplers/reproducible_batch_sampler.py
@@ -1,6 +1,6 @@
__all__ = [
'BucketedBatchSampler',
- "ReproducibleBatchSampler"
+ "RandomBatchSampler"
]
import math
@@ -16,7 +16,7 @@ from fastNLP.core.log import logger
from abc import abstractmethod
-class ReproducibleBatchIterator:
+class ReproducibleBatchSampler:
@abstractmethod
def set_distributed(self, num_replicas, rank, pad=True):
raise NotImplementedError("Each specific batch_sampler should implement its own `set_distributed` method.")
@@ -42,13 +42,13 @@ class ReproducibleBatchIterator:
pass
-class ReproducibleBatchSampler(ReproducibleBatchIterator):
+class RandomBatchSampler(ReproducibleBatchSampler):
# 这两个参数的值应当交给 driver 的 get_dataloader_args 函数去拿;
def __init__(self, batch_sampler, batch_size: int, drop_last: bool, **kwargs):
"""
可以使得 batch_sampler 对象状态恢复的 wrapper 。
- :param batch_sampler: 可迭代出 数字 或 数字列表 的可迭代对象。ReproducibleBatchSampler 将首先遍历一边该对象,然后将迭代
+ :param batch_sampler: 可迭代出 数字 或 数字列表 的可迭代对象。RandomBatchSampler 将首先遍历一边该对象,然后将迭代
出来的序号暂存起来,使用时按照 batch_size 的 batch 大小吐出序号列表。
:param batch_size: 每个 batch 的大小是多少。
:param drop_last: 如果最后一个 batch 无法构成 batch_size 那么多个 sample ,是否丢掉。
@@ -138,7 +138,7 @@ class ReproducibleBatchSampler(ReproducibleBatchIterator):
(len(self.index_list) - self.data_idx + self.batch_size - 1) // self.batch_size
-class BucketedBatchSampler(ReproducibleBatchIterator):
+class BucketedBatchSampler(ReproducibleBatchSampler):
def __init__(self, dataset, length: Union[List[int], str], batch_size:int = 32, num_batch_per_bucket:int = 10,
shuffle: bool = True, drop_last: bool = False, seed: int = 0, **kwargs):
"""
diff --git a/fastNLP/core/samplers/reproducible_sampler.py b/fastNLP/core/samplers/reproducible_sampler.py
index 0a4ac7bf..1dc226a5 100644
--- a/fastNLP/core/samplers/reproducible_sampler.py
+++ b/fastNLP/core/samplers/reproducible_sampler.py
@@ -1,25 +1,21 @@
-from typing import Dict, List
+from typing import Dict, List, Union
import math
import numpy as np
from fastNLP.core.log import logger
+from fastNLP.core.dataset import DataSet
__all__ = [
- 'ReproducibleIterator',
+ 'ReproducibleSampler',
'RandomSampler',
- 're_instantiate_sampler'
+ "SortedSampler",
+ "SequentialSampler"
]
-def re_instantiate_sampler(sampler):
- all_attributes = vars(sampler)
- return type(sampler)(**all_attributes)
-
-
-
-class ReproducibleIterator:
+class ReproducibleSampler:
"""
- 注意所有继承 `ReproducibleIterator` 的类的 `__init__` 方法中都需要加入参数 `**kwargs`,用来使我们再断点重训时重新实例化这个 sampler
+ 注意所有继承 `ReproducibleSampler` 的类的 `__init__` 方法中都需要加入参数 `**kwargs`,用来使我们再断点重训时重新实例化这个 sampler
或者 batch_sampler;注意,所有在 init 中初始化的变量,都不能含有 _ 下横线作为开头;所有不在 init 中设置的变量都必须以下横线开头。
"""
@@ -47,7 +43,7 @@ class ReproducibleIterator:
pass
-class RandomSampler(ReproducibleIterator):
+class RandomSampler(ReproducibleSampler):
def __init__(self, dataset, shuffle: bool = True, seed: int = 0, **kwargs):
"""
@@ -157,8 +153,8 @@ class RandomSampler(ReproducibleIterator):
f"we cannot use {self.__class__.__name__} to load it."
length = states['length']
- assert length == len(self.dataset), "The number of samples is different between the checkpoint record " \
- "and current dataset."
+ assert length == len(self.dataset), f"The number of samples is different between the checkpoint record({length}) " \
+ f"and current dataset({len(self.dataset)})."
self.seed = states['seed']
self.epoch = states['epoch']
self.num_consumed_samples = states['num_consumed_samples']
@@ -215,9 +211,132 @@ class RandomSampler(ReproducibleIterator):
self.pad else math.floor(((len(self.dataset) - num_consumed_samples) / self.num_replicas))
+class SequentialSampler(RandomSampler):
+ def __init__(self, dataset, dist_mode:str='interval', **kwargs):
+ """
+ 按照顺序读取 dataset 。在多卡情况下,间隔读取,例如,在两卡情况下,卡0取 [0,2,4,..], 卡1取 [1,3,5...]。
+
+ :param dataset: 实现了 __len__ 方法的数据容器。
+ :param kwargs:
+ """
+ super().__init__(dataset=dataset, shuffle=False, seed=0, **kwargs)
+
+ def __iter__(self):
+ if self.during_iter: # 如果发现_during_iter为True,说明之前的还没结束,只有强制重新初始化了
+ self.num_consumed_samples = 0
+ self.during_iter = True
+ indices = self.generate_indices()
+
+ if self.pad:
+ # add extra samples to make it evenly divisible
+ padding_size = self.total_size - len(indices)
+ if padding_size <= len(indices):
+ indices += indices[:padding_size]
+ else:
+ indices += (indices * math.ceil(padding_size / len(indices)))[:padding_size]
+ else:
+ # remove tail of data to make it evenly divisible.
+ indices = indices[:self.total_size]
+
+ assert len(indices) == self.total_size
+
+ # subsample
+ indices = indices[self.num_consumed_samples:]
+ indices = indices[self.rank:len(indices):self.num_replicas]
+ assert len(indices) == self.num_left_samples
+
+ for index in indices:
+ self.num_consumed_samples += self.num_replicas
+ yield index
+ self.during_iter = False
+ self.num_consumed_samples = 0
+
+ def generate_indices(self) -> List[int]:
+ """
+ 生成随机序列
+
+ :return:
+ """
+ return list(range(len(self.dataset)))
+
+ def state_dict(self) -> Dict:
+ states = {
+ 'num_consumed_samples': self.num_consumed_samples, # 注意该值是计算所有 rank 上训练的所有数据;
+ 'sampler_type': self.__class__.__name__,
+ 'length': len(self.dataset),
+ }
+ return states
+
+ def load_state_dict(self, states: Dict):
+ # 如果 self.during_iter 是 True,那么 data_idx 一定是 0;
+ assert self.during_iter is False, "Cannot call load_state_dict() when it is " \
+ "during an unfinished iteration."
+
+ assert states['sampler_type'] == self.__class__.__name__, f"The sampler type in checkpoint is {states['sampler_type']}," \
+ f"we cannot use {self.__class__.__name__} to load it."
+
+ length = states['length']
+ assert length == len(self.dataset), f"The number of samples is different between the checkpoint record({length}) " \
+ f"and current dataset({len(self.dataset)})."
+ self.num_consumed_samples = states['num_consumed_samples']
+ if self.num_consumed_samples >= length: # 如果保存的时候已经到达了最后一个sample了,则直接将结果重置为0
+ self.num_consumed_samples = 0
+
+
+class SortedSampler(SequentialSampler):
+ def __init__(self, dataset, length:Union[str, List], **kwargs):
+ """
+ 将 dataset 中的数据根据 length 从长到短进行迭代。在多卡情况下,由于padding 最后一个 sample 可能是最长的那个 sample。
+
+ :param dataset: 实现了 __len__ 方法的数据容器。
+ :param length: 如果为 List,应当与 dataset 有一样的长度,表示 dataset 中每个元素的数量;仅当传入的 dataset 为 fastNLP 的
+ DataSet 时支持传入 str,会将该str理解为 dataset 的 field 名称,若 field 中的元素为 int,则认为该值是 sample 的长度。
+ :param seed: 设置的随机数种子
+ :param kwargs: fastNLP 保留使用
+ """
+ super().__init__(dataset=dataset, **kwargs)
+ if isinstance(dataset, DataSet):
+ length = dataset.get_field(length)
+ if not isinstance(length[0], int):
+ length = list(map(len, length))
+ else:
+ assert len(length) == len(dataset), "When the dataset is not fastNLP.DataSet, " \
+ "the length parameter can only be List[int]"
+
+ assert len(length) == len(dataset), "The length of `data` and `length` should be equal."
+
+ self.length = np.array(length, dtype=int) # 按照长到短排列的序号。
+ self.sorted_indices = np.argsort(self.length)[::-1].tolist() # 按长度从高到低排序的
+
+ def generate_indices(self) -> List[int]:
+ return self.sorted_indices
+ def __iter__(self):
+ if self.during_iter: # 如果发现_during_iter为True,说明之前的还没结束,只有强制重新初始化了
+ self.num_consumed_samples = 0
+ self.during_iter = True
+ indices = self.generate_indices()
+ if self.pad:
+ padding_size = self.total_size - len(indices)
+ if padding_size <= len(indices):
+ indices += indices[:padding_size]
+ else:
+ indices += (indices * math.ceil(padding_size / len(indices)))[:padding_size]
+ else:
+ # remove tail of data to make it evenly divisible.
+ indices = indices[:self.total_size]
+ assert len(indices) == self.total_size
+ # subsample
+ indices = indices[self.num_consumed_samples:]
+ indices = indices[self.rank:len(indices):self.num_replicas]
+ assert len(indices) == self.num_left_samples
+ for index in indices:
+ self.num_consumed_samples += self.num_replicas
+ yield index
+ self.during_iter = False
+ self.num_consumed_samples = 0
diff --git a/fastNLP/core/samplers/sampler.py b/fastNLP/core/samplers/sampler.py
index e41472bf..89751884 100644
--- a/fastNLP/core/samplers/sampler.py
+++ b/fastNLP/core/samplers/sampler.py
@@ -7,7 +7,6 @@ __all__ = [
"SortedSampler",
'ConstTokenNumSampler',
"ConstantTokenNumSampler",
- "UnrepeatedDistributedSampler",
]
from itertools import chain
@@ -18,7 +17,7 @@ import numpy as np
from fastNLP.envs.imports import _NEED_IMPORT_TORCH
if _NEED_IMPORT_TORCH:
- from torch.utils.data import SequentialSampler, Sampler, RandomSampler
+ from torch.utils.data import Sampler
else:
from fastNLP.core.utils.dummy_class import DummyClass as Sampler
@@ -727,87 +726,3 @@ def k_means_bucketing(lengths, buckets):
if buckets[bucket_id] is None or lengths[idx] <= buckets[bucket_id]:
bucket_data[bucket_id].append(idx)
return bucket_data
-
-
-class UnrepeatedDistributedSampler:
- def __init__(self, dataset, shuffle: bool = False, seed: int = 0):
- """
- 考虑在多卡evaluate的场景下,不能重复sample。
-
- :param dataset:
- :param shuffle:
- :param seed:
- """
- self.dataset = dataset
- self.shuffle = shuffle
- self.seed = seed
-
- # 多卡的相关的参数
- self.num_replicas = 1
- self.rank = 0
- self.epoch = -1
-
- def __len__(self):
- """
- 返回 sampler 一次完整的迭代过程会产生多少个index。多卡的情况下,只考虑当前rank;
- :return:
- """
- num_common = len(self.dataset)//self.num_replicas
- self.num_samples = num_common + int(self.rank < (len(self.dataset)-num_common*self.num_replicas))
- return self.num_samples
-
- def __iter__(self):
- r"""
- 当前使用num_consumed_samples做法会在交替使用的时候遇到问题;
- Example:
- >>> sampler = RandomSampler()
- >>> iter1 = iter(sampler)
- >>> iter2 = iter(sampler)
- >>> next(iter1)
- >>> next(iter2) # 当前num_consumed_samples的数量会发生变化
- """
-
- indices = self.generate_indices()
-
- # subsample
- indices = indices[self.rank:len(indices):self.num_replicas]
- assert len(indices) == len(self)
-
- for index in indices:
- yield index
-
- def generate_indices(self) -> List[int]:
- """
- 生成随机序列
-
- :return:
- """
- if self.shuffle:
- indices = list(range(len(self.dataset)))
- seed = self.seed + self.epoch
- rng = np.random.default_rng(abs(seed))
- rng.shuffle(indices)
- if self.epoch < 0: # 防止用户忘记调用 set_epoch,至少这样可以保证每次epoch出来的index顺序不同。
- self.epoch -= 1
- else:
- indices = list(range(len(self.dataset)))
- return indices
-
- def set_epoch(self, epoch: int) -> None:
- self.epoch = epoch
-
- def set_distributed(self, num_replicas, rank):
- """
- 该方法本质上等同于 ddp 情形下的没有完成的初始化,应当在初始化该 sampler 本身后立即被调用;
-
- :param num_replicas:
- :param rank:
- :return:
- """
- assert num_replicas>0 and isinstance(num_replicas, int)
- assert isinstance(rank, int) and 0<=rank List[int]:
+ """
+ 生成随机序列
+
+ :return:
+ """
+ if self.shuffle:
+ indices = list(range(len(self.dataset)))
+ seed = self.seed + self.epoch
+ rng = np.random.default_rng(abs(seed))
+ rng.shuffle(indices)
+ if self.epoch < 0: # 防止用户忘记调用 set_epoch,至少这样可以保证每次epoch出来的index顺序不同。
+ self.epoch -= 1
+ else:
+ indices = list(range(len(self.dataset)))
+ return indices
+
+ def set_epoch(self, epoch: int) -> None:
+ self.epoch = epoch
+
+ def set_distributed(self, num_replicas, rank):
+ """
+ 该方法本质上等同于 ddp 情形下的没有完成的初始化,应当在初始化该 sampler 本身后立即被调用;
+
+ :param num_replicas:
+ :param rank:
+ :return:
+ """
+ assert num_replicas>0 and isinstance(num_replicas, int)
+ assert isinstance(rank, int) and 0<=rank List[int]:
+ return self.sorted_indices
+
+
+class UnrepeatedSequentialSampler(UnrepeatedRandomSampler):
+ def __init__(self, dataset, **kwargs):
+ """
+ 按照顺序读取 dataset。在多卡情况下,间隔读取,例如,在两卡情况下,卡0取 [0,2,4,..], 卡1取 [1,3,5...]。
+
+ :param dataset: 实现了 __len__ 方法的数据容器。
+ :param kwargs:
+ """
+ super(UnrepeatedSequentialSampler, self).__init__(dataset, shuffle=False, seed=0, **kwargs)
+
+ def __iter__(self):
+ indices = self.generate_indices()
+ indices = indices[self.rank:len(indices):self.num_replicas]
+ for index in indices:
+ yield index
+
+ def generate_indices(self) -> List[int]:
+ return list(range(len(self.dataset)))
+
diff --git a/fastNLP/core/samplers/utils.py b/fastNLP/core/samplers/utils.py
new file mode 100644
index 00000000..dd90fe7c
--- /dev/null
+++ b/fastNLP/core/samplers/utils.py
@@ -0,0 +1,42 @@
+__all__ = [
+ 're_instantiate_sampler',
+ 'conversion_between_reproducible_and_unrepeated_sampler'
+]
+
+from fastNLP.core.samplers.unrepeated_sampler import *
+from fastNLP.core.samplers.reproducible_sampler import *
+
+
+def conversion_between_reproducible_and_unrepeated_sampler(sampler):
+ """
+ 将 sampler 替换成其对应的 reproducible 版本或 unrepeated 版本。如果输入是 UnrepeatedSampler 但是没找到对应的
+ ReproducibleSampler,
+
+ :param sampler:
+ :return:
+ """
+ assert isinstance(sampler, UnrepeatedSampler) or isinstance(sampler, ReproducibleSampler), \
+ "The sampler must be UnrepeatedSampler or ReproducibleSampler"
+ if isinstance(sampler, UnrepeatedSampler):
+ if isinstance(sampler, UnrepeatedRandomSampler):
+ return re_instantiate_sampler(sampler, new_sampler_class=RandomSampler)
+ elif isinstance(sampler, UnrepeatedSequentialSampler):
+ return re_instantiate_sampler(sampler, new_sampler_class=SequentialSampler)
+ elif isinstance(sampler, UnrepeatedSortedSampler):
+ return re_instantiate_sampler(sampler, new_sampler_class=SortedSampler)
+ raise TypeError(f"{sampler.__class__} has no unrepeated version.")
+ else:
+ if isinstance(sampler, RandomSampler):
+ return re_instantiate_sampler(sampler, new_sampler_class=UnrepeatedRandomSampler)
+ elif isinstance(sampler, SequentialSampler):
+ return re_instantiate_sampler(sampler, new_sampler_class=UnrepeatedSequentialSampler)
+ elif isinstance(sampler, SortedSampler):
+ return re_instantiate_sampler(sampler, new_sampler_class=UnrepeatedSortedSampler)
+ raise TypeError(f"{sampler.__class__} has no reproducible version.")
+
+
+def re_instantiate_sampler(sampler, new_sampler_class=None):
+ all_attributes = vars(sampler)
+ if new_sampler_class is not None:
+ return new_sampler_class(**all_attributes)
+ return type(sampler)(**all_attributes)
\ No newline at end of file
diff --git a/fastNLP/core/utils/rich_progress.py b/fastNLP/core/utils/rich_progress.py
index 20330d02..256cc906 100644
--- a/fastNLP/core/utils/rich_progress.py
+++ b/fastNLP/core/utils/rich_progress.py
@@ -96,6 +96,7 @@ class FRichProgress(Progress, metaclass=Singleton):
# start new
self.start()
+ self.console.show_cursor(show=True)
return self
def set_transient(self, transient: bool = True):
@@ -149,6 +150,9 @@ class FRichProgress(Progress, metaclass=Singleton):
super().stop_task(task_id)
super().remove_task(task_id)
+ def start(self) -> None:
+ super().start()
+ self.console.show_cursor(show=True)
if (sys.stdin and sys.stdin.isatty()) and get_global_rank() == 0:
f_rich_progress = FRichProgress().new_progess(
@@ -161,7 +165,7 @@ if (sys.stdin and sys.stdin.isatty()) and get_global_rank() == 0:
TextColumn("{task.fields[post_desc]}", justify="right"),
transient=True,
disable=False,
- speed_estimate_period=10
+ speed_estimate_period=1
)
else:
f_rich_progress = DummyFRichProgress()
diff --git a/fastNLP/core/utils/utils.py b/fastNLP/core/utils/utils.py
index 73267e7f..1a7e0ee5 100644
--- a/fastNLP/core/utils/utils.py
+++ b/fastNLP/core/utils/utils.py
@@ -44,6 +44,9 @@ __all__ = [
]
+
+
+
def get_fn_arg_names(fn: Callable) -> List[str]:
r"""
返回一个函数的所有参数的名字;
diff --git a/fastNLP/envs/set_backend.py b/fastNLP/envs/set_backend.py
index a9e82c74..6da62334 100644
--- a/fastNLP/envs/set_backend.py
+++ b/fastNLP/envs/set_backend.py
@@ -153,7 +153,7 @@ def seed_jittor_global_seed(global_seed):
pass
-def dump_fastnlp_backend(default:bool = False):
+def dump_fastnlp_backend(default:bool = False, backend=None):
"""
将 fastNLP 的设置写入到 ~/.fastNLP/envs/ 文件夹下,
若 default 为 True,则保存的文件为 ~/.fastNLP/envs/default.json 。
@@ -165,6 +165,7 @@ def dump_fastnlp_backend(default:bool = False):
会保存的环境变量为 FASTNLP_BACKEND 。
:param default:
+ :param backend: 保存使用的 backend 为哪个值,允许的值有 ['torch', 'paddle', 'jittor']。如果为 None ,则使用环境变量中的值。
:return:
"""
if int(os.environ.get(FASTNLP_GLOBAL_RANK, 0)) == 0:
@@ -179,10 +180,16 @@ def dump_fastnlp_backend(default:bool = False):
os.makedirs(os.path.dirname(env_path), exist_ok=True)
envs = {}
- if FASTNLP_BACKEND in os.environ:
- envs[FASTNLP_BACKEND] = os.environ[FASTNLP_BACKEND]
+ assert backend in SUPPORT_BACKENDS, f"fastNLP only supports {SUPPORT_BACKENDS} right now."
+ if backend is None:
+ if FASTNLP_BACKEND in os.environ:
+ envs[FASTNLP_BACKEND] = os.environ[FASTNLP_BACKEND]
+ else:
+ envs[FASTNLP_BACKEND] = backend
if len(envs):
with open(env_path, 'w', encoding='utf8') as f:
json.dump(fp=f, obj=envs)
print(f"Writing the default fastNLP backend:{envs[FASTNLP_BACKEND]} to {env_path}.")
+ else:
+ raise RuntimeError("No backend specified.")
\ No newline at end of file
diff --git a/fastNLP/envs/set_env_on_import.py b/fastNLP/envs/set_env_on_import.py
index f94bef50..8b5f6394 100644
--- a/fastNLP/envs/set_env_on_import.py
+++ b/fastNLP/envs/set_env_on_import.py
@@ -47,7 +47,8 @@ def set_env_on_import_paddle():
# TODO jittor may need set this
def set_env_on_import_jittor():
# todo 需要设置 FASTNLP_GLOBAL_RANK 和 FASTNLP_BACKEND_LAUNCH
- pass
+ if 'log_silent' not in os.environ:
+ os.environ['log_silent'] = '1'
def set_env_on_import():
@@ -63,7 +64,7 @@ def set_env_on_import():
# fastNLP 内部使用的一些变量
if FASTNLP_LAUNCH_TIME not in os.environ:
- cur_time = f"{datetime.datetime.now().strftime('%Y-%m-%d-%H_%M_%S_%M_%f')}"
+ cur_time = f"{datetime.datetime.now().strftime('%Y-%m-%d-%H_%M_%S_%f')}"
os.environ[FASTNLP_LAUNCH_TIME] = cur_time
# 设置对应的值
diff --git a/tests/core/callbacks/test_checkpoint_callback_torch.py b/tests/core/callbacks/test_checkpoint_callback_torch.py
index f7cc6e5f..1f404bb8 100644
--- a/tests/core/callbacks/test_checkpoint_callback_torch.py
+++ b/tests/core/callbacks/test_checkpoint_callback_torch.py
@@ -8,7 +8,7 @@ import torch.distributed as dist
from pathlib import Path
import re
-from fastNLP.core.callbacks.checkpoint_callback import CheckpointCallback
+from fastNLP.core.callbacks.checkpoint_callback import ModelCheckpointCallback, TrainerCheckpointCallback
from fastNLP.core.controllers.trainer import Trainer
from fastNLP.envs import FASTNLP_MODEL_FILENAME, FASTNLP_CHECKPOINT_FILENAME, FASTNLP_LAUNCH_TIME, FASTNLP_DISTRIBUTED_CHECK
@@ -80,16 +80,23 @@ def test_model_checkpoint_callback_1(
version,
only_state_dict
):
+# def test_model_checkpoint_callback_1(
+# model_and_optimizers: TrainerParameters,
+# driver='torch_ddp',
+# device=[0, 1],
+# version=1,
+# only_state_dict=True
+# ):
path = Path.cwd().joinpath(f"test_model_checkpoint")
path.mkdir(exist_ok=True, parents=True)
if version == 0:
callbacks = [
- CheckpointCallback(
+ ModelCheckpointCallback(
monitor="acc",
save_folder=path,
save_every_n_epochs=1,
- save_every_n_global_batches=123, # 避免和 epoch 的保存重复;
+ save_every_n_batches=123, # 避免和 epoch 的保存重复;
save_topk=None,
save_last=False,
save_on_exception=None,
@@ -98,11 +105,11 @@ def test_model_checkpoint_callback_1(
]
elif version == 1:
callbacks = [
- CheckpointCallback(
+ ModelCheckpointCallback(
monitor="acc",
save_folder=path,
save_every_n_epochs=3,
- save_every_n_global_batches=None,
+ save_every_n_batches=None,
save_topk=2,
save_last=True,
save_on_exception=None,
@@ -121,7 +128,6 @@ def test_model_checkpoint_callback_1(
input_mapping=model_and_optimizers.input_mapping,
output_mapping=model_and_optimizers.output_mapping,
metrics=model_and_optimizers.metrics,
-
n_epochs=10,
callbacks=callbacks,
output_from_new_proc="all"
@@ -134,31 +140,31 @@ def test_model_checkpoint_callback_1(
if version == 0:
if driver == "torch":
- assert "epoch_10-global_batch_250-acc" in all_saved_model_paths
- assert "epoch_4-global_batch_123-acc" in all_saved_model_paths
+ assert "model-epoch_10" in all_saved_model_paths
+ assert "model-epoch_4-batch_123" in all_saved_model_paths
- epoch_save_path = all_saved_model_paths["epoch_10-global_batch_250-acc"]
- step_save_path = all_saved_model_paths["epoch_4-global_batch_123-acc"]
+ epoch_save_path = all_saved_model_paths["model-epoch_10"]
+ step_save_path = all_saved_model_paths["model-epoch_4-batch_123"]
assert len(all_saved_model_paths) == 12
# ddp 下的文件名不同,因为同样的数据,ddp 用了更少的步数跑完;
else:
- assert "epoch_6-global_batch_78-acc" in all_saved_model_paths
- assert "epoch_9-global_batch_123-acc" in all_saved_model_paths
+ assert "model-epoch_6" in all_saved_model_paths
+ assert "model-epoch_9-batch_123" in all_saved_model_paths
- epoch_save_path = all_saved_model_paths["epoch_6-global_batch_78-acc"]
- step_save_path = all_saved_model_paths["epoch_9-global_batch_123-acc"]
+ epoch_save_path = all_saved_model_paths["model-epoch_6"]
+ step_save_path = all_saved_model_paths["model-epoch_9-batch_123"]
assert len(all_saved_model_paths) == 11
all_state_dicts = [epoch_save_path, step_save_path]
elif version == 1:
- pattern = re.compile("epoch_[0-9]+-global_batch_[0-9]+-[a-z|A-Z]+_[0-9]*.?[0-9]*")
+ pattern = re.compile("model-epoch_[0-9]+-batch_[0-9]+-[a-zA-Z#]+_[0-9]*.?[0-9]*")
if driver == "torch":
- assert "epoch_9-global_batch_225-acc" in all_saved_model_paths
- assert "last" in all_saved_model_paths
+ assert "model-epoch_9" in all_saved_model_paths
+ assert "model-last" in all_saved_model_paths
aLL_topk_folders = []
for each_folder_name in all_saved_model_paths:
each_folder_name = pattern.findall(each_folder_name)
@@ -166,15 +172,15 @@ def test_model_checkpoint_callback_1(
aLL_topk_folders.append(each_folder_name[0])
assert len(aLL_topk_folders) == 2
- epoch_save_path = all_saved_model_paths["epoch_9-global_batch_225-acc"]
- last_save_path = all_saved_model_paths["last"]
+ epoch_save_path = all_saved_model_paths["model-epoch_9"]
+ last_save_path = all_saved_model_paths["model-last"]
topk_save_path = all_saved_model_paths[aLL_topk_folders[0]]
assert len(all_saved_model_paths) == 6
# ddp 下的文件名不同,因为同样的数据,ddp 用了更少的步数跑完;
else:
- assert "epoch_9-global_batch_117-acc" in all_saved_model_paths
- assert "last" in all_saved_model_paths
+ assert "model-epoch_9" in all_saved_model_paths
+ assert "model-last" in all_saved_model_paths
aLL_topk_folders = []
for each_folder_name in all_saved_model_paths:
@@ -183,8 +189,8 @@ def test_model_checkpoint_callback_1(
aLL_topk_folders.append(each_folder_name[0])
assert len(aLL_topk_folders) == 2
- epoch_save_path = all_saved_model_paths["epoch_9-global_batch_117-acc"]
- last_save_path = all_saved_model_paths["last"]
+ epoch_save_path = all_saved_model_paths["model-epoch_9"]
+ last_save_path = all_saved_model_paths["model-last"]
topk_save_path = all_saved_model_paths[aLL_topk_folders[0]]
assert len(all_saved_model_paths) == 6
@@ -212,7 +218,7 @@ def test_model_checkpoint_callback_1(
finally:
synchronize_safe_rm(path)
- # pass
+ pass
if dist.is_initialized():
dist.destroy_process_group()
@@ -238,11 +244,11 @@ def test_model_checkpoint_callback_2(
raise NotImplementedError
callbacks = [
- CheckpointCallback(
+ ModelCheckpointCallback(
monitor="acc1",
save_folder=path,
save_every_n_epochs=None,
- save_every_n_global_batches=None,
+ save_every_n_batches=None,
save_topk=None,
save_last=False,
save_on_exception=NotImplementedError,
@@ -279,12 +285,12 @@ def test_model_checkpoint_callback_2(
all_saved_model_paths = {w.name: w for w in path.joinpath(os.environ[FASTNLP_LAUNCH_TIME]).iterdir()}
if driver == "torch":
- assert "epoch_4-global_batch_100-acc_NotImplementedError" in all_saved_model_paths
- exception_model_path = all_saved_model_paths["epoch_4-global_batch_100-acc_NotImplementedError"]
+ assert "model-epoch_4-batch_100-exception_NotImplementedError" in all_saved_model_paths
+ exception_model_path = all_saved_model_paths["model-epoch_4-batch_100-exception_NotImplementedError"]
# ddp 下的文件名不同,因为同样的数据,ddp 用了更少的步数跑完;
else:
- assert "epoch_4-global_batch_52-acc_NotImplementedError" in all_saved_model_paths
- exception_model_path = all_saved_model_paths["epoch_4-global_batch_52-acc_NotImplementedError"]
+ assert "model-epoch_4-batch_52-exception_NotImplementedError" in all_saved_model_paths
+ exception_model_path = all_saved_model_paths["model-epoch_4-batch_52-exception_NotImplementedError"]
assert len(all_saved_model_paths) == 1
all_state_dicts = [exception_model_path]
@@ -332,12 +338,11 @@ def test_trainer_checkpoint_callback_1(
if version == 0:
callbacks = [
- CheckpointCallback(
+ TrainerCheckpointCallback(
monitor="acc",
- is_trainer_checkpoint=True,
save_folder=path,
save_every_n_epochs=7,
- save_every_n_global_batches=123, # 避免和 epoch 的保存重复;
+ save_every_n_batches=123, # 避免和 epoch 的保存重复;
save_topk=None,
save_last=False,
save_on_exception=None,
@@ -346,12 +351,11 @@ def test_trainer_checkpoint_callback_1(
]
elif version == 1:
callbacks = [
- CheckpointCallback(
+ TrainerCheckpointCallback(
monitor="acc",
- is_trainer_checkpoint=True,
save_folder=path,
save_every_n_epochs=None,
- save_every_n_global_batches=None,
+ save_every_n_batches=None,
save_topk=2,
save_last=True,
save_on_exception=None,
@@ -383,31 +387,31 @@ def test_trainer_checkpoint_callback_1(
if version == 0:
if driver == "torch":
- assert "epoch_7-global_batch_175-acc" in all_saved_model_paths
- assert "epoch_4-global_batch_123-acc" in all_saved_model_paths
+ assert "trainer-epoch_7" in all_saved_model_paths
+ assert "trainer-epoch_4-batch_123" in all_saved_model_paths
- epoch_save_path = all_saved_model_paths["epoch_7-global_batch_175-acc"]
- step_save_path = all_saved_model_paths["epoch_4-global_batch_123-acc"]
+ epoch_save_path = all_saved_model_paths["trainer-epoch_7"]
+ step_save_path = all_saved_model_paths["trainer-epoch_4-batch_123"]
assert len(all_saved_model_paths) == 3
# ddp 下的文件名不同,因为同样的数据,ddp 用了更少的步数跑完;
else:
- assert "epoch_7-global_batch_91-acc" in all_saved_model_paths
- assert "epoch_9-global_batch_123-acc" in all_saved_model_paths
+ assert "trainer-epoch_7" in all_saved_model_paths
+ assert "trainer-epoch_9-batch_123" in all_saved_model_paths
- epoch_save_path = all_saved_model_paths["epoch_7-global_batch_91-acc"]
- step_save_path = all_saved_model_paths["epoch_9-global_batch_123-acc"]
+ epoch_save_path = all_saved_model_paths["trainer-epoch_7"]
+ step_save_path = all_saved_model_paths["trainer-epoch_9-batch_123"]
assert len(all_saved_model_paths) == 2
all_state_dicts = [epoch_save_path, step_save_path]
elif version == 1:
- pattern = re.compile("epoch_[0-9]+-global_batch_[0-9]+-[a-z|A-Z]+_[0-9]*.?[0-9]*")
+ pattern = re.compile("trainer-epoch_[0-9]+-batch_[0-9]+-[a-zA-Z#]+_[0-9]*.?[0-9]*")
# all_saved_model_paths = {w.name: w for w in path.joinpath(os.environ[FASTNLP_LAUNCH_TIME]).iterdir()}
if driver == "torch":
- assert "last" in all_saved_model_paths
+ assert "trainer-last" in all_saved_model_paths
aLL_topk_folders = []
for each_folder_name in all_saved_model_paths:
each_folder_name = pattern.findall(each_folder_name)
@@ -415,13 +419,13 @@ def test_trainer_checkpoint_callback_1(
aLL_topk_folders.append(each_folder_name[0])
assert len(aLL_topk_folders) == 2
- last_save_path = all_saved_model_paths["last"]
+ last_save_path = all_saved_model_paths["trainer-last"]
topk_save_path = all_saved_model_paths[aLL_topk_folders[0]]
assert len(all_saved_model_paths) == 3
# ddp 下的文件名不同,因为同样的数据,ddp 用了更少的步数跑完;
else:
- assert "last" in all_saved_model_paths
+ assert "trainer-last" in all_saved_model_paths
aLL_topk_folders = []
for each_folder_name in all_saved_model_paths:
@@ -430,7 +434,7 @@ def test_trainer_checkpoint_callback_1(
aLL_topk_folders.append(each_folder_name[0])
assert len(aLL_topk_folders) == 2
- last_save_path = all_saved_model_paths["last"]
+ last_save_path = all_saved_model_paths["trainer-last"]
topk_save_path = all_saved_model_paths[aLL_topk_folders[0]]
assert len(all_saved_model_paths) == 3
@@ -474,10 +478,11 @@ def test_trainer_checkpoint_callback_2(
device,
version
):
+ pytest.skip("Skip transformers test for now.")
path = Path.cwd().joinpath(f"test_model_checkpoint")
path.mkdir(exist_ok=True, parents=True)
- import transformers
+ import transformers # 版本4.16.2
import torch
from torchmetrics import Accuracy
from transformers import AutoModelForSequenceClassification
@@ -587,12 +592,11 @@ def test_trainer_checkpoint_callback_2(
if version == 0:
callbacks = [
- CheckpointCallback(
+ TrainerCheckpointCallback(
monitor="acc",
- is_trainer_checkpoint=True,
save_folder=path,
save_every_n_epochs=None,
- save_every_n_global_batches=50,
+ save_every_n_batches=50,
save_topk=None,
save_last=False,
save_on_exception=None,
@@ -601,12 +605,11 @@ def test_trainer_checkpoint_callback_2(
]
elif version == 1:
callbacks = [
- CheckpointCallback(
+ TrainerCheckpointCallback(
monitor="acc",
- is_trainer_checkpoint=True,
save_folder=path,
save_every_n_epochs=None,
- save_every_n_global_batches=None,
+ save_every_n_batches=None,
save_topk=1,
save_last=True,
save_on_exception=None,
@@ -638,27 +641,27 @@ def test_trainer_checkpoint_callback_2(
if version == 0:
if driver == "torch":
- assert "epoch_1-global_batch_200-acc" in all_saved_model_paths
+ assert "trainer-epoch_1-batch_200" in all_saved_model_paths
- epoch_save_path = all_saved_model_paths["epoch_1-global_batch_200-acc"]
+ epoch_save_path = all_saved_model_paths["trainer-epoch_1-batch_200"]
assert len(all_saved_model_paths) == 4
# ddp 下的文件名不同,因为同样的数据,ddp 用了更少的步数跑完;
else:
- assert "epoch_1-global_batch_100-acc" in all_saved_model_paths
+ assert "trainer-epoch_1-batch_100" in all_saved_model_paths
- epoch_save_path = all_saved_model_paths["epoch_1-global_batch_100-acc"]
+ epoch_save_path = all_saved_model_paths["trainer-epoch_1-batch_100"]
assert len(all_saved_model_paths) == 2
all_state_dicts = [epoch_save_path]
elif version == 1:
- pattern = re.compile("epoch_[0-9]+-global_batch_[0-9]+-[a-z|A-Z]+_[0-9]*.?[0-9]*")
+ pattern = re.compile("trainer-epoch_[0-9]+-batch_[0-9]+-[a-zA-Z#]+_[0-9]*.?[0-9]*")
# all_saved_model_paths = {w.name: w for w in path.joinpath(os.environ[FASTNLP_LAUNCH_TIME]).iterdir()}
if driver == "torch":
- assert "last" in all_saved_model_paths
+ assert "trainer-last" in all_saved_model_paths
aLL_topk_folders = []
for each_folder_name in all_saved_model_paths:
each_folder_name = pattern.findall(each_folder_name)
@@ -666,13 +669,13 @@ def test_trainer_checkpoint_callback_2(
aLL_topk_folders.append(each_folder_name[0])
assert len(aLL_topk_folders) == 1
- last_save_path = all_saved_model_paths["last"]
+ last_save_path = all_saved_model_paths["trainer-last"]
topk_save_path = all_saved_model_paths[aLL_topk_folders[0]]
assert len(all_saved_model_paths) == 2
# ddp 下的文件名不同,因为同样的数据,ddp 用了更少的步数跑完;
else:
- assert "last" in all_saved_model_paths
+ assert "trainer-last" in all_saved_model_paths
aLL_topk_folders = []
for each_folder_name in all_saved_model_paths:
@@ -681,7 +684,7 @@ def test_trainer_checkpoint_callback_2(
aLL_topk_folders.append(each_folder_name[0])
assert len(aLL_topk_folders) == 1
- last_save_path = all_saved_model_paths["last"]
+ last_save_path = all_saved_model_paths["trainer-last"]
topk_save_path = all_saved_model_paths[aLL_topk_folders[0]]
assert len(all_saved_model_paths) == 2
diff --git a/tests/core/dataloaders/paddle_dataloader/test_fdl.py b/tests/core/dataloaders/paddle_dataloader/test_fdl.py
index dbca394b..20795166 100644
--- a/tests/core/dataloaders/paddle_dataloader/test_fdl.py
+++ b/tests/core/dataloaders/paddle_dataloader/test_fdl.py
@@ -1,4 +1,4 @@
-import unittest
+import pytest
from fastNLP.core.dataloaders.paddle_dataloader.fdl import PaddleDataLoader
from fastNLP.core.dataset import DataSet
@@ -17,7 +17,7 @@ class RandomDataset(Dataset):
return 10
-class TestPaddle(unittest.TestCase):
+class TestPaddle:
def test_init(self):
# ds = DataSet({'x': [[1, 2], [2, 3, 4], [1]] * 10, 'y': [0, 1, 1] * 10})
diff --git a/tests/core/dataloaders/torch_dataloader/test_fdl.py b/tests/core/dataloaders/torch_dataloader/test_fdl.py
index 0cd17ddd..baa3781a 100644
--- a/tests/core/dataloaders/torch_dataloader/test_fdl.py
+++ b/tests/core/dataloaders/torch_dataloader/test_fdl.py
@@ -1,25 +1,25 @@
-import unittest
+import pytest
-from fastNLP.core.dataloaders.torch_dataloader import FDataLoader, prepare_dataloader
+from fastNLP.core.dataloaders.torch_dataloader import TorchDataLoader, prepare_torch_dataloader
from fastNLP.core.dataset import DataSet
from fastNLP.io.data_bundle import DataBundle
-class TestFdl(unittest.TestCase):
+class TestFdl:
def test_init_v1(self):
ds = DataSet({"x": [[1, 2], [2, 3, 4], [4, 5, 6, 7]] * 10, "y": [1, 0, 1] * 10})
- fdl = FDataLoader(ds, batch_size=3, shuffle=True, drop_last=True)
+ fdl = TorchDataLoader(ds, batch_size=3, shuffle=True, drop_last=True)
# for batch in fdl:
# print(batch)
- fdl1 = FDataLoader(ds, batch_size=3, shuffle=True, drop_last=True, as_numpy=True)
+ fdl1 = TorchDataLoader(ds, batch_size=3, shuffle=True, drop_last=True, as_numpy=True)
# for batch in fdl1:
# print(batch)
def test_set_padding(self):
ds = DataSet({"x": [[1, 2], [2, 3, 4], [4, 5, 6, 7]] * 10, "y": [1, 0, 1] * 10})
ds.set_pad_val("x", val=-1)
- fdl = FDataLoader(ds, batch_size=3)
+ fdl = TorchDataLoader(ds, batch_size=3)
fdl.set_input("x", "y")
for batch in fdl:
print(batch)
@@ -36,7 +36,7 @@ class TestFdl(unittest.TestCase):
_dict["Y"].append(ins['y'])
return _dict
- fdl = FDataLoader(ds, batch_size=3, as_numpy=True)
+ fdl = TorchDataLoader(ds, batch_size=3, as_numpy=True)
fdl.set_input("x", "y")
fdl.add_collator(collate_fn)
for batch in fdl:
@@ -44,7 +44,7 @@ class TestFdl(unittest.TestCase):
def test_get_batch_indices(self):
ds = DataSet({"x": [[1, 2], [2, 3, 4], [4, 5, 6, 7]] * 10, "y": [1, 0, 1] * 10})
- fdl = FDataLoader(ds, batch_size=3, shuffle=True)
+ fdl = TorchDataLoader(ds, batch_size=3, shuffle=True)
fdl.set_input("y", "x")
for batch in fdl:
print(fdl.get_batch_indices())
@@ -67,30 +67,30 @@ class TestFdl(unittest.TestCase):
return object.__getattribute__(self, item)
dataset = _DataSet()
- dl = FDataLoader(dataset, batch_size=2, shuffle=True)
+ dl = TorchDataLoader(dataset, batch_size=2, shuffle=True)
# dl.set_inputs('data', 'labels')
# dl.set_pad_val('labels', val=None)
for batch in dl:
print(batch)
print(dl.get_batch_indices())
- def test_prepare_dataloader(self):
+ def test_prepare_torch_dataloader(self):
ds = DataSet({"x": [[1, 2], [2, 3, 4], [4, 5, 6, 7]] * 10, "y": [1, 0, 1] * 10})
- dl = prepare_dataloader(ds, batch_size=8, shuffle=True, num_workers=2)
- assert isinstance(dl, FDataLoader)
+ dl = prepare_torch_dataloader(ds, batch_size=8, shuffle=True, num_workers=2)
+ assert isinstance(dl, TorchDataLoader)
ds1 = DataSet({"x": [[1, 2], [2, 3, 4], [4, 5, 6, 7]] * 10, "y": [1, 0, 1] * 10})
dbl = DataBundle(datasets={'train': ds, 'val': ds1})
- dl_bundle = prepare_dataloader(dbl)
- assert isinstance(dl_bundle['train'], FDataLoader)
- assert isinstance(dl_bundle['val'], FDataLoader)
+ dl_bundle = prepare_torch_dataloader(dbl)
+ assert isinstance(dl_bundle['train'], TorchDataLoader)
+ assert isinstance(dl_bundle['val'], TorchDataLoader)
ds_dict = {'train_1': ds, 'val': ds1}
- dl_dict = prepare_dataloader(ds_dict)
- assert isinstance(dl_dict['train_1'], FDataLoader)
- assert isinstance(dl_dict['val'], FDataLoader)
+ dl_dict = prepare_torch_dataloader(ds_dict)
+ assert isinstance(dl_dict['train_1'], TorchDataLoader)
+ assert isinstance(dl_dict['val'], TorchDataLoader)
sequence = [ds, ds1]
- seq_ds = prepare_dataloader(sequence)
- assert isinstance(seq_ds[0], FDataLoader)
- assert isinstance(seq_ds[1], FDataLoader)
+ seq_ds = prepare_torch_dataloader(sequence)
+ assert isinstance(seq_ds[0], TorchDataLoader)
+ assert isinstance(seq_ds[1], TorchDataLoader)
diff --git a/tests/core/dataset/test_dataset.py b/tests/core/dataset/test_dataset.py
index 78c48c54..8ff64d04 100644
--- a/tests/core/dataset/test_dataset.py
+++ b/tests/core/dataset/test_dataset.py
@@ -1,12 +1,12 @@
import os
-import unittest
+import pytest
import numpy as np
from fastNLP.core.dataset import DataSet, FieldArray, Instance, ApplyResultException
-class TestDataSetInit(unittest.TestCase):
+class TestDataSetInit:
"""初始化DataSet的办法有以下几种:
1) 用dict:
1.1) 二维list DataSet({"x": [[1, 2], [3, 4]]})
@@ -24,46 +24,46 @@ class TestDataSetInit(unittest.TestCase):
def test_init_v1(self):
# 一维list
ds = DataSet([Instance(x=[1, 2, 3, 4], y=[5, 6])] * 40)
- self.assertTrue("x" in ds.field_arrays and "y" in ds.field_arrays)
- self.assertEqual(ds.field_arrays["x"].content, [[1, 2, 3, 4], ] * 40)
- self.assertEqual(ds.field_arrays["y"].content, [[5, 6], ] * 40)
+ assert ("x" in ds.field_arrays and "y" in ds.field_arrays) == True
+ assert ds.field_arrays["x"].content == [[1, 2, 3, 4], ] * 40
+ assert ds.field_arrays["y"].content == [[5, 6], ] * 40
def test_init_v2(self):
# 用dict
ds = DataSet({"x": [[1, 2, 3, 4]] * 40, "y": [[5, 6]] * 40})
- self.assertTrue("x" in ds.field_arrays and "y" in ds.field_arrays)
- self.assertEqual(ds.field_arrays["x"].content, [[1, 2, 3, 4], ] * 40)
- self.assertEqual(ds.field_arrays["y"].content, [[5, 6], ] * 40)
+ assert ("x" in ds.field_arrays and "y" in ds.field_arrays) == True
+ assert ds.field_arrays["x"].content == [[1, 2, 3, 4], ] * 40
+ assert ds.field_arrays["y"].content == [[5, 6], ] * 40
def test_init_assert(self):
- with self.assertRaises(AssertionError):
+ with pytest.raises(AssertionError):
_ = DataSet({"x": [[1, 2, 3, 4]] * 40, "y": [[5, 6]] * 100})
- with self.assertRaises(AssertionError):
+ with pytest.raises(AssertionError):
_ = DataSet([[1, 2, 3, 4]] * 10)
- with self.assertRaises(ValueError):
+ with pytest.raises(ValueError):
_ = DataSet(0.00001)
-class TestDataSetMethods(unittest.TestCase):
+class TestDataSetMethods:
def test_append(self):
dd = DataSet()
for _ in range(3):
dd.append(Instance(x=[1, 2, 3, 4], y=[5, 6]))
- self.assertEqual(len(dd), 3)
- self.assertEqual(dd.field_arrays["x"].content, [[1, 2, 3, 4]] * 3)
- self.assertEqual(dd.field_arrays["y"].content, [[5, 6]] * 3)
+ assert len(dd) == 3
+ assert dd.field_arrays["x"].content == [[1, 2, 3, 4]] * 3
+ assert dd.field_arrays["y"].content == [[5, 6]] * 3
def test_add_field(self):
dd = DataSet()
dd.add_field("x", [[1, 2, 3]] * 10)
dd.add_field("y", [[1, 2, 3, 4]] * 10)
dd.add_field("z", [[5, 6]] * 10)
- self.assertEqual(len(dd), 10)
- self.assertEqual(dd.field_arrays["x"].content, [[1, 2, 3]] * 10)
- self.assertEqual(dd.field_arrays["y"].content, [[1, 2, 3, 4]] * 10)
- self.assertEqual(dd.field_arrays["z"].content, [[5, 6]] * 10)
+ assert len(dd) == 10
+ assert dd.field_arrays["x"].content == [[1, 2, 3]] * 10
+ assert dd.field_arrays["y"].content == [[1, 2, 3, 4]] * 10
+ assert dd.field_arrays["z"].content == [[5, 6]] * 10
- with self.assertRaises(RuntimeError):
+ with pytest.raises(RuntimeError):
dd.add_field("??", [[1, 2]] * 40)
def test_delete_field(self):
@@ -71,8 +71,8 @@ class TestDataSetMethods(unittest.TestCase):
dd.add_field("x", [[1, 2, 3]] * 10)
dd.add_field("y", [[1, 2, 3, 4]] * 10)
dd.delete_field("x")
- self.assertFalse("x" in dd.field_arrays)
- self.assertTrue("y" in dd.field_arrays)
+ assert ("x" in dd.field_arrays) == False
+ assert "y" in dd.field_arrays
def test_delete_instance(self):
dd = DataSet()
@@ -80,99 +80,113 @@ class TestDataSetMethods(unittest.TestCase):
dd.add_field("x", [[1, 2, 3]] * old_length)
dd.add_field("y", [[1, 2, 3, 4]] * old_length)
dd.delete_instance(0)
- self.assertEqual(len(dd), old_length - 1)
+ assert len(dd) == old_length - 1
dd.delete_instance(0)
- self.assertEqual(len(dd), old_length - 2)
+ assert len(dd) == old_length - 2
def test_getitem(self):
ds = DataSet({"x": [[1, 2, 3, 4]] * 40, "y": [[5, 6]] * 40})
ins_1, ins_0 = ds[0], ds[1]
- self.assertTrue(isinstance(ins_1, Instance) and isinstance(ins_0, Instance))
- self.assertEqual(ins_1["x"], [1, 2, 3, 4])
- self.assertEqual(ins_1["y"], [5, 6])
- self.assertEqual(ins_0["x"], [1, 2, 3, 4])
- self.assertEqual(ins_0["y"], [5, 6])
+ assert isinstance(ins_1, Instance) and isinstance(ins_0, Instance) == True
+ assert ins_1["x"] == [1, 2, 3, 4]
+ assert ins_1["y"] == [5, 6]
+ assert ins_0["x"] == [1, 2, 3, 4]
+ assert ins_0["y"] == [5, 6]
sub_ds = ds[:10]
- self.assertTrue(isinstance(sub_ds, DataSet))
- self.assertEqual(len(sub_ds), 10)
+ assert isinstance(sub_ds, DataSet) == True
+ assert len(sub_ds) == 10
sub_ds_1 = ds[[10, 0, 2, 3]]
- self.assertTrue(isinstance(sub_ds_1, DataSet))
- self.assertEqual(len(sub_ds_1), 4)
+ assert isinstance(sub_ds_1, DataSet) == True
+ assert len(sub_ds_1) == 4
field_array = ds['x']
- self.assertTrue(isinstance(field_array, FieldArray))
- self.assertEqual(len(field_array), 40)
+ assert isinstance(field_array, FieldArray) == True
+ assert len(field_array) == 40
+
+ def test_setitem(self):
+ ds = DataSet({"x": [[1, 2, 3, 4]] * 40, "y": [[5, 6]] * 40})
+ ds.add_field('i', list(range(len(ds))))
+ assert ds.get_field('i').content == list(range(len(ds)))
+ import random
+ random.shuffle(ds)
+ import numpy as np
+ np.random.shuffle(ds)
+ assert ds.get_field('i').content != list(range(len(ds)))
+
+ ins1 = ds[1]
+ ds[2] = ds[1]
+ assert ds[2]['x'] == ins1['x'] and ds[2]['y'] == ins1['y']
def test_get_item_error(self):
- with self.assertRaises(RuntimeError):
+ with pytest.raises(RuntimeError):
ds = DataSet({"x": [[1, 2, 3, 4]] * 10, "y": [[5, 6]] * 10})
_ = ds[40:]
- with self.assertRaises(KeyError):
+ with pytest.raises(KeyError):
ds = DataSet({"x": [[1, 2, 3, 4]] * 10, "y": [[5, 6]] * 10})
_ = ds["kom"]
def test_len_(self):
ds = DataSet({"x": [[1, 2, 3, 4]] * 40, "y": [[5, 6]] * 40})
- self.assertEqual(len(ds), 40)
+ assert len(ds) == 40
ds = DataSet()
- self.assertEqual(len(ds), 0)
+ assert len(ds) == 0
def test_add_fieldarray(self):
ds = DataSet({"x": [[1, 2, 3, 4]] * 40, "y": [[5, 6]] * 40})
- ds.add_fieldarray('z', FieldArray('z', [[7, 8]]*40))
- self.assertEqual(ds['z'].content, [[7, 8]]*40)
+ ds.add_fieldarray('z', FieldArray('z', [[7, 8]] * 40))
+ assert ds['z'].content == [[7, 8]] * 40
- with self.assertRaises(RuntimeError):
- ds.add_fieldarray('z', FieldArray('z', [[7, 8]]*10))
+ with pytest.raises(RuntimeError):
+ ds.add_fieldarray('z', FieldArray('z', [[7, 8]] * 10))
- with self.assertRaises(TypeError):
+ with pytest.raises(TypeError):
ds.add_fieldarray('z', [1, 2, 4])
def test_copy_field(self):
ds = DataSet({"x": [[1, 2, 3, 4]] * 40, "y": [[5, 6]] * 40})
ds.copy_field('x', 'z')
- self.assertEqual(ds['x'].content, ds['z'].content)
+ assert ds['x'].content == ds['z'].content
def test_has_field(self):
ds = DataSet({"x": [[1, 2, 3, 4]] * 40, "y": [[5, 6]] * 40})
- self.assertTrue(ds.has_field('x'))
- self.assertFalse(ds.has_field('z'))
+ assert ds.has_field('x') == True
+ assert ds.has_field('z') == False
def test_get_field(self):
ds = DataSet({"x": [[1, 2, 3, 4]] * 40, "y": [[5, 6]] * 40})
- with self.assertRaises(KeyError):
+ with pytest.raises(KeyError):
ds.get_field('z')
x_array = ds.get_field('x')
- self.assertEqual(x_array.content, [[1, 2, 3, 4]] * 40)
+ assert x_array.content == [[1, 2, 3, 4]] * 40
def test_get_all_fields(self):
ds = DataSet({"x": [[1, 2, 3, 4]] * 40, "y": [[5, 6]] * 40})
field_arrays = ds.get_all_fields()
- self.assertEqual(field_arrays["x"], [[1, 2, 3, 4]] * 40)
- self.assertEqual(field_arrays['y'], [[5, 6]] * 40)
+ assert field_arrays["x"].content == [[1, 2, 3, 4]] * 40
+ assert field_arrays['y'].content == [[5, 6]] * 40
def test_get_field_names(self):
ds = DataSet({"x": [[1, 2, 3, 4]] * 40, "y": [[5, 6]] * 40})
field_names = ds.get_field_names()
- self.assertTrue('x' in field_names)
- self.assertTrue('y' in field_names)
+ assert 'x' in field_names
+ assert 'y' in field_names
def test_apply(self):
ds = DataSet({"x": [[1, 2, 3, 4]] * 4000, "y": [[5, 6]] * 4000})
ds.apply(lambda ins: ins["x"][::-1], new_field_name="rx", progress_desc='rx')
- self.assertTrue("rx" in ds.field_arrays)
- self.assertEqual(ds.field_arrays["rx"].content[0], [4, 3, 2, 1])
+ assert ("rx" in ds.field_arrays) == True
+ assert ds.field_arrays["rx"].content[0] == [4, 3, 2, 1]
ds.apply(lambda ins: len(ins["y"]), new_field_name="y", show_progress_bar=False)
- self.assertEqual(ds.field_arrays["y"].content[0], 2)
+ assert ds.field_arrays["y"].content[0] == 2
res = ds.apply(lambda ins: len(ins["x"]), num_proc=0, progress_desc="len")
- self.assertTrue(isinstance(res, list) and len(res) > 0)
- self.assertTrue(res[0], 4)
+ assert (isinstance(res, list) and len(res) > 0) == True
+ assert res[0] == 4
ds.apply(lambda ins: (len(ins["x"]), "hahaha"), new_field_name="k")
# expect no exception raised
@@ -192,6 +206,7 @@ class TestDataSetMethods(unittest.TestCase):
def modify_inplace(instance):
instance['words'] = 1
+
ds.apply(modify_inplace)
# with self.assertRaises(TypeError):
# ds.apply(modify_inplace)
@@ -216,48 +231,48 @@ class TestDataSetMethods(unittest.TestCase):
T.apply_more(func_1)
# print(T['c'][0, 1, 2])
- self.assertEqual(list(T["c"].content), [2, 4, 6])
- self.assertEqual(list(T["d"].content), [1, 4, 9])
+ assert list(T["c"].content) == [2, 4, 6]
+ assert list(T["d"].content) == [1, 4, 9]
res = T.apply_field_more(func_2, "a", modify_fields=False)
- self.assertEqual(list(T["c"].content), [2, 4, 6])
- self.assertEqual(list(T["d"].content), [1, 4, 9])
- self.assertEqual(list(res["c"]), [3, 6, 9])
- self.assertEqual(list(res["d"]), [1, 8, 27])
+ assert list(T["c"].content) == [2, 4, 6]
+ assert list(T["d"].content) == [1, 4, 9]
+ assert list(res["c"]) == [3, 6, 9]
+ assert list(res["d"]) == [1, 8, 27]
- with self.assertRaises(ApplyResultException) as e:
+ with pytest.raises(ApplyResultException) as e:
T.apply_more(func_err_1)
print(e)
- with self.assertRaises(ApplyResultException) as e:
+ with pytest.raises(ApplyResultException) as e:
T.apply_field_more(func_err_2, "a")
print(e)
def test_drop(self):
ds = DataSet({"x": [[1, 2, 3, 4]] * 40, "y": [[5, 6], [7, 8, 9, 0]] * 20})
ds.drop(lambda ins: len(ins["y"]) < 3, inplace=True)
- self.assertEqual(len(ds), 20)
+ assert len(ds) == 20
def test_contains(self):
ds = DataSet({"x": [[1, 2, 3, 4]] * 40, "y": [[5, 6]] * 40})
- self.assertTrue("x" in ds)
- self.assertTrue("y" in ds)
- self.assertFalse("z" in ds)
+ assert ("x" in ds) == True
+ assert ("y" in ds) == True
+ assert ("z" in ds) == False
def test_rename_field(self):
ds = DataSet({"x": [[1, 2, 3, 4]] * 10, "y": [[5, 6]] * 10})
ds.rename_field("x", "xx")
- self.assertTrue("xx" in ds)
- self.assertFalse("x" in ds)
+ assert ("xx" in ds) == True
+ assert ("x" in ds) == False
- with self.assertRaises(KeyError):
+ with pytest.raises(KeyError):
ds.rename_field("yyy", "oo")
def test_split(self):
ds = DataSet({"x": [[1, 2, 3, 4]] * 10, "y": [[5, 6]] * 10})
d1, d2 = ds.split(0.1)
- self.assertEqual(len(d1), len(ds)*0.9)
- self.assertEqual(len(d2), len(ds)*0.1)
+ assert len(d2) == (len(ds) * 0.9)
+ assert len(d1) == (len(ds) * 0.1)
def test_add_field_v2(self):
ds = DataSet({"x": [3, 4]})
@@ -268,14 +283,14 @@ class TestDataSetMethods(unittest.TestCase):
def test_save_load(self):
ds = DataSet({"x": [[1, 2, 3, 4]] * 10, "y": [[5, 6]] * 10})
ds.save("./my_ds.pkl")
- self.assertTrue(os.path.exists("./my_ds.pkl"))
+ assert os.path.exists("./my_ds.pkl") == True
ds_1 = DataSet.load("./my_ds.pkl")
os.remove("my_ds.pkl")
def test_add_null(self):
ds = DataSet()
- with self.assertRaises(RuntimeError) as RE:
+ with pytest.raises(RuntimeError) as RE:
ds.add_field('test', [])
def test_concat(self):
@@ -287,16 +302,16 @@ class TestDataSetMethods(unittest.TestCase):
ds2 = DataSet({"x": [[4, 3, 2, 1] for _ in range(10)], "y": [[6, 5] for _ in range(10)]})
ds3 = ds1.concat(ds2)
- self.assertEqual(len(ds3), 20)
+ assert len(ds3) == 20
- self.assertListEqual(ds1[9]['x'], [1, 2, 3, 4])
- self.assertListEqual(ds1[10]['x'], [4, 3, 2, 1])
+ assert ds1[9]['x'] == [1, 2, 3, 4]
+ assert ds1[10]['x'] == [4, 3, 2, 1]
ds2[0]['x'][0] = 100
- self.assertEqual(ds3[10]['x'][0], 4) # 不改变copy后的field了
+ assert ds3[10]['x'][0] == 4 # 不改变copy后的field了
ds3[10]['x'][0] = -100
- self.assertEqual(ds2[0]['x'][0], 100) # 不改变copy前的field了
+ assert ds2[0]['x'][0] == 100 # 不改变copy前的field了
# 测试inplace
ds1 = DataSet({"x": [[1, 2, 3, 4] for i in range(10)], "y": [[5, 6] for i in range(10)]})
@@ -304,19 +319,19 @@ class TestDataSetMethods(unittest.TestCase):
ds3 = ds1.concat(ds2, inplace=True)
ds2[0]['x'][0] = 100
- self.assertEqual(ds3[10]['x'][0], 4) # 不改变copy后的field了
+ assert ds3[10]['x'][0] == 4 # 不改变copy后的field了
ds3[10]['x'][0] = -100
- self.assertEqual(ds2[0]['x'][0], 100) # 不改变copy前的field了
+ assert ds2[0]['x'][0] == 100 # 不改变copy前的field了
ds3[0]['x'][0] = 100
- self.assertEqual(ds1[0]['x'][0], 100) # 改变copy前的field了
+ assert ds1[0]['x'][0] == 100 # 改变copy前的field了
# 测试mapping
ds1 = DataSet({"x": [[1, 2, 3, 4] for i in range(10)], "y": [[5, 6] for i in range(10)]})
ds2 = DataSet({"X": [[4, 3, 2, 1] for i in range(10)], "Y": [[6, 5] for i in range(10)]})
ds3 = ds1.concat(ds2, field_mapping={'X': 'x', 'Y': 'y'})
- self.assertEqual(len(ds3), 20)
+ assert len(ds3) == 20
# 测试忽略掉多余的
ds1 = DataSet({"x": [[1, 2, 3, 4] for i in range(10)], "y": [[5, 6] for i in range(10)]})
@@ -326,7 +341,7 @@ class TestDataSetMethods(unittest.TestCase):
# 测试报错
ds1 = DataSet({"x": [[1, 2, 3, 4] for i in range(10)], "y": [[5, 6] for i in range(10)]})
ds2 = DataSet({"X": [[4, 3, 2, 1] for i in range(10)]})
- with self.assertRaises(RuntimeError):
+ with pytest.raises(RuntimeError):
ds3 = ds1.concat(ds2, field_mapping={'X': 'x'})
def test_instance_field_disappear_bug(self):
@@ -334,7 +349,7 @@ class TestDataSetMethods(unittest.TestCase):
data.copy_field(field_name='raw_chars', new_field_name='chars')
_data = data[:1]
for field_name in ['raw_chars', 'target', 'chars']:
- self.assertTrue(_data.has_field(field_name))
+ assert _data.has_field(field_name) == True
def test_from_pandas(self):
import pandas as pd
@@ -342,8 +357,8 @@ class TestDataSetMethods(unittest.TestCase):
df = pd.DataFrame({'x': [1, 2, 3], 'y': [4, 5, 6]})
ds = DataSet.from_pandas(df)
print(ds)
- self.assertEqual(ds['x'].content, [1, 2, 3])
- self.assertEqual(ds['y'].content, [4, 5, 6])
+ assert ds['x'].content == [1, 2, 3]
+ assert ds['y'].content == [4, 5, 6]
def test_to_pandas(self):
ds = DataSet({'x': [1, 2, 3], 'y': [4, 5, 6]})
@@ -352,7 +367,7 @@ class TestDataSetMethods(unittest.TestCase):
def test_to_csv(self):
ds = DataSet({'x': [1, 2, 3], 'y': [4, 5, 6]})
ds.to_csv("1.csv")
- self.assertTrue(os.path.exists("1.csv"))
+ assert os.path.exists("1.csv") == True
os.remove("1.csv")
def test_add_collate_fn(self):
@@ -360,27 +375,26 @@ class TestDataSetMethods(unittest.TestCase):
def collate_fn(item):
return item
- ds.add_collate_fn(collate_fn)
- self.assertEqual(len(ds.collate_fns.collators), 2)
+ ds.add_collate_fn(collate_fn)
def test_get_collator(self):
from typing import Callable
ds = DataSet({'x': [1, 2, 3], 'y': [4, 5, 6]})
collate_fn = ds.get_collator()
- self.assertEqual(isinstance(collate_fn, Callable), True)
+ assert isinstance(collate_fn, Callable) == True
def test_add_seq_len(self):
- ds = DataSet({'x': [[1, 2], [2, 3 , 4], [3]], 'y': [4, 5, 6]})
+ ds = DataSet({'x': [[1, 2], [2, 3, 4], [3]], 'y': [4, 5, 6]})
ds.add_seq_len('x')
print(ds)
def test_set_target(self):
- ds = DataSet({'x': [[1, 2], [2, 3 , 4], [3]], 'y': [4, 5, 6]})
+ ds = DataSet({'x': [[1, 2], [2, 3, 4], [3]], 'y': [4, 5, 6]})
ds.set_target('x')
-class TestFieldArrayInit(unittest.TestCase):
+class TestFieldArrayInit:
"""
1) 如果DataSet使用dict初始化,那么在add_field中会构造FieldArray:
1.1) 二维list DataSet({"x": [[1, 2], [3, 4]]})
@@ -428,7 +442,6 @@ class TestFieldArrayInit(unittest.TestCase):
# list of array
fa = FieldArray("x", [np.array([[1, 2], [3, 4]]), np.array([[1, 2], [3, 4]])])
-
def test_init_v8(self):
# 二维list
val = np.array([[1, 2], [3, 4]])
@@ -436,78 +449,78 @@ class TestFieldArrayInit(unittest.TestCase):
fa.append(val)
-class TestFieldArray(unittest.TestCase):
+class TestFieldArray:
def test_main(self):
fa = FieldArray("x", [1, 2, 3, 4, 5])
- self.assertEqual(len(fa), 5)
+ assert len(fa) == 5
fa.append(6)
- self.assertEqual(len(fa), 6)
+ assert len(fa) == 6
- self.assertEqual(fa[-1], 6)
- self.assertEqual(fa[0], 1)
+ assert fa[-1] == 6
+ assert fa[0] == 1
fa[-1] = 60
- self.assertEqual(fa[-1], 60)
+ assert fa[-1] == 60
- self.assertEqual(fa.get(0), 1)
- self.assertTrue(isinstance(fa.get([0, 1, 2]), np.ndarray))
- self.assertListEqual(list(fa.get([0, 1, 2])), [1, 2, 3])
+ assert fa.get(0) == 1
+ assert isinstance(fa.get([0, 1, 2]), np.ndarray) == True
+ assert list(fa.get([0, 1, 2])) == [1, 2, 3]
def test_getitem_v1(self):
fa = FieldArray("y", [[1.1, 2.2, 3.3, 4.4, 5.5], [1.0, 2.0, 3.0, 4.0, 5.0]])
- self.assertEqual(fa[0], [1.1, 2.2, 3.3, 4.4, 5.5])
+ assert fa[0] == [1.1, 2.2, 3.3, 4.4, 5.5]
ans = fa[[0, 1]]
- self.assertTrue(isinstance(ans, np.ndarray))
- self.assertTrue(isinstance(ans[0], np.ndarray))
- self.assertEqual(ans[0].tolist(), [1.1, 2.2, 3.3, 4.4, 5.5])
- self.assertEqual(ans[1].tolist(), [1, 2, 3, 4, 5])
- self.assertEqual(ans.dtype, np.float64)
+ assert isinstance(ans, np.ndarray) == True
+ assert isinstance(ans[0], np.ndarray) == True
+ assert ans[0].tolist() == [1.1, 2.2, 3.3, 4.4, 5.5]
+ assert ans[1].tolist() == [1, 2, 3, 4, 5]
+ assert ans.dtype == np.float64
def test_getitem_v2(self):
x = np.random.rand(10, 5)
fa = FieldArray("my_field", x)
indices = [0, 1, 3, 4, 6]
for a, b in zip(fa[indices], x[indices]):
- self.assertListEqual(a.tolist(), b.tolist())
+ assert a.tolist() == b.tolist()
def test_append(self):
fa = FieldArray("y", [[1.1, 2.2, 3.3, 4.4, 5.5], [1.0, 2.0, 3.0, 4.0, 5.0]])
fa.append([1.2, 2.3, 3.4, 4.5, 5.6])
- self.assertEqual(len(fa), 3)
- self.assertEqual(fa[2], [1.2, 2.3, 3.4, 4.5, 5.6])
+ assert len(fa) == 3
+ assert fa[2] == [1.2, 2.3, 3.4, 4.5, 5.6]
def test_pop(self):
fa = FieldArray("y", [[1.1, 2.2, 3.3, 4.4, 5.5], [1.0, 2.0, 3.0, 4.0, 5.0]])
fa.pop(0)
- self.assertEqual(len(fa), 1)
- self.assertEqual(fa[0], [1.0, 2.0, 3.0, 4.0, 5.0])
+ assert len(fa) == 1
+ assert fa[0] == [1.0, 2.0, 3.0, 4.0, 5.0]
fa[0] = [1.1, 2.2, 3.3, 4.4, 5.5]
- self.assertEqual(fa[0], [1.1, 2.2, 3.3, 4.4, 5.5])
+ assert fa[0] == [1.1, 2.2, 3.3, 4.4, 5.5]
-class TestCase(unittest.TestCase):
+class TestCase:
def test_init(self):
fields = {"x": [1, 2, 3], "y": [4, 5, 6]}
ins = Instance(x=[1, 2, 3], y=[4, 5, 6])
- self.assertTrue(isinstance(ins.fields, dict))
- self.assertEqual(ins.fields, fields)
+ assert isinstance(ins.fields, dict) == True
+ assert ins.fields == fields
ins = Instance(**fields)
- self.assertEqual(ins.fields, fields)
+ assert ins.fields == fields
def test_add_field(self):
fields = {"x": [1, 2, 3], "y": [4, 5, 6]}
ins = Instance(**fields)
ins.add_field("z", [1, 1, 1])
fields.update({"z": [1, 1, 1]})
- self.assertEqual(ins.fields, fields)
+ assert ins.fields == fields
def test_get_item(self):
fields = {"x": [1, 2, 3], "y": [4, 5, 6], "z": [1, 1, 1]}
ins = Instance(**fields)
- self.assertEqual(ins["x"], [1, 2, 3])
- self.assertEqual(ins["y"], [4, 5, 6])
- self.assertEqual(ins["z"], [1, 1, 1])
+ assert ins["x"] == [1, 2, 3]
+ assert ins["y"] == [4, 5, 6]
+ assert ins["z"] == [1, 1, 1]
def test_repr(self):
fields = {"x": [1, 2, 3], "y": [4, 5, 6], "z": [1, 1, 1]}
diff --git a/tests/core/drivers/paddle_driver/test_single_device.py b/tests/core/drivers/paddle_driver/test_single_device.py
index 791b1203..8e21c20f 100644
--- a/tests/core/drivers/paddle_driver/test_single_device.py
+++ b/tests/core/drivers/paddle_driver/test_single_device.py
@@ -6,7 +6,7 @@ from fastNLP.core.drivers.paddle_driver.single_device import PaddleSingleDriver
from fastNLP.core.samplers.reproducible_sampler import RandomSampler
from fastNLP.core.samplers import ReproducibleBatchSampler
from tests.helpers.models.paddle_model import PaddleNormalModel_Classification_1
-from tests.helpers.datasets.paddle_data import PaddleRandomMaxDataset
+from tests.helpers.datasets.paddle_data import PaddleNormalDataset, PaddleRandomMaxDataset
from tests.helpers.datasets.torch_data import TorchNormalDataset
from tests.helpers.models.torch_model import TorchNormalModel_Classification_1
from fastNLP.core import synchronize_safe_rm
diff --git a/tests/core/drivers/torch_driver/test_torch_replace_sampler.py b/tests/core/drivers/torch_driver/test_torch_replace_sampler.py
index 81d693fc..161bbfe8 100644
--- a/tests/core/drivers/torch_driver/test_torch_replace_sampler.py
+++ b/tests/core/drivers/torch_driver/test_torch_replace_sampler.py
@@ -30,7 +30,7 @@ class SequenceDataSet:
def check_replace_sampler(driver):
- # dist_sampler 可以选择的有['dist', 'unrepeatdist', None]或者是ReproducibleSampler,ReproducibleBatchSampler
+ # dist_sampler 可以选择的有['dist', 'unrepeatdist', None]或者是ReproducibleSampler,RandomBatchSampler
# reproducible 是 True 和 False
# 需要 check 返回的 sampler 和 dataloader 都不同了
diff --git a/tests/core/metrics/test_accuracy_torch.py b/tests/core/metrics/test_accuracy_torch.py
index 33fc791a..b62200db 100644
--- a/tests/core/metrics/test_accuracy_torch.py
+++ b/tests/core/metrics/test_accuracy_torch.py
@@ -118,7 +118,6 @@ class TestAccuracy:
def test_v1(self, is_ddp: bool, dataset: DataSet, metric_class: Type['Metric'],
metric_kwargs: Dict[str, Any]) -> None:
global pool
- print(pool)
if is_ddp:
if sys.platform == "win32":
pytest.skip("DDP not supported on windows")
diff --git a/tests/core/metrics/test_f1_rec_acc_torch.py b/tests/core/metrics/test_span_f1_rec_acc_torch.py
similarity index 72%
rename from tests/core/metrics/test_f1_rec_acc_torch.py
rename to tests/core/metrics/test_span_f1_rec_acc_torch.py
index 121f9530..bc711a54 100644
--- a/tests/core/metrics/test_f1_rec_acc_torch.py
+++ b/tests/core/metrics/test_span_f1_rec_acc_torch.py
@@ -1,5 +1,5 @@
import pytest
-import unittest
+
from collections import Counter
import os, sys
import copy
@@ -14,6 +14,7 @@ from torch.multiprocessing import Pool, set_start_method
from fastNLP.core.vocabulary import Vocabulary
from fastNLP.core.metrics import SpanFPreRecMetric
from fastNLP.core.dataset import DataSet
+
set_start_method("spawn", force=True)
@@ -45,7 +46,6 @@ def setup_ddp(rank: int, world_size: int, master_port: int) -> None:
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = str(master_port)
- print(torch.cuda.device_count())
if torch.distributed.is_available() and sys.platform not in ("win32", "cygwin"):
torch.distributed.init_process_group("gloo", rank=rank, world_size=world_size)
@@ -64,15 +64,15 @@ def find_free_network_port() -> int:
return port
-@pytest.fixture(scope='class', autouse=True)
-def pre_process():
- global pool
- pool = Pool(processes=NUM_PROCESSES)
- master_port = find_free_network_port()
- pool.starmap(setup_ddp, [(rank, NUM_PROCESSES, master_port) for rank in range(NUM_PROCESSES)])
- yield
- pool.close()
- pool.join()
+# @pytest.fixture(scope='class', autouse=True)
+# def pre_process():
+# global pool
+# pool = Pool(processes=NUM_PROCESSES)
+# master_port = find_free_network_port()
+# pool.starmap(setup_ddp, [(rank, NUM_PROCESSES, master_port) for rank in range(NUM_PROCESSES)])
+# yield
+# pool.close()
+# pool.join()
def _test(local_rank: int,
@@ -87,18 +87,19 @@ def _test(local_rank: int,
# dataset 也类似(每个进程有自己的一个)
dataset = copy.deepcopy(dataset)
metric.to(device)
- print(os.environ.get("MASTER_PORT", "xx"))
# 把数据拆到每个 GPU 上,有点模仿 DistributedSampler 的感觉,但这里数据单位是一个 batch(即每个 i 取了一个 batch 到自己的 GPU 上)
for i in range(local_rank, len(dataset), world_size):
pred, tg, seq_len = dataset[i]['pred'].to(device), dataset[i]['tg'].to(device), dataset[i]['seq_len']
+ print(tg, seq_len)
metric.update(pred, tg, seq_len)
my_result = metric.get_metric()
+ print(my_result)
+ print(sklearn_metric)
assert my_result == sklearn_metric
-class SpanFPreRecMetricTest(unittest.TestCase):
- global pool
+class TestSpanFPreRecMetric:
def test_case1(self):
from fastNLP.core.metrics.span_f1_pre_rec_metric import _bmes_tag_to_spans
@@ -135,38 +136,36 @@ class SpanFPreRecMetricTest(unittest.TestCase):
fastnlp_bio_vocab = Vocabulary(unknown=None, padding=None)
fastnlp_bio_vocab.word_count = Counter(_generate_tags('BIO', number_labels))
fastnlp_bio_metric = SpanFPreRecMetric(tag_vocab=fastnlp_bio_vocab, only_gross=False)
- bio_sequence = torch.FloatTensor([[[-0.4424, -0.4579, -0.7376, 1.8129, 0.1316, 1.6566, -1.2169,
- -0.3782, 0.8240],
- [-1.2348, -0.1876, -0.1462, -0.4834, -0.6692, -0.9735, 1.1563,
+ bio_sequence = torch.FloatTensor([[[-0.4424, -0.4579, -0.7376, 1.8129, 0.1316, 1.6566, -1.2169,
+ -0.3782, 0.8240],
+ [-1.2348, -0.1876, -0.1462, -0.4834, -0.6692, -0.9735, 1.1563,
-0.3562, -1.4116],
- [1.6550, -0.9555, 0.3782, -1.3160, -1.5835, -0.3443, -1.7858,
- 2.0023, 0.7075],
- [-0.3772, -0.5447, -1.5631, 1.1614, 1.4598, -1.2764, 0.5186,
+ [ 1.6550, -0.9555, 0.3782, -1.3160, -1.5835, -0.3443, -1.7858,
+ 2.0023, 0.7075],
+ [-0.3772, -0.5447, -1.5631, 1.1614, 1.4598, -1.2764, 0.5186,
0.3832, -0.1540],
- [-0.1011, 0.0600, 1.1090, -0.3545, 0.1284, 1.1484, -1.0120,
+ [-0.1011, 0.0600, 1.1090, -0.3545, 0.1284, 1.1484, -1.0120,
-1.3508, -0.9513],
- [1.8948, 0.8627, -2.1359, 1.3740, -0.7499, 1.5019, 0.6919,
- -0.0842, -0.4294]],
+ [ 1.8948, 0.8627, -2.1359, 1.3740, -0.7499, 1.5019, 0.6919,
+ -0.0842, -0.4294]],
- [[-0.2802, 0.6941, -0.4788, -0.3845, 1.7752, 1.2950, -1.9490,
+ [[-0.2802, 0.6941, -0.4788, -0.3845, 1.7752, 1.2950, -1.9490,
-1.4138, -0.8853],
- [-1.3752, -0.5457, -0.5305, 0.4018, 0.2934, 0.7931, 2.3845,
- -1.0726, 0.0364],
- [0.3621, 0.2609, 0.1269, -0.5950, 0.7212, 0.5959, 1.6264,
- -0.8836, -0.9320],
- [0.2003, -1.0758, -1.1560, -0.6472, -1.7549, 0.1264, 0.6044,
- -1.6857, 1.1571],
- [1.4277, -0.4915, 0.4496, 2.2027, 0.0730, -3.1792, -0.5125,
- -0.5837, 1.0184],
- [1.9495, 1.7145, -0.2143, -0.1230, -0.2205, 0.8250, 0.4943,
- -0.9025, 0.0864]]])
- bio_target = torch.LongTensor([[3, 6, 0, 8, 2, 4],
- [4, 1, 7, 0, 4, 7]])
+ [-1.3752, -0.5457, -0.5305, 0.4018, 0.2934, 0.7931, 2.3845,
+ -1.0726, 0.0364],
+ [ 0.3621, 0.2609, 0.1269, -0.5950, 0.7212, 0.5959, 1.6264,
+ -0.8836, -0.9320],
+ [ 0.2003, -1.0758, -1.1560, -0.6472, -1.7549, 0.1264, 0.6044,
+ -1.6857, 1.1571],
+ [ 1.4277, -0.4915, 0.4496, 2.2027, 0.0730, -3.1792, -0.5125,
+ -0.5837, 1.0184],
+ [ 1.9495, 1.7145, -0.2143, -0.1230, -0.2205, 0.8250, 0.4943,
+ -0.9025, 0.0864]]])
+ bio_target = torch.LongTensor([[3, 6, 0, 8, 2, 4], [4, 1, 7, 0, 4, 7]])
fastnlp_bio_metric.update(bio_sequence, bio_target, [6, 6])
expect_bio_res = {'pre-1': 0.333333, 'rec-1': 0.333333, 'f-1': 0.333333, 'pre-2': 0.5, 'rec-2': 0.5,
'f-2': 0.5, 'pre-0': 0.0, 'rec-0': 0.0, 'f-0': 0.0, 'pre-3': 0.0, 'rec-3': 0.0,
'f-3': 0.0, 'pre': 0.222222, 'rec': 0.181818, 'f': 0.2}
-
assert expect_bio_res == fastnlp_bio_metric.get_metric()
# print(fastnlp_bio_metric.get_metric())
@@ -253,7 +252,7 @@ class SpanFPreRecMetricTest(unittest.TestCase):
# print(expected_metric)
metric_value = metric.get_metric()
for key, value in expected_metric.items():
- self.assertAlmostEqual(value, metric_value[key], places=5)
+ np.allclose(value, metric_value[key])
def test_auto_encoding_type_infer(self):
# 检查是否可以自动check encode的类型
@@ -270,9 +269,8 @@ class SpanFPreRecMetricTest(unittest.TestCase):
vocab.add_word('o')
vocabs[encoding_type] = vocab
for e in ['bio', 'bioes', 'bmeso']:
- with self.subTest(e=e):
- metric = SpanFPreRecMetric(tag_vocab=vocabs[e])
- assert metric.encoding_type == e
+ metric = SpanFPreRecMetric(tag_vocab=vocabs[e])
+ assert metric.encoding_type == e
bmes_vocab = _generate_tags('bmes')
vocab = Vocabulary()
@@ -285,7 +283,7 @@ class SpanFPreRecMetricTest(unittest.TestCase):
vocab = Vocabulary()
for i in range(10):
vocab.add_word(str(i))
- with self.assertRaises(Exception):
+ with pytest.raises(Exception):
metric = SpanFPreRecMetric(vocab)
def test_encoding_type(self):
@@ -304,65 +302,72 @@ class SpanFPreRecMetricTest(unittest.TestCase):
vocab.add_word('o')
vocabs[encoding_type] = vocab
for e1, e2 in product(['bio', 'bioes', 'bmeso'], ['bio', 'bioes', 'bmeso']):
- with self.subTest(e1=e1, e2=e2):
- if e1 == e2:
+ if e1 == e2:
+ metric = SpanFPreRecMetric(tag_vocab=vocabs[e1], encoding_type=e2)
+ else:
+ s2 = set(e2)
+ s2.update(set(e1))
+ if s2 == set(e2):
+ continue
+ with pytest.raises(AssertionError):
metric = SpanFPreRecMetric(tag_vocab=vocabs[e1], encoding_type=e2)
- else:
- s2 = set(e2)
- s2.update(set(e1))
- if s2 == set(e2):
- continue
- with self.assertRaises(AssertionError):
- metric = SpanFPreRecMetric(tag_vocab=vocabs[e1], encoding_type=e2)
for encoding_type in ['bio', 'bioes', 'bmeso']:
- with self.assertRaises(AssertionError):
+ with pytest.raises(AssertionError):
metric = SpanFPreRecMetric(tag_vocab=vocabs[encoding_type], encoding_type='bmes')
- with self.assertWarns(Warning):
+ with pytest.warns(Warning):
vocab = Vocabulary(unknown=None, padding=None).add_word_lst(list('bmes'))
metric = SpanFPreRecMetric(tag_vocab=vocab, encoding_type='bmeso')
vocab = Vocabulary().add_word_lst(list('bmes'))
metric = SpanFPreRecMetric(tag_vocab=vocab, encoding_type='bmeso')
def test_case5(self):
- global pool
- # pool = Pool(NUM_PROCESSES)
- # master_port = find_free_network_port()
- # pool.starmap(setup_ddp, [(rank, NUM_PROCESSES, master_port) for rank in range(NUM_PROCESSES)])
+ # global pool
+ pool = Pool(NUM_PROCESSES)
+ master_port = find_free_network_port()
+ pool.starmap(setup_ddp, [(rank, NUM_PROCESSES, master_port) for rank in range(NUM_PROCESSES)])
number_labels = 4
# bio tag
fastnlp_bio_vocab = Vocabulary(unknown=None, padding=None)
fastnlp_bio_vocab.word_count = Counter(_generate_tags('BIO', number_labels))
# fastnlp_bio_metric = SpanFPreRecMetric(tag_vocab=fastnlp_bio_vocab, only_gross=False)
- dataset = DataSet({'pred': [torch.FloatTensor(
- [[[-0.4424, -0.4579, -0.7376, 1.8129, 0.1316, 1.6566, -1.2169,
- -0.3782, 0.8240],
- [-1.2348, -0.1876, -0.1462, -0.4834, -0.6692, -0.9735, 1.1563,
- -0.3562, -1.4116],
- [1.6550, -0.9555, 0.3782, -1.3160, -1.5835, -0.3443, -1.7858,
- 2.0023, 0.7075],
- [-0.3772, -0.5447, -1.5631, 1.1614, 1.4598, -1.2764, 0.5186,
- 0.3832, -0.1540],
- [-0.1011, 0.0600, 1.1090, -0.3545, 0.1284, 1.1484, -1.0120,
- -1.3508, -0.9513],
- [1.8948, 0.8627, -2.1359, 1.3740, -0.7499, 1.5019, 0.6919,
- -0.0842, -0.4294]],
-
- [[-0.2802, 0.6941, -0.4788, -0.3845, 1.7752, 1.2950, -1.9490,
- -1.4138, -0.8853],
- [-1.3752, -0.5457, -0.5305, 0.4018, 0.2934, 0.7931, 2.3845,
- -1.0726, 0.0364],
- [0.3621, 0.2609, 0.1269, -0.5950, 0.7212, 0.5959, 1.6264,
- -0.8836, -0.9320],
- [0.2003, -1.0758, -1.1560, -0.6472, -1.7549, 0.1264, 0.6044,
- -1.6857, 1.1571],
- [1.4277, -0.4915, 0.4496, 2.2027, 0.0730, -3.1792, -0.5125,
- -0.5837, 1.0184],
- [1.9495, 1.7145, -0.2143, -0.1230, -0.2205, 0.8250, 0.4943,
- -0.9025, 0.0864]]])] * 100,
- 'tg': [torch.LongTensor([[3, 6, 0, 8, 2, 4],
- [4, 1, 7, 0, 4, 7]])] * 100,
- 'seq_len': [[6, 6]] * 100})
+ dataset = DataSet({'pred': [
+ torch.FloatTensor([[[-0.4424, -0.4579, -0.7376, 1.8129, 0.1316, 1.6566, -1.2169,
+ -0.3782, 0.8240],
+ [-1.2348, -0.1876, -0.1462, -0.4834, -0.6692, -0.9735, 1.1563,
+ -0.3562, -1.4116],
+ [1.6550, -0.9555, 0.3782, -1.3160, -1.5835, -0.3443, -1.7858,
+ 2.0023, 0.7075],
+ [-0.3772, -0.5447, -1.5631, 1.1614, 1.4598, -1.2764, 0.5186,
+ 0.3832, -0.1540],
+ [-0.1011, 0.0600, 1.1090, -0.3545, 0.1284, 1.1484, -1.0120,
+ -1.3508, -0.9513],
+ [1.8948, 0.8627, -2.1359, 1.3740, -0.7499, 1.5019, 0.6919,
+ -0.0842, -0.4294]]
+
+ ]),
+ torch.FloatTensor([
+ [[-0.2802, 0.6941, -0.4788, -0.3845, 1.7752, 1.2950, -1.9490,
+ -1.4138, -0.8853],
+ [-1.3752, -0.5457, -0.5305, 0.4018, 0.2934, 0.7931, 2.3845,
+ -1.0726, 0.0364],
+ [0.3621, 0.2609, 0.1269, -0.5950, 0.7212, 0.5959, 1.6264,
+ -0.8836, -0.9320],
+ [0.2003, -1.0758, -1.1560, -0.6472, -1.7549, 0.1264, 0.6044,
+ -1.6857, 1.1571],
+ [1.4277, -0.4915, 0.4496, 2.2027, 0.0730, -3.1792, -0.5125,
+ -0.5837, 1.0184],
+ [1.9495, 1.7145, -0.2143, -0.1230, -0.2205, 0.8250, 0.4943,
+ -0.9025, 0.0864]]
+ ])
+ ],
+ 'tg': [
+ torch.LongTensor([[3, 6, 0, 8, 2, 4]]),
+ torch.LongTensor([[4, 1, 7, 0, 4, 7]])
+ ],
+ 'seq_len': [
+ [6], [6]
+ ]})
metric_kwargs = {
'tag_vocab': fastnlp_bio_vocab,
'only_gross': False,
@@ -372,7 +377,6 @@ class SpanFPreRecMetricTest(unittest.TestCase):
'f-2': 0.5, 'pre-0': 0.0, 'rec-0': 0.0, 'f-0': 0.0, 'pre-3': 0.0, 'rec-3': 0.0,
'f-3': 0.0, 'pre': 0.222222, 'rec': 0.181818, 'f': 0.2}
processes = NUM_PROCESSES
- print(torch.cuda.device_count())
pool.starmap(
partial(
@@ -384,3 +388,5 @@ class SpanFPreRecMetricTest(unittest.TestCase):
),
[(rank, processes, torch.device(f'cuda:{rank}')) for rank in range(processes)]
)
+ pool.close()
+ pool.join()
diff --git a/tests/core/samplers/test_reproducible_batch_sampler.py b/tests/core/samplers/test_reproducible_batch_sampler.py
index 42b86dcd..d51dd912 100644
--- a/tests/core/samplers/test_reproducible_batch_sampler.py
+++ b/tests/core/samplers/test_reproducible_batch_sampler.py
@@ -4,7 +4,7 @@ import numpy as np
import pytest
from itertools import chain
-from fastNLP.core.samplers import ReproducibleBatchSampler, BucketedBatchSampler
+from fastNLP.core.samplers import RandomBatchSampler, BucketedBatchSampler
from fastNLP.core.drivers.torch_driver.utils import replace_batch_sampler
from tests.helpers.datasets.torch_data import TorchNormalDataset
@@ -18,7 +18,7 @@ class TestReproducibleBatchSampler:
before_batch_size = 7
dataset = TorchNormalDataset(num_of_data=100)
dataloader = DataLoader(dataset, batch_size=before_batch_size)
- re_batchsampler = ReproducibleBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False)
+ re_batchsampler = RandomBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False)
dataloader = replace_batch_sampler(dataloader, re_batchsampler)
forward_steps = 3
@@ -28,15 +28,15 @@ class TestReproducibleBatchSampler:
# 1. 保存状态
_get_re_batchsampler = dataloader.batch_sampler
- assert isinstance(_get_re_batchsampler, ReproducibleBatchSampler)
+ assert isinstance(_get_re_batchsampler, RandomBatchSampler)
state = _get_re_batchsampler.state_dict()
assert state == {"index_list": array("I", list(range(100))), "data_idx": forward_steps*before_batch_size,
- "sampler_type": "ReproducibleBatchSampler"}
+ "sampler_type": "RandomBatchSampler"}
# 2. 断点重训,重新生成一个 dataloader;
# 不改变 batch_size;
dataloader = DataLoader(dataset, batch_size=before_batch_size)
- re_batchsampler = ReproducibleBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False)
+ re_batchsampler = RandomBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False)
re_batchsampler.load_state_dict(state)
dataloader = replace_batch_sampler(dataloader, re_batchsampler)
@@ -53,7 +53,7 @@ class TestReproducibleBatchSampler:
# 改变 batch_size;
after_batch_size = 3
dataloader = DataLoader(dataset, batch_size=after_batch_size)
- re_batchsampler = ReproducibleBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False)
+ re_batchsampler = RandomBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False)
re_batchsampler.load_state_dict(state)
dataloader = replace_batch_sampler(dataloader, re_batchsampler)
@@ -99,7 +99,7 @@ class TestReproducibleBatchSampler:
dataset = TorchNormalDataset(num_of_data=100)
# 开启 shuffle,来检验断点重训后的第二轮的 index list 是不是重新生成的;
dataloader = DataLoader(dataset, batch_size=before_batch_size, shuffle=True)
- re_batchsampler = ReproducibleBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False)
+ re_batchsampler = RandomBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False)
dataloader = replace_batch_sampler(dataloader, re_batchsampler)
# 将一轮的所有数据保存下来,看是否恢复的是正确的;
@@ -111,13 +111,13 @@ class TestReproducibleBatchSampler:
# 1. 保存状态
_get_re_batchsampler = dataloader.batch_sampler
- assert isinstance(_get_re_batchsampler, ReproducibleBatchSampler)
+ assert isinstance(_get_re_batchsampler, RandomBatchSampler)
state = _get_re_batchsampler.state_dict()
# 2. 断点重训,重新生成一个 dataloader;
# 不改变 batch_size;
dataloader = DataLoader(dataset, batch_size=before_batch_size, shuffle=True)
- re_batchsampler = ReproducibleBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False)
+ re_batchsampler = RandomBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False)
re_batchsampler.load_state_dict(state)
dataloader = replace_batch_sampler(dataloader, re_batchsampler)
@@ -416,7 +416,6 @@ class TestBucketedBatchSampler:
@pytest.mark.parametrize('num_replica', [2, 3])
def test_multi_same_bucket(self, shuffle, drop_last, pad, num_samples, num_replica):
# def test_multi_same_bucket(self, shuffle=True, drop_last=True, pad=True, num_samples=623, num_replica=2):
- # TODO 两个 rank 上的长度是要在同一个bucket的
dataset = DatasetWithVaryLength(num_of_data=num_samples)
batch_size = 6
if num_replica*batch_size > num_samples:
diff --git a/tests/core/samplers/test_reproducible_sampler.py b/tests/core/samplers/test_reproducible_sampler.py
index 0a3697d3..981d6a03 100644
--- a/tests/core/samplers/test_reproducible_sampler.py
+++ b/tests/core/samplers/test_reproducible_sampler.py
@@ -1,18 +1,14 @@
-import unittest
-
-from itertools import product
import numpy as np
+import pytest
from functools import partial
-from array import array
+from itertools import chain
-from fastNLP.core.samplers.reproducible_sampler import RandomSampler
-from fastNLP.core.drivers.torch_driver.utils import replace_batch_sampler
+from fastNLP.core.samplers.reproducible_sampler import RandomSampler, SortedSampler, SequentialSampler
from tests.helpers.datasets.torch_data import TorchNormalDataset
-
-class TestRandomSamplerYh(unittest.TestCase):
+class TestRandomSamplerYh:
def test_init(self):
# 测试能否正确初始化
dataset = TorchNormalDataset(num_of_data=100)
@@ -24,7 +20,7 @@ class TestRandomSamplerYh(unittest.TestCase):
dataset = TorchNormalDataset(num_of_data=100)
sampler = RandomSampler(dataset)
for i in sampler:
- with self.assertRaises(AssertionError):
+ with pytest.raises(AssertionError):
sampler.set_distributed(1, 0)
break
@@ -37,39 +33,39 @@ class TestRandomSamplerYh(unittest.TestCase):
dataset = TorchNormalDataset(num_of_data=100)
sampler = RandomSampler(dataset, shuffle=False)
sampler.set_distributed(num_replicas=2, rank=0, pad=False)
- self.assertEqual(len(sampler), 50)
+ assert len(sampler)==50
count = 0
for i in sampler:
- self.assertEqual(i%2, 0)
+ assert i%2==0
count += 1
- self.assertEqual(count, 50)
+ assert count == 50
sampler.set_distributed(num_replicas=2, rank=1, pad=False)
- self.assertEqual(len(sampler), 50)
+ assert len(sampler)==50
count = 0
for i in sampler:
- self.assertEqual(i%2, 1)
+ assert i%2==1
count += 1
- self.assertEqual(count, 50)
+ assert count==50
dataset = TorchNormalDataset(num_of_data=101)
sampler = RandomSampler(dataset, shuffle=False)
sampler.set_distributed(num_replicas=2, rank=0, pad=True)
- self.assertEqual(len(sampler), 51)
+ assert len(sampler)==51
count = 0
for i in sampler:
- self.assertEqual(i%2, 0)
+ assert i%2==0
count += 1
- self.assertEqual(count, 51)
+ assert count == 51
sampler.set_distributed(num_replicas=2, rank=1, pad=True)
- self.assertEqual(len(sampler), 51)
+ assert len(sampler) == 51
count = 0
for i in sampler:
if i!=0:
- self.assertEqual(i%2, 1)
+ assert i%2==1
count += 1
- self.assertEqual(count, 51)
+ assert count == 51
def test_state_dict_check_length(self):
dataset = TorchNormalDataset(num_of_data=100)
@@ -77,7 +73,7 @@ class TestRandomSamplerYh(unittest.TestCase):
states = sampler.state_dict()
new_ds = TorchNormalDataset(num_of_data=10)
- with self.assertRaises(AssertionError):
+ with pytest.raises(AssertionError):
new_sampler = RandomSampler(new_ds)
new_sampler.load_state_dict(states)
@@ -85,99 +81,107 @@ class TestRandomSamplerYh(unittest.TestCase):
new_sampler = RandomSampler(new_ds)
new_sampler.load_state_dict(states)
- def test_state_dict(self):
+ @pytest.mark.parametrize('pad', [True, False])
+ @pytest.mark.parametrize('pre_shuffle', [True, False])
+ @pytest.mark.parametrize('post_shuffle', [True, False])
+ @pytest.mark.parametrize('num_consumed_samples', [0]+np.random.randint(1, 100, size=3).tolist())
+ def test_state_dict(self, pad, pre_shuffle, post_shuffle, num_consumed_samples):
num_samples = 100
dataset = TorchNormalDataset(num_of_data=num_samples)
# 测试使用 前后shuffle不一致的load操作
- lst = [0]+np.random.randint(1, num_samples, size=3).tolist()
- for pre_shuffle, post_shuffle, num_consumed_samples in product([True, False], [True, False],
- lst):
- with self.subTest(pre_shuffle=pre_shuffle, post_shuffle=post_shuffle, num_consumed_samples=num_consumed_samples):
- sampler = RandomSampler(dataset, shuffle=pre_shuffle)
- sampler.set_epoch(0)
- already_numbers = set()
- if num_consumed_samples>0:
- for i, j in enumerate(sampler, start=1):
- already_numbers.add(j)
- if i == num_consumed_samples:
- break
- self.assertEqual(len(already_numbers), num_consumed_samples)
-
- states = sampler.state_dict()
-
- new_sampler = RandomSampler(dataset, shuffle=post_shuffle)
- new_sampler.load_state_dict(states)
- new_sampler.set_epoch(0)
- for i in new_sampler:
- self.assertNotIn(i, already_numbers)
-
- # 测试切换成多卡也没有问题
- other_rank_number = set()
- for rank in range(3):
- new_sampler = RandomSampler(dataset, shuffle=post_shuffle)
- new_sampler.load_state_dict(states)
- new_sampler.set_distributed(num_replicas=3, rank=rank, pad=False)
- new_sampler.set_epoch(0)
- count = 0
- for i in new_sampler:
- self.assertNotIn(i, other_rank_number)
- other_rank_number.add(i)
- self.assertNotIn(i, already_numbers)
- count += 1
-
- def test_state_dict_2(self):
+ sampler = RandomSampler(dataset, shuffle=pre_shuffle)
+ sampler.set_epoch(0)
+ already_numbers = set()
+ if num_consumed_samples>0:
+ for i, j in enumerate(sampler, start=1):
+ already_numbers.add(j)
+ if i == num_consumed_samples:
+ break
+ assert len(already_numbers) == num_consumed_samples
+
+ states = sampler.state_dict()
+
+ new_sampler = RandomSampler(dataset, shuffle=post_shuffle)
+ new_sampler.load_state_dict(states)
+ new_sampler.set_epoch(0)
+ for i in new_sampler:
+ assert i not in already_numbers
+
+ # 测试切换成多卡也没有问题
+ other_rank_number = set()
+ for rank in range(3):
+ new_sampler = RandomSampler(dataset, shuffle=post_shuffle)
+ new_sampler.load_state_dict(states)
+ new_sampler.set_distributed(num_replicas=3, rank=rank, pad=pad)
+ new_sampler.set_epoch(0)
+ count = 0
+ seen = 0
+ seen_in_other_rank = 0
+ for i in new_sampler:
+ seen_in_other_rank += int(i in other_rank_number)
+ other_rank_number.add(i)
+ seen += int(i in already_numbers)
+ count += 1
+ assert seen <= 1 if pad else seen == 0
+ assert seen_in_other_rank<=1 # 因为pad可能重复
+
+ @pytest.mark.parametrize('pad', [True, False])
+ @pytest.mark.parametrize('pre_shuffle', [True, False])
+ @pytest.mark.parametrize('post_shuffle', [True, False])
+ @pytest.mark.parametrize('num_consumed_samples', [0]+np.random.randint(1, 100//2, size=3).tolist())
+ def test_state_dict_2(self, pad, pre_shuffle, post_shuffle, num_consumed_samples):
# 测试一下从多卡切换到单卡,或者切换到不同卡数量的多卡
num_samples = 100
dataset = TorchNormalDataset(num_of_data=num_samples)
# 测试使用 前后shuffle不一致的load操作
- lst = [0]+np.random.randint(1, num_samples//2, size=3).tolist()
# lst = [30]
- for pre_shuffle, post_shuffle, num_consumed_samples in product([True, False], [True, False],
- lst):
- with self.subTest(pre_shuffle=pre_shuffle, post_shuffle=post_shuffle, num_consumed_samples=num_consumed_samples):
- already_numbers = set()
- sampler = RandomSampler(dataset, shuffle=pre_shuffle, seed=0)
- sampler.set_distributed(num_replicas=2, rank=0)
- sampler.set_epoch(0)
- if num_consumed_samples>0:
- for i, j in enumerate(sampler, start=1):
- already_numbers.add(j)
- if i == num_consumed_samples:
- break
- sampler = RandomSampler(dataset, shuffle=pre_shuffle, seed=0)
- sampler.set_epoch(0)
- sampler.set_distributed(num_replicas=2, rank=1)
- if num_consumed_samples>0:
- for i, j in enumerate(sampler, start=1):
- already_numbers.add(j)
- if i == num_consumed_samples:
- break
- self.assertEqual(len(already_numbers), num_consumed_samples*2)
-
- states = sampler.state_dict()
-
- new_sampler = RandomSampler(dataset, shuffle=post_shuffle)
- new_sampler.load_state_dict(states)
- new_sampler.set_epoch(0)
- for i in new_sampler:
- self.assertNotIn(i, already_numbers)
-
- # 测试切换成多卡也没有问题
- other_rank_number = set()
- for rank in range(3):
- new_sampler = RandomSampler(dataset, shuffle=post_shuffle)
- new_sampler.load_state_dict(states)
- new_sampler.set_epoch(0)
- new_sampler.set_distributed(num_replicas=3, rank=rank, pad=False)
- count = 0
- for i in new_sampler:
- self.assertNotIn(i, other_rank_number)
- other_rank_number.add(i)
- self.assertNotIn(i, already_numbers)
- count += 1
-
-
-class TestRandomSampler(unittest.TestCase):
+ already_numbers = set()
+ sampler = RandomSampler(dataset, shuffle=pre_shuffle, seed=0)
+ sampler.set_distributed(num_replicas=2, rank=0)
+ sampler.set_epoch(0)
+ if num_consumed_samples>0:
+ for i, j in enumerate(sampler, start=1):
+ already_numbers.add(j)
+ if i == num_consumed_samples:
+ break
+ sampler = RandomSampler(dataset, shuffle=pre_shuffle, seed=0)
+ sampler.set_epoch(0)
+ sampler.set_distributed(num_replicas=2, rank=1)
+ if num_consumed_samples>0:
+ for i, j in enumerate(sampler, start=1):
+ already_numbers.add(j)
+ if i == num_consumed_samples:
+ break
+ assert len(already_numbers) == num_consumed_samples*2
+
+ states = sampler.state_dict()
+
+ new_sampler = RandomSampler(dataset, shuffle=post_shuffle)
+ new_sampler.load_state_dict(states)
+ new_sampler.set_epoch(0)
+ for i in new_sampler:
+ assert i not in already_numbers
+
+ # 测试切换成多卡也没有问题
+ other_rank_number = set()
+ for rank in range(3):
+ new_sampler = RandomSampler(dataset, shuffle=post_shuffle)
+ new_sampler.load_state_dict(states)
+ new_sampler.set_epoch(0)
+ new_sampler.set_distributed(num_replicas=3, rank=rank, pad=pad)
+ count = 0
+ seen = 0
+ seen_in_other_rank = 0
+ for i in new_sampler:
+ seen_in_other_rank += int(i in other_rank_number)
+ other_rank_number.add(i)
+ seen += int(i in already_numbers)
+ count += 1
+ assert seen <= 1 if pad else seen == 0
+ assert seen_in_other_rank<=1 # 因为pad可能重复
+
+
+class TestRandomSampler:
# 测试单卡;
def test_seed_work_when_shuffle_is_true(self):
data_length = 100
@@ -360,4 +364,324 @@ class TestRandomSampler(unittest.TestCase):
...
+class DatasetWithVaryLength:
+ def __init__(self, num_of_data=100, reverse=False):
+ self.data = np.arange(num_of_data)
+ if reverse:
+ self.data = self.data[::-1]
+
+ def __getitem__(self, item):
+ return self.data[item]
+
+ def __len__(self):
+ return len(self.data)
+
+
+class TestSortedSampler:
+ def test_single(self):
+ num_of_data = 100
+ data = DatasetWithVaryLength(num_of_data)
+ sampler = SortedSampler(data, length=data.data)
+ indexes = list(sampler)
+ assert indexes==list(range(num_of_data-1, -1, -1))
+
+ @pytest.mark.parametrize('pad', [True, False])
+ @pytest.mark.parametrize('num_replica', [2, 3])
+ @pytest.mark.parametrize('num_of_data', [2, 3, 4, 100])
+ def test_multi(self, pad, num_replica, num_of_data):
+ data = DatasetWithVaryLength(num_of_data=num_of_data)
+ samplers = []
+ for i in range(num_replica):
+ sampler = SortedSampler(dataset=data, length=data.data)
+ sampler.set_distributed(num_replica, rank=i, pad=pad)
+ samplers.append(sampler)
+
+ # 保证顺序是没乱的
+ already_seen_index = set()
+ for sampler in samplers:
+ larger_count = 0 # 这里为 0 就可以,因为最后补充的index一定是比较大的数。
+ prev_index = float('inf')
+ cur_set = set()
+ seen_in_other_rank = 0
+ for index in sampler:
+ seen_in_other_rank += int(index in already_seen_index) # 不同的卡不交叉
+ cur_set.add(index)
+ larger_count += int(index <= prev_index)
+ prev_index = index
+ assert larger_count+1 >= len(sampler) # 除了最后一个可能乱掉,其它都必须要保持这个顺序
+ assert seen_in_other_rank <= 1 if pad else seen_in_other_rank == 0
+ already_seen_index.update(cur_set)
+
+ indexes = list(chain(*samplers))
+ indexes = set(indexes)
+ if pad:
+ assert indexes == set(range(num_of_data))
+ else:
+ assert len(indexes) <= num_of_data
+
+ @pytest.mark.parametrize('pad', [True, False])
+ @pytest.mark.parametrize('num_consumed_samples', [0]+np.random.randint(1, 100, size=3).tolist())
+ def test_state_dict(self, pad, num_consumed_samples):
+ num_samples = 100
+ dataset = DatasetWithVaryLength(num_of_data=num_samples)
+ # 测试使用 前后shuffle不一致的load操作
+ sampler = SortedSampler(dataset, length=dataset.data)
+ sampler.set_epoch(0)
+ already_numbers = set()
+ if num_consumed_samples>0:
+ for i, j in enumerate(sampler, start=1):
+ if already_numbers:
+ assert j= max(already_numbers))
+ seen_in_other_rank += int(i in other_rank_number)
+ other_rank_number.add(i)
+ seen += int(i in already_numbers)
+ count += 1
+ assert seen <= 1 if pad else seen == 0
+ assert seen_in_other_rank<=1 # 因为pad可能重复
+ assert smaller<=1 if pad else smaller==0
+
+ @pytest.mark.parametrize('pad', [True, False])
+ @pytest.mark.parametrize('num_consumed_samples', [0]+np.random.randint(1, 100//2, size=3).tolist())
+ def test_state_dict_2(self, pad, num_consumed_samples):
+ # 测试一下从多卡切换到单卡,或者切换到不同卡数量的多卡
+ num_samples = 100
+ dataset = DatasetWithVaryLength(num_of_data=num_samples)
+ # 测试使用 前后shuffle不一致的load操作
+ # lst = [30]
+ already_numbers = set()
+ sampler = SortedSampler(dataset, length=dataset.data)
+ sampler.set_distributed(num_replicas=2, rank=0)
+ sampler.set_epoch(0)
+ if num_consumed_samples>0:
+ for i, j in enumerate(sampler, start=1):
+ if already_numbers:
+ assert j<=max(already_numbers)
+ already_numbers.add(j)
+ if i == num_consumed_samples:
+ break
+ sampler = SortedSampler(dataset, length=dataset.data)
+ sampler.set_epoch(0)
+ sampler.set_distributed(num_replicas=2, rank=1)
+ if num_consumed_samples>0:
+ for i, j in enumerate(sampler, start=1):
+ already_numbers.add(j)
+ if i == num_consumed_samples:
+ break
+ assert len(already_numbers) == num_consumed_samples*2
+
+ states = sampler.state_dict()
+
+ new_sampler = SortedSampler(dataset, length=dataset.data)
+ new_sampler.load_state_dict(states)
+ new_sampler.set_epoch(0)
+ for i in new_sampler:
+ if already_numbers:
+ assert i < max(already_numbers)
+ assert i not in already_numbers
+
+ # 测试切换成多卡也没有问题
+ other_rank_number = set()
+ for rank in range(3):
+ new_sampler = SortedSampler(dataset, length=dataset.data)
+ new_sampler.load_state_dict(states)
+ new_sampler.set_epoch(0)
+ new_sampler.set_distributed(num_replicas=3, rank=rank, pad=pad)
+ count = 0
+ seen = 0
+ seen_in_other_rank = 0
+ smaller = 0
+ for i in new_sampler:
+ if already_numbers:
+ smaller += int(i>=max(already_numbers))
+ seen_in_other_rank += int(i in other_rank_number)
+ other_rank_number.add(i)
+ seen += int(i in already_numbers)
+ count += 1
+ assert seen <= 1 if pad else seen == 0
+ assert seen_in_other_rank<=1 # 因为pad可能重复
+ assert smaller <= 1 if pad else smaller == 0
+
+
+class TestSequentialSampler:
+ def test_single(self):
+ num_of_data = 100
+ data = DatasetWithVaryLength(num_of_data)
+ sampler = SequentialSampler(data)
+ indexes = list(sampler)
+ assert indexes==list(range(num_of_data))
+
+ @pytest.mark.parametrize('pad', [True, False])
+ @pytest.mark.parametrize('num_replica', [2, 3])
+ @pytest.mark.parametrize('num_of_data', [2, 3, 4, 100])
+ def test_multi(self, pad, num_replica, num_of_data):
+ data = DatasetWithVaryLength(num_of_data=num_of_data)
+ samplers = []
+ for i in range(num_replica):
+ sampler = SequentialSampler(dataset=data)
+ sampler.set_distributed(num_replica, rank=i, pad=pad)
+ samplers.append(sampler)
+
+ # 保证顺序是没乱的
+ already_seen_index = set()
+ for idx, sampler in enumerate(samplers):
+ larger_count = 1
+ prev_index = float('inf')
+ cur_set = set()
+ seen_in_other_rank = 0
+ for index in sampler:
+ seen_in_other_rank += int(index in already_seen_index) # 不同的卡不交叉
+ cur_set.add(index)
+ larger_count += int(index >= prev_index)
+ prev_index = index
+ assert larger_count+1 >= len(sampler) # 除了最后一个可能乱掉,其它都必须要保持这个顺序
+ assert seen_in_other_rank <= idx if pad else seen_in_other_rank == 0
+ already_seen_index.update(cur_set)
+
+ indexes = list(chain(*samplers))
+ indexes = set(indexes)
+ if pad:
+ assert indexes == set(range(num_of_data))
+ else:
+ assert len(indexes) <= num_of_data
+
+ @pytest.mark.parametrize('pad', [True, False])
+ @pytest.mark.parametrize('num_consumed_samples', [0]+np.random.randint(1, 100, size=3).tolist())
+ def test_state_dict(self, pad, num_consumed_samples):
+ num_samples = 100
+ dataset = DatasetWithVaryLength(num_of_data=num_samples)
+ # 测试使用 前后shuffle不一致的load操作
+ sampler = SequentialSampler(dataset=dataset)
+ sampler.set_epoch(0)
+ already_numbers = set()
+ if num_consumed_samples>0:
+ for i, j in enumerate(sampler, start=1):
+ if already_numbers:
+ assert j>max(already_numbers)
+ already_numbers.add(j)
+ if i == num_consumed_samples:
+ break
+ assert len(already_numbers) == num_consumed_samples
+
+ states = sampler.state_dict()
+
+ new_sampler = SequentialSampler(dataset=dataset)
+ new_sampler.load_state_dict(states)
+ new_sampler.set_epoch(0)
+ for i in new_sampler:
+ if already_numbers:
+ assert i > max(already_numbers)
+ assert i not in already_numbers
+
+ # 测试切换成多卡也没有问题
+ other_rank_number = set()
+ for rank in range(3):
+ new_sampler = SequentialSampler(dataset=dataset)
+ new_sampler.load_state_dict(states)
+ new_sampler.set_distributed(num_replicas=3, rank=rank, pad=pad)
+ new_sampler.set_epoch(0)
+ count = 0
+ seen = 0
+ seen_in_other_rank = 0
+ smaller = 0
+ for i in new_sampler:
+ if already_numbers:
+ smaller += int(i <= max(already_numbers))
+ seen_in_other_rank += int(i in other_rank_number)
+ other_rank_number.add(i)
+ seen += int(i in already_numbers)
+ count += 1
+ assert seen <= 1 if pad else seen == 0
+ assert seen_in_other_rank<=rank # 因为pad可能重复
+ assert smaller<=1 if pad else smaller==0
+
+ @pytest.mark.parametrize('pad', [True, False])
+ @pytest.mark.parametrize('num_consumed_samples', [0]+np.random.randint(1, 100//2, size=3).tolist())
+ def test_state_dict_2(self, pad, num_consumed_samples):
+ # 测试一下从多卡切换到单卡,或者切换到不同卡数量的多卡
+ num_samples = 100
+ dataset = DatasetWithVaryLength(num_of_data=num_samples)
+ # 测试使用 前后shuffle不一致的load操作
+ # lst = [30]
+ already_numbers = set()
+ sampler = SequentialSampler(dataset=dataset)
+ sampler.set_distributed(num_replicas=2, rank=0)
+ sampler.set_epoch(0)
+ if num_consumed_samples>0:
+ for i, j in enumerate(sampler, start=1):
+ if already_numbers:
+ assert j>max(already_numbers)
+ already_numbers.add(j)
+ if i == num_consumed_samples:
+ break
+ sampler = SequentialSampler(dataset=dataset)
+ sampler.set_epoch(0)
+ sampler.set_distributed(num_replicas=2, rank=1)
+ if num_consumed_samples>0:
+ for i, j in enumerate(sampler, start=1):
+ already_numbers.add(j)
+ if i == num_consumed_samples:
+ break
+ assert len(already_numbers) == num_consumed_samples*2
+
+ states = sampler.state_dict()
+
+ new_sampler = SequentialSampler(dataset=dataset)
+ new_sampler.load_state_dict(states)
+ new_sampler.set_epoch(0)
+ for i in new_sampler:
+ if already_numbers:
+ assert i > max(already_numbers)
+ assert i not in already_numbers
+
+ # 测试切换成多卡也没有问题
+ other_rank_number = set()
+ for rank in range(3):
+ new_sampler = SequentialSampler(dataset=dataset)
+ new_sampler.load_state_dict(states)
+ new_sampler.set_epoch(0)
+ new_sampler.set_distributed(num_replicas=3, rank=rank, pad=pad)
+ count = 0
+ seen = 0
+ seen_in_other_rank = 0
+ smaller = 0
+ for i in new_sampler:
+ if already_numbers:
+ smaller += int(i=prev_index
+ prev_index = index
+
+ indexes = list(chain(*samplers))
+ assert len(indexes) == num_of_data
+ indexes = set(indexes)
+ assert indexes == set(range(num_of_data))